辅助电源工作原理

合集下载

第5讲 ATX电源(辅助电源)工作原理及检修1

第5讲 ATX电源(辅助电源)工作原理及检修1

3.1 抗干扰及整流滤波电路检修
抗干扰及整流滤波电路检修流程
测整流 滤波电压 无电压
开路 按短路 (发黑) 故障 处理 检查 保险管 整流管 开路否 有开路 更换 损坏 元件
低于250V
正常
正常
检查连接线 及线路板
更换滤波电容
3.2 启动电路的检修
3.3 反馈与振荡电路检修
3.3 反馈与振荡电路检修
3.3 反馈与振荡电路检修
3.4 稳压控制电路检修
3.5 保护电路的检修
3.6 辅助电源电路开关管击穿损坏的检修
3.7 辅助电源检修流程
无输出
不正常
+310V 正常否
正常
检查整流 滤波电路
更换损坏 元件
Q3基极 电压
+0.5V 检查正反馈 电路 正常 检查 保护电路
无电压
检查启动 电路及Q4
更换损坏 元件
不正常
更换损坏 元件
不正常
更换损坏 元件
3.8 辅助电源电路故障案例 开机后电脑主机不启动,辅助电源无SB (待机)电压输出(启动电阻故障)
开机后电脑主机不启动,辅助电源无SB (待机)电压输出(开关变压器故障) 开机后电脑主机不启动,可听到电源有轻 微“吱吱”声
2、辅助电源电路
精密稳压器TL431
工作原理:加在参 考端的电压高于基准电 压(2.5V)时,阴极电 流加大,反之,阴极电 流减小。 重要参数: 1、稳压值:2.5~36V; 2、阴极电流: 1mA~ +150mA
3、辅助电源电路的检修方法
常用的电路检修方法:(1)直观法 (2)电阻法 (3)电压法 (4)电流法 (5)代换法 (6)模拟检查法 (7)安全检测法

电脑开关电源的工作原理

电脑开关电源的工作原理

计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。

对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。

下面对ATX电源控制电路的工作原理进行较详细的阐述,望能对广大维修者有所帮助。

一、ATX型电源电路的组成及工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。

请参照图1和ATX电源电路原理图。

1.辅助电源电路只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。

市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。

T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。

反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。

Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。

反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。

同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。

随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。

双电源开关的工作原理

双电源开关的工作原理

双电源开关的工作原理
双电源开关是一种用于在两个电源之间切换的电气设备。

它通常用于在主电源失效时,自动切换到备用电源以维持设备的正常工作。

双电源开关的工作原理如下:
1. 主电源供电状态:当主电源正常供电时,双电源开关通过内部的电路连接主电源,并将电源传递给设备。

主电源供电状态下,备用电源的电路处于断开状态。

2. 主电源失效状态:如果主电源发生故障或断电,双电源开关会自动检测到主电源的失效,并切换到备用电源。

在这种情况下,双电源开关会通过内部的电路连接备用电源,并将其电源传递给设备。

3. 断电优先原则:当主电源恢复供电时,双电源开关会自动检测到主电源的恢复,并切换回主电源供电。

这是基于断电优先原则,即主电源优先于备用电源供电。

双电源开关通常具有一定的切换时间,即从主电源切换到备用电源或从备用电源切换到主电源的时间间隔。

这个切换时间可以根据实际需要进行调整,一般在几毫秒到几秒之间。

总的来说,双电源开关通过自动监测和切换电源,确保设备在主电源失效时能够无缝切换到备用电源,以保证设备的正常工作。

UPS电源工作原理

UPS电源工作原理

UPS电源工作原理UPS(不间断电源)是指通过电池等辅助能量将直流电转换为交流电,并在输入电源不稳定或中断的情况下提供稳定的电力供应的设备。

其工作原理主要包括三个方面:电池充电、直流-交流转换和切换。

1.电池充电UPS的电池充电是通过输入电源对电池组进行充电,将交流电转换为直流电,以便在断电或不稳定电源时提供能量。

UPS充电过程中,通过逆变器将交流电转换为直流电,并通过充电电路充电给电池组。

当输入电源恢复正常时,UPS将会切换到电池供电模式,同时对电池进行浮充充电,以保证电池组始终处于充电状态。

2.直流-交流转换在正常情况下,UPS将输入的交流电直接传给输出端供电。

当输入电源不稳定或中断时,UPS会将直流电与电池组中的储能电池进行连接,并通过逆变器将直流电转换为交流电,以供给输出端设备使用。

逆变器通过控制开关管的开关频率和占空比,以调整直流电的波形和频率,从而实现交流电供应。

3.切换UPS在检测到输入电源异常时,会自动切换到电池供电模式,以保证输出设备的连续供电。

当恢复到输入电源正常时,UPS会自动切换回正常供电模式,并同时对电池组进行浮充充电。

切换过程中,通常会设置短暂的切换时间,以免供电中断造成不便或损失。

值得注意的是,UPS的工作原理可以根据不同的类型和设计有所差异。

根据输出波形的不同,UPS主要可以分为三类:离线式(Standby)、在线式(Online)和交互式(Line-interactive)。

离线式UPS在正常情况下直接将输入交流电传给输出端设备,只有在输入异常时才会切换到电池供电。

在线式UPS通过将输入交流电转换为直流电,并通过逆变器将其转换为交流电供给输出端设备,以实现连续供电。

交互式UPS则是在在线式UPS的基础上加入了电压调整和电池测量功能,可以更灵活地应对电网电压的波动和故障导致的问题。

总之,UPS的工作原理是通过电池充电、直流-交流转换和切换来保证输出设备的稳定供电。

长城ATX-300P4-PFC电脑电源辅助电路工作原理

长城ATX-300P4-PFC电脑电源辅助电路工作原理

长城ATX-300P4--PFC电脑电源辅助电路工作原理长城ATX—300P4-PFC电脑电源的辅助电源电路如附图所示。

一、电路组成与作用简介附图是一款完善的开关电源电路,它的组成主要包含有开关振荡电路『由开关管Q2(C3866)、启动电阻Rl0、RlOA、RlOB、R15和开关变压器T3等组成1;自动稳压控制电路f由精密稳压器IC1(TLA31AC)、光耦U1(P421)、三极管Q4、电阻R16_R19、J2等组成];过流保护电路(由三极管Q4、电阻R14、R13、电容C9、二极管D5、T3的N2绕组和光耦次级光敏管等组成)等。

本电路的作用与普通开关电源有所不同(它置于长城ATX—300P4-PFC电源内同一块电路板上),工作时能产生约15V和稳定的5v直流电压。

这两组电压的作用是:15V电压专为ATX电源提供启动电压(待机);5v电压则通过紫线端(+5VSB)送往电脑主板待机。

但当ATX电源受控启动后.15V电压就退居二线不起作用了,其原因下文分析工作原理时将进一步说明。

二、工作原理1.开关振荡电路和待机电压产生电路工作原理辅助电源电路从整机整流滤波后输出直流300V电压:一路经开关变压器T3的初级Nl绕组加至开关管0 2集电极(为开关管振荡提供电压);另一路经启动电阻Rl0、RIOA、RlOB送到02基极,并与R15分压后,为开关管振荡工作提供偏置.一旦接通220V交流市电,上述两个条件就同时具备,电路便开始自激振荡工作。

初始阶段Q2工作在放大区.T3的初级Nl绕组上正下负,这时T3次级N2反馈绕组就感应出上正下负的电动势,经正反馈电路(由R12、D6、C8等组成)对Q2基极正反馈,使Q’2的激励信号加强,Q2迅速进入饱和导通。

在此期间N2上端正电压继续通过R12对c8充电,充到一定程度时,c8极性为上负下正,使Q2基极电位下降,Q2退出饱和进人放大状态;另一方面+Q2饱和期间N2上端感应的正电压使二极管D7导通,对电容C l0充电,使光耦Ul(4)脚电位迅速升高.UI内部光敏管导通程度加强,经电阻J2使三极管04基极电位升高(Q 4深度导通),Q4与c8构成Q2负偏置电路,使Q2反偏而退出放大区截止.从放大到截止阶段Q2集电极电流逐渐减小,T3的Nl、N2绕组所感应的电动势则为上负下正(此时c8上的电荷通过D6、R12和N2迅速泄放),为下一个周期做准备。

ATX辅助电源电路的工作原理

ATX辅助电源电路的工作原理

辅助电源电路的工作原理:只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。

市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。

T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。

反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。

Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。

反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。

同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。

随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。

Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。

当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。

其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX 电源启动。

BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压TL494引脚定义TL494内部框架图。

辅助供电系统

辅助供电系统

三、PWM(Pulse Width Moderation)脉宽调制
利用半导体开关器件的导通和关断把直流电压 调制成电压可变、频率可变的电压脉冲列。中间部 分较宽,越向两侧越窄。
等效波形
U
t
SPWM调制:
采用三角波和正弦波相交获得的PWM波形直接 控制各个开关,可以得到脉冲宽度和各脉冲间的占 空比可变的、呈正弦变化的输出脉冲电压,能获得 理想的控制效果:
电压型逆变电路的特点
电压型全桥逆变电路
(1)直流侧为电压源或 并联大电容,直流侧电压 基本无脉动。
(2)输出电压为矩形波, 输出电流因负载阻抗不同 而不同。
(3)阻感负载时需提供 无功功率。为了给交流侧 向直流侧反馈的无功能量 提供通道,逆变桥各臂并 联反馈二极管。
电流型逆变电路
电一流般型在逆直变流电侧路串联大电感,电流脉动很小,可近似 看成直流电流源
IGBT是一种既
集电极 C
C
能控制 其导通又能
控制其关断的功率半
导体器件,当门极加
G 门极 G
上一定的正向电压时 管子导通,而当门极
发射极 E
E
IGBT原理示意图和符号
加反向电压时,管子 则被关断。
IGBT的工作特点
门极电压 UG> UG(th), IGBT导通
C
门极电压 UG< UG(th), IGBT关断
③变频控制方法一: V/F控制
简单实用,性能一般,使用最为广泛 只要保证输出电压和输出频率恒定就能近似保持 磁通保持恒定。 例: 对于380V 50Hz电机,当运行频率为40HZ时,要 保持V/F 恒定,则40HZ时电机的供电电压:380× (40/50)=304V
低频时,定子阻抗压降会导致磁通下降,需将 输出电压适当提高。

开关电源中的辅助电源

开关电源中的辅助电源

一、银河YH 2503B A TX电源辅助电路(见图1)整流后的300V直流电压,经限流电阻R72、启动电阻R76、T3开关变压器一次绕组L1分别加至Q15振荡管b、c极,Q15导通。

反馈绕组L2感应电势,经正反馈回路C44、R74加至Q15 b极,加速Q15进入饱和导通状态。

T3二次绕组L3、L4感应电势上负下正,整流管BD5、BD6截止。

由于Q15饱和后,T3一次绕级L1的电流不再变化,T3二次绕组L2上的感应电压开始下降,随着C44充电电压的上升,注入Q15的基极电流越来越少,Q15退出饱和而进入放大状态,L1绕组的振荡电流开始减小,由于电感线圈中的电流不能跃变,L1绕组感应电势反相,L2绕组的反相感应电势经R70、C41、D41回路向C41充电,C41正极接地,负极负电位,使ZD6、D30导通,Q15基极被迅速拉至负电位,Q15截止。

T3二次绕组L3、L4感应电势上正下负,BD5、BD6整流二极管输出两路直流电源,其中+5VSB 是主机唤醒ATX电源受控启动的工作电压,若该电压异常,ATX电源无法受控启动输出多路直流稳压电源。

截止期间,由于T3一次绕组L1电流无变化,二次绕组L2负电压开始向正电压方向变化,C44电压经R74、L2绕组放电,随着C44放电电压的下降,Q15基极电位回升,一旦大于0.7V,Q15再次导通。

导通期间,C41经R70放电,若C41放电回路时间常数远大于Q15的振荡周期时,最终在Q15基极形成正向导通0.7V,反向截止负偏压的电位,减小Q15关断损耗,D30、ZD6组成基极负偏压截止电路。

R77、C42为阻容吸收回路,抑制吸收Q15截止时集电极产生的尖峰谐振脉冲。

该辅助电源无任何受控调整稳压保护电路,常见故障是R72、R76阻值变大或开路,Q15、ZD6、D30、D41击穿短路,并伴随交流输入整流滤波电路中的整流管击穿,交流保险炸裂现象。

隐蔽故障是C41由于靠近Q15散热片,受热烘烤而容量下降,导致二次绕组BD6整流输出电压在ATX电源接入市电瞬间急剧上升,高达80V,通电瞬间常烧坏DBL494脉宽调制芯片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章辅助电源工作原理
第一节小机型辅助电源
一、辅助电源的作用
辅助电源的作用是给控制电路、驱动电路提供稳定的低压电源。

保证控制电路、驱动电路稳定可靠的工作。

要求能够输出24V、12V、5V的稳压直流电。

二、单端反激式开关电源工作原理
1、起始时开关K合上,电源给变压器供能,并以磁能的形式储存于变压器
中。

N1的极性为上正下负,N2的为上负下正,二极管截止,次边无电流。

2、然后开关K断开,由于次边无电流输出,在N1自感作用下,下端电压电压超出电源,
电感内储蓄了较高的磁能,此时N1极性变为下正上负,由于互感的作用N2的极性变为上正下负,二极管导通,变压器的磁能由N2线圈释放出来,N1线圈的下端电压开始回落。

3、当磁能放出到一定程度,线圈N1下端电压于电源,电源再给变压器供能,此时N1极
性变回为上正下负,开关K又被合上,进入下一个周期。

4、电路电流电压周期性的变化(初级)使次级负载得到稳定的供电。

三、小机型辅助电源的工作原理
小机型的辅助电源采用单端反激式开关电源的形式,其原理电路如图:
工作原理:
1、启动:
电源通过N1、D1、R9,R16给开关管Q5的栅极供电,达到8.2V时被稳压管D9钳位(保护开关管)。

此时,开关管导通,同时,因N3与N1同位,N3感生电流通过D3、R12给开关管供电,加速开关管的导通。

2、储能:
开关导通后,电源给变压器T供能,并把能量以磁能的形式储存于变压器中。

N1的极性为上正下负,N2极性为下正上负,二极管D13反向,N2无电流通过。

3、关断:
开关管导通后,电流经开关管Q5、R10到地,由于N1电感的作用,电流是由小到大上升的,则电阻R10上的电压同样是由小到大上升的,当电压值上升到一定程度时(约0.7V),三极管Q6导通,将开关管Q5的栅极电位迅速被拉低。

此时开关管截止。

4、放能:
开关管关断后,由于电感线圈N1的储能续流作用,N1下端电压会上升超出电源电压,极性变为下正上负,此时N2的感生电动势极性变为上正下负,二极管D13导通给负载供电,同时给C26充电,变压器的磁能由次极N2释放。

5、再次开通:
当变压器的能量放到一定程度时,N1下端电压回落到电源电压,由于电感的续流作用,N1下端电压会低于电源电压,即Cds(开关管漏-源电容)的端电压低于电源电压,致使电源再次通过给线圈N1给Cds充电,产生向下的电流。

同时,由于互感作用,N3开始给Q5栅极供电,Q5再次导通,电源又给变压器充能,此时由C26放电供给负载能量。

如此反复不断形成震荡,在开关管漏极形成了如图的电压波形。

6、稳压:
当输出电压超过24V时,电流通过D14、R20使得光电耦合器中的UA1发光,UB2导通,三极管Q6导通,将开关管Q5的栅极电位迅速被拉低,开关管提前截止。

使得输出保持在24V,达到稳压的目的。

相关文档
最新文档