《变量之间的关系》单元测试3

合集下载

北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(3)-新

北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(3)-新

北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(3)(本检测题满分:100分 时间:90分钟)一、选择题(每小题3分,共30分)1.(2012•海南中考)一个三角形的两边长分别为 3 cm 和7 cm ,则此三角形的第三边的长可能是( ) A .3 cm B.4 cm C .7 cm D .11 cm2.如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是( )A BC D3.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA4.已知两个直角三角形全等,其中一个直角三角形的面积为3,斜边为4,则另一个直角三角形斜边上的高为( )A. B. C. D.65.已知一个三角形三边长分别是4,9,12,作最长边上的高,作出的图形正确的是( )A. B.C. D.6. (2013•陕西中考)如图,在四边形ABCD 中,AB =AD ,CB =CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对7.已知:如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A =∠2第7题图第2题图第3题图C .△ABC ≌△CED D .∠1=∠28.如图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O ,且AB ≠AD ,则下列判断不正确的是( ) A .△ABD ≌△CBDB .△ABC ≌△ADCC .△AOB ≌△COBD .△AOD ≌△COD9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10.如图所示,两个全等的等边三角形的边长为1 m ,一个微型机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2 010 m 停下,则这个微型机器人停在( ) A .点A 处B .点B 处C .点C 处D .点E 处二、填空题(每小题3分,共24分)11.(2012•哈尔滨中考)一个等腰三角形的两边长分别为5和6,则这个等腰三角形的周长是 . 12.如图所示,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F .则下面结论中①DA 平分∠EDF ;②AE =AF ,DE =DF ;③AD 上的点到B 、C 两点的距离相等;④图中共有3对全等三角形,正确的有: .第12题图ABCD E F 第13题图AEBDC13.如图,点E 是CD 上的一点,Rt △ACD ≌Rt △EBC ,则下结论:①AC =BC ,②AD ∥BE ,③ ∠ACB =90°,④AD +DE =BE ,成立的有 个.14.如图所示,点A 、B 分别在∠COD 的边上,AD 与BC 相交于点E ,若△OAD ≌△OBC , ∠O =65°,∠C =20°,则∠OAD = .15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= .16.如图所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,若测得DE 的长为25 ,则河宽AB 为 . 17.如图所示,点B ,C ,F ,E 在同一直线上,∠1=∠2,BC =EF ,∠1 (填“是”或“不是”)∠2的对顶角,要使△ABC ≌△DEF ,还需添加一个条件,可以是 (只需写出一个) .第9题图第15题图第10题图B AC DE18.如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于点E,若BC= 15 cm,则△DEB的周长为 cm.三、解答题(共46分)19.(6分)如图所示,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.20.(8分)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.21.(6分)(2013•陕西中考)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC ⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.22.(8分)认真阅读下面关于三角形内外角平分线的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12A∠,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴,∴112().2ABC ACB∠+∠=∠+∠又∵∠ABC+∠ACB=180°﹣∠A,∴1112(180)90.22A A∠+∠=-∠=-∠∴∠BOC=180°(∠1∠2)=180°(90°∠)=90°12A∠.探究2:如图2,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?第18题图第22题图图3图2EABCO DAB图1CAB23.(6分)如图所示,武汉有三个车站A 、B 、C 是三角形的三个顶点,一辆公共汽车从B 站前往到C 站.(1)当汽车运动到点D 时,刚好BD =CD ,连接线段AD ,AD 这条线段是什么线段?这样的线段在△ABC 中有几条呢?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E 时,发现∠BAE =∠CAE ,那么AE 这条线段是什么线段呢?在△ABC 中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F 时,发现∠AFB =∠AFC =90°,则AF 是什么线段?这样的线段在△ABC 中有几条?E D 第23 题图F CBA第24题图ABC24.(6分) 如图,在△ABC 中,AB ⊥BC ,BE ⊥AC 于点E ,点F 在线段BE 上,∠1=∠2,点D 在线段EC 上,请你从以下两个条件中选择一个作为条件,证明△AFD ≌△AFB . (1)DF ∥BC ; (2)BF =DF .25.(6分)已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).参考答案1.C 解析:设第三边长为x ,则由三角形三边关系定理,得7-3<x <7+3,即4<x <10.因此,本题的第三边应满足4<x <10,把各项代入不等式符合的即为答案.3,4,11都不符合不等式4<x <10,只有7符合不等式,故答案为7 cm .故选C .2. B 解析:A.与△有两边相等,而夹角不一定相等,二者不一定全等;B.与△有两边及其夹角相等,二者全等;C.与△有两边相等,但夹角不相等,二者不全等;D.与△有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立.∵△BCD≌△ACE,∴∠DBC=∠CAE.∵∠BCA=∠ECD=60°,∴∠ACD=60°.在△BGC和△AFC中,∴△BGC≌△AFC,故B成立.∵△BCD≌△ACE(ASA),∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF(ASA),故C成立.故选D.4. C 解析:设面积为3的直角三角形斜边上的高为h,则×4h=3,∴h=.∵两个直角三角形全等,∴另一个直角三角形斜边上的高也为.故选C.5.C 解析:∵ 42+92=97<122,∴三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作最长边的垂线,垂足在最长边上.故选C.点评:本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部,当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部,当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.6.C 解析:∵在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA.∵在△ABO和△ADO中,AB=AD,∠BAO=∠DAO,AO=AO,∴△ABO≌△ADO(SAS).∵在△BOC和△DOC中,BC=DC,∠BCO=∠DCO,CO=CO,∴△BOC≌△DOC(SAS).7. D 解析:∵AC⊥CD,∴∠1+∠2=90°,故D选项错误.故选D.∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED中,∴△ABC≌△CED,故B、C选项正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确.8. B 解析:∵四边形ABCD关于BD所在直线对称,∴△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD,故A、C、D正确;∵AB≠AD,∴△ABC和△ADC不全等,故B不正确.故选B.9. D 解析:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);由①可得BD = CE, CD=BE.∵∠=∠ACE,BD=CE,AB=AC,∴③△BDA≌△CEA(SAS);又∠EOB=∠DOC,∠=∠DCO,BE=CD,∴④△BOE≌△COD(AAS).故选D.10.解析:∵两个全等的等边三角形的边长为1 m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6 m.∵ 2 010÷6=335,即正好行走了335圈,回到出发点,∴行走2 010 m停下,则这个微型机器人停在A点.故选A.11. 16或17 解析:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16.(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=17.故这个等腰三角形的周长是16或17.故答案为:16或17.12.①②③④解析:∵在△ABC中,AB=AC,AD是△ABC的角平分线,已知DE⊥AB,DF⊥AC,可证△ADE≌△ADF(AAS).故有∠EDA=∠FDA,AE=AF,DE=DF,①②正确;AD是△ABC的角平分线,在AD上可任意设一点M,可证△BDM≌△CDM,∴BM=CM,∴AD上的点到B、C两点距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.13. 1 解析:∵ Rt△ACD≌Rt△EBC,∴AC=BE.∵在Rt△BEC中,BE<BC,∴AC<BC,∴①错误;∵∠CAD=∠CEB=∠BED=90°,∠D<∠CAD,∴∠D≠∠BED,∴AD和BE不平行,∴②错误;∵ Rt△ACD≌Rt△EBC,∴∠ACD=∠CBE,∠D=∠BCE.∵∠CAD=90°,∴∠ACD+∠D=90°,∴∠ACB=∠ACD+∠BCE=90°,∴③正确;∵ Rt△ACD≌Rt△EBC,∴AD=CE,CD=BC,CD=CE+DE=AD+DE=BC.∵BE<BC,∴AD+DE>BE,∴④错误.14.95°解析:∵△OAD≌△OBC,∴∠OAD=∠OBC.∵∠OBC=180°-65°-20°=95°.∴∠OAD=95°.15. 55°解析:∵∠BAC=∠1+∠CAD,∠DAE=∠CAE∠CAD,又∵∠BAC=∠DAE,∴∠1=∠CAE.在△ABD与△ACE中,又∵AB=AC,∠1=∠CAE.AD=AE,∴△ABD≌△ACE(SAS).∴∠2=∠ABD.∵∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.16. 25 解析:在△ABC和△EDC中,∠ABC=∠EDC=90°,BC=CD,∠ACB=∠ECD,∴△ABC≌△EDC(ASA),∴AB=DE=25 .17.不是AC=FD 解析:根据对顶角的意义可判断∠1不是∠2的对顶角.故填:不是.添加AC=FD或∠BAC=∠EDF后可分别根据SAS、AAS判定△ABC≌△DEF.故答案为:AC=FD,答案不唯一.18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE,AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=15(cm). 19.(1)证明:在△AOB和△DOC中,∵∠B=∠C,∠AOB=∠DOC,AB=DC,∴△AOB≌△DOC(AAS).(2)解:∵△AOB≌△DOC,∴AO=DO.∵E是AD的中点,∴OE⊥AD,∴∠AEO=90°.20.解:不能;选择条件:①AB=DE;∵ BF =CE ,∴ BF +BE =CE +BE ,即EF =BC .在△ABC 和△DFE 中,AB =DE ,∠ABC =∠DEF ,EF =BC ,∴ △ABC ≌△DEF (SAS ). 21. 证明:∵ ∠AOB =90°,∴ ∠AOC +∠BOD =90°.∵ AC ⊥l ,BD ⊥l ,∴ ∠ACO =∠BDO =90°,∴ ∠A +∠AOC =90°,∴ ∠A =∠BOD . 在△AOC 和△OBD 中,∠A =∠BOD ,∠ACO =∠ODB =90°,OA =OB , ∴ △AOC ≌△OBD (AAS ),∴ AC =OD . 22. 分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,然后整理即可得到∠BOC 与∠A 的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC 与∠OCB ,然后再根据三角形的内角和定理列式整理即可得解. 解:探究2结论:∠BOC =∠A ,理由如下:∵ BO 和CO 分别是∠ABC 和∠ACD 的平分线, ∴ ∠1=∠ABC ,∠2=∠ACD . 又∵ ∠ACD 是△ABC 的一外角, ∴ ∠ACD =∠A +∠ABC ,∴ ∠2=(∠A +∠ABC )=∠A +∠1. ∵ ∠2是△BOC 的外角,∴ ∠BOC =∠2﹣∠1=∠A +∠1﹣∠1=∠A ;探究3:∠OBC =(∠A +∠ACB ),∠OCB =(∠A +∠ABC ), ∠BOC =180°﹣∠OBC ﹣∠OCB ,=180°﹣(∠A +∠ACB )﹣(∠A +∠ABC ), =180°﹣∠A ﹣(∠A +∠ABC +∠ACB ), 结论∠BOC =90°﹣∠A .23.分析:(1)由于BD =CD ,则点D 是BC 的中点,AD 是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE =∠CAE ,所以AE 是三角形的角平分线; (3)由于∠AFB =∠AFC =90°,则AF 是三角形的高线. 解:(1)AD 是△ABC 中BC 边上的中线,三角形中有三条中线. 此时△ABD 与△ADC 的面积相等.(2)AE 是△ABC 中∠BAC 的平分线,三角形中角平分线有三条. (3)AF 是△ABC 中BC 边上的高线,此三角形中有三条高线. 24. 解:添加条件:DF ∥BC .证明:∵ DF ∥BC ,∴ ∠FDE =∠C .∵ AB ⊥BC ,BE ⊥AC ,∴ ∠ABF +∠EBC =∠C +∠EBC =90°, ∴ ∠ABF =∠C ,∴ ∠ABF =∠ADF .又∵ ∠1=∠2,AF =AF ,∴ △AFD ≌△AFB (AAS ). 25. 已知:线段和∠,如图(1)所示. 求作:Rt △使α∠=∠︒=∠=A C a BC ,90,.作法:(1)作∠的余角∠. (2)作∠MBN =∠.(3)在射线BM 上截取BC =.(4)过点作CA ⊥BM ,交BN 于点,如图(2).第22题答图12OBA∴△ABC就是所求的直角三角形.NA(1)(2)第25题答图。

2020年北师大版七年级数学下册《第3章变量之间的关系》单元测试题(含答案)

2020年北师大版七年级数学下册《第3章变量之间的关系》单元测试题(含答案)

七年级下册单元测试卷《第3章变量之间的关系》测试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是( )A .时间B .骆驼C .沙漠D .体温2.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量是( )A .金额B .数量C .单价D .金额和数量 3.下面说法中正确的是( ) A .两个变量间的关系只能用关系式表示 B .图象不能直观的表示两个变量间的数量关系 C .借助表格可以表示出因变量随自变量的变化情况 D .以上说法都不对4.我们知道,在弹性限度内,弹簧挂上重物后会伸长.已知一根弹簧的长度(cm )与所挂重物的质量(kg )之间的关系如下表,则下列说法错误的是( )A .在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量B .当所挂重物的质量是4kg 时,弹簧的长度是14cmC .在弹性限度内,当所挂重物的质量是6kg 时,弹簧的长度是16cmD .当不挂重物时,弹簧的长度应为12cm5.自行车以10千米/小时的速度行驶,它所行走的路程S (千米)与所用的时间t (时)之间的关系为( ) A .S=10+t B .10t C .S=t10D .S=10t 6.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲、乙两人的速度相同B .甲先到达终点重物的质量(kg )1 2 3 4 5弹簧的长度(cm ) 12 12.51313.51414.5C.乙用的时间短 D.乙比甲跑的路程多7.下列情境①~④分别可以用哪幅图来近似地刻画?正确的顺序是()①一杯越来越凉的水(水温与时间的关系);②一面冉冉升起的旗子(高度与时间的关系);③足球守门员大脚开出去的球(高度与时间的关系)④匀速行驶的汽车(速度与时间的关系).A.cdab B.acbd C.dabc D.cbad8.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()9.小明同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么,他与自己家的距离y(米)与时间x(分钟)之间的关系的大致图象是()10.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个 B.2个 C.3个 D.4个二、填空题(本大题6小题,每小题4分,共24分)11.变量x与y之间的关系是y=2x-3,当因变量y=6时,自变量x的值是________.12.汽车开始行驶时,油箱内有油40L,油箱内的余油量Q(L)与行驶时间t(h)之间关系的图象如图所示,则每小时耗油_____L.13.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3y(升)100 92 84 76由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为0.14.米店卖米,数量x(千克)与售价c(元)之间的关系如下表:x/千克0.5 1 1.5 2 …c/元 1.3+0.1 2.6+0.1 3.9+0.1 5.2+0.1 …当x=5千克时,c= _________元.15.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是______________.16.在关系式y=3x+5中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 无关;④用关系式表示的不能用图象表示;⑤y 与x 的关系还可以用列表法和图象法表示, 其中说法正确的是___________.(只填写序号)三、解答题(一)(本大题共3题,每小题6分,共18分)17.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示. 根据图象回答下列问题:(1)小明家离图书馆的距离是______千米; (2)小明在图书馆看书的时间为______小时; (3)小明去图书馆时的速度是______千米/小时.18.某校办工厂现在年产值是15万元,计划今后每年增加2万元. (1)写出年产值y (万元)与年数x 之间的关系式________; (2)5年后的年产值是_______万元.19.如图,圆柱的高是3cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是_____,因变量是_______;(2)若圆柱的底面半径为r,圆柱的体积为V,V 与r 的关系式____________;(3)当底面半径由1cm 变化到10cm 时,圆柱的体积增加了_____c 3m .四、解答答题(二)(本大题共3题,每小题7分,共21分) 20.一个长方形的长是x ,宽是10,周长是y ,面积是s .d 50 80 100 150 b25405075(1)写出y与x变化而变化的关系式;(2)写出s随x变化而变化的关系式;(3)当s=200时,x等于多少?y等于多少?21.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如表数据:(1)该轿车油箱的容量为____L,行驶150km时,油箱剩余油量为_____L;(2)根据上表的数据,写出油箱剩余油量Q(L)与轿车行驶的路程s(km)之间的表达式;(3)某人将油箱加满后,驾驶该轿车从A地前往B地,到达B地时邮箱剩余油量为26L,求A,B两地之间的距离22.如图是某地某天温度变化的情况,根据图象回答问题:(1)上午3时的气温是_______0(2)这一天的最高温度和最低温度分别是_____0和______0.(3)这一天的温差是______.从最低温度到最高温经过了_________时间.(4)图中A点表示的是什么?B点呢?轿车行驶的路程s(km)0 100 200 300 400 ... 油箱剩余油量Q(L)50 42 34 26 18 ...五、解答题(三)(本大题共3题,每小题9分,共27分)23.如图,梯形上底长为10,下底长为x,高长为8,面积为y.(1)请你写出y与x之间的关系式;(2)用表格表示当x从15到20时(每次加l),y的相应值;(3)当x增加l时,y是如何变化的?24.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是390元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?25.已知动点P以每秒2cm的速度沿图甲边框按从B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?参考答案:1、A 2、D 3、C 4、C 5、D 6.B7.解:①一杯越来越凉的水,水温随着时间的增加而越来越低,故c 图象符合要求;②一面冉冉上升的旗子,高度随着时间的增加而越来越高,故d 图象符合要求; ③足球守门员大脚开出去球,高度与时间成图象是抛物弧线,故a 图象符合要求; ④匀速行驶的汽车,速度始终不变,故b 图象符合要求; 正确的顺序是cdab . 故选:A .8.解:根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢. 故选:C .9.解:根据以上分析可知能大致反映当天小明同学离家的距离y 与时间x 的关系的是B . 故选:B .10.解:读图可得,在x=40时,速度为0,故(1)(4)正确; AB 段,y 的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误; 故选:C .11:4.5 12:5L . 13:12.5小时. 14:13.1(元) 15:b=d 2116.①②⑤17.解:(1)根据图象可知y 随t 的变化而变化小明家离图书馆的距离是3千米; (2)路程不变,时间为72-12=60分钟,故小明在图书馆看书的时间为1小时; (3)根据速度=路程/时间可知小明去图书馆时的速度是15千米/小时.18.解:(1)根据题意,找到两个变量关系:即现在年产值是15万元,计划今后每年增加2万元,x 年后增加2x 万元,所以年产值y (万元)与年数x 之间的关系式y=2x+15(x ≥0); (2)将x=5代入解析式得:y=2x+15=2×5+15=25(x ≥0).19.解:(1)自变量是:半径,因变量是:体积. (2)体积V 与高h 之间的关系式V=23r π; (3)体积增加了(π×210-π×21)×3=297π3cm . 故答案为:(1)半径,体积;(2)297π.20.解:(1)y 和x 之间关系式为y=2(10+x )=2x+20; (2)s 与x 之间关系式为s=10x ;(3)当s=200时,即200=10x ,∴x=20,∴y=2(20+10)=60.21.解:(1)由表格中的数据可知,该轿车油箱的容量为50L ,行驶150km 时,油箱剩 余油量为:50-100150×8=38(L ).故答案是:50;38; (2)由表格可知,开始油箱中的油为50L ,每行驶100km ,油量减少8L ,据此 可得Q 与s 的关系式为Q=50-0.08s ;故答案是:Q=50-0.08s ;(3)令Q=26,得s=300.答:A ,B 两地之间的距离为300km .22.解:(1)上午3时的气温为23℃;(2)这一天最高温度和最低温度分别是:37℃、23℃; (3)37-23=14(℃),15-3=12(小时),这一天的温差是14℃,从最低温度到最高温度经过了12小时; (4)A 点表示21时的温度为31℃,B 点表示0时的温度为26℃.23.解:(1)y =28)10(⨯+x ,即y=4x+40(x >10) (2)(3)当x 增加1时,y 相应的增加4.24.解:(1)由图可得农民自带的零钱为50元, 答:农民自带的零钱为50元; (2)(290-50)÷80=240÷80=3元,x 15 16 17 18 19 20y 100 104 108 112 116 120答:降价前他每千克西瓜出售的价格是3元;(3)(390-290)÷(3-0.5)=100÷2.5=40(千克),80+40=120千克, 答:他一共批发了120千克的西瓜; (4)390-120×1.8-50=124元, 答:这个水果贩子一共赚了124元钱.25.解:(1)动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒 =8cm ;故图甲中的BC 长是8cm .(2)由(1)可得,BC=8cm ,则:a=21×BC ×AB=24c 2m ;图乙中的a 是24c 2m . (3)由图可得:CD=2×2=4cm ,DE=2×3=6cm , 则AF=BC+DE=14cm ,又由AB=6cm ,则甲图的面积为AB ×AF-CD ×DE=60c 2m ,图甲中的图形面积为60c 2m . (4)根据题意,动点P 共运动了BC+CD+DE+EF+FA=8+4+6+2+14=34cm , 其速度是2cm/秒,则b=234=17秒,图乙中的b 是17秒.。

第三章 变量之间的关系——2022-2023学年北师大版数学七年级下册单元测试

第三章 变量之间的关系——2022-2023学年北师大版数学七年级下册单元测试

第三章变量之间的关系一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.1~6个月的婴儿生长发育非常快,他们的体重y(g)随月份t(月)的变化而变化,可以用700=+(其中a是婴儿出生时的体重)来表示.在这一变化过程中,自变量y a t是( )A.yB.aC.700D.t2.某市出租车起步价为2公里内8元,超过2公里的部分计价为每公里1.6元.则该市出租车载客行驶路程(2)x x≥千米与收费y(元)之间的关系式为( )A. 1.68= D.4 1.6y xy x=+ y x=+ C.8=+ B. 1.6 4.8y x3.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设开始工作的时间为t,剩下的水量为s,下面能反映s与t之间的关系的大致图像是( )A. B.C. D.4.在烧开水时,水温达到100℃水就会沸腾,下表是小红同学做“观察水的沸腾”试验时所记录的时间t(min)和水温T(℃)的数据:10t<A.7 30,=+ B.1430T t T=-, D.3014,T t tT t t=+, C.1416=-T t T5.2021年泰安市市区出租车调整收费标准,起步价由原来2公里内6元调整为2公里内8元,超过2公里,超过部分由原来1.5元每公里调整为1.6元每公里.外地游客小明在泰安搭乘出租车沿环山路欣赏泰山美景,则行驶路程(2)x x≥千米与收费y(元)之间的函数关系式为( )A. 1.68= D.4 1.6y xy x=+ =+ B. 1.6 4.8y xy x=+ C.86.《龟兔赛跑》是我们非常熟悉的故事.大意是乌龟和兔子赛跑,兔子开始就超过乌龟好远,兔子不耐烦了就在路边睡了一觉,乌龟一直往目的地奔跑,最终乌龟获得了胜利.下面能反映这个故事情节的图像是哪个?( )A. B.C. D.7.2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是( )A. B. C. D.8.皮皮小朋友燃放一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示.下列说法正确的是( )B.飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C.估计飞行时间t 为5秒时,飞行高度h 为11.8米D.只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格9.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B 地比乙到A 地早112小时 10.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km ðkm .一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM OM 表示货车离西昌距离1(km)y y 1(km )与时间x (h)x (h )之间的函数关系:折线OABN 表示轿车离西昌距离y 2(km )与()2km y 时间x (h)x (h )之间的函数关系,则以下结论错误的是( )A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hn km/hD.轿车到雅安20分钟后,货车离雅安还有40km(km二、填空题(每小题4分,共20分)11.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.1米,立柱间距为3米设有x根立柱,护栏总长度为y米,则y与x之间的关系式为_______________.12.在关系式302=-中,v随着t的变化而变化,其中自变量是________,因变量是v t________,当t=________时,0v=.13.如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x(时)与油箱的余油量y(升)之间的关系,这种关系可以表示为_______.14.2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生下面表格是成都当日海拔h(千米)与相应高度处的气温T(℃)的关系.(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米)(1)由表格可知海拔5千米的气温约为__________℃.(2)由表格中的规律写出当日气温T与海拔h之间的关系式为___________.如图是当日飞机下降过程中海拔h与玻璃爆裂后立即返回地面所用的时间t的关系图.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为_______千米,返回地面用了_______分钟.(4)飞机在2千米高空水平面上大约盘旋了________分钟.(5)利用所学知识预测,挡风玻璃在高空爆裂时,当时飞机所处高空的气温为__________℃,由此可见机长在高空经历了多大的艰险.15.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了________元.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)据测定,海底扩张的速度是很缓慢的,在太平洋底,某海沟的某处宽度为100米,其地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x 年,海沟的宽度为y米.(1)写出海沟扩张时间x(年)与海沟的宽度y(米)之间的关系式;(2)计算出海沟宽度扩张到400米需要的年数.17.(8分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(030≤≤,单位:分)之间的关系如表所示:x(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是10分钟时,学生对概念的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间为多少时,学生对概念的接受能力最强?(4)根据表格中的数据,当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步增强?当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步降低?18.(10分)小红帮弟弟荡秋千,秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图所示.(1)根据函数的定义,请判断变量h是不是关于t的函数;(2)结合图象回答:①当0.7t s时,h的值是多少?并说明它的实际意义;②秋千摆动第一个来回需要多长时间?19.(10分)小明、小亮从图书馆出发,沿相同的线路跑向体育场,小明先跑一点路程后,小亮开始出发,当小亮超过小明150米时,小亮停下等候小明,两人相遇后,一起以小明原来的速度跑向体育场,图反映了两人所跑路程y(米)与所用时间x(秒)之间的关系,请根据题意解答下列问题:(1)自变量是_______,因变量是_________;(填“x”或“y”)(2)小明共跑了_________米,小明的速度为________米/秒;(3)图中a _________米,小亮在途中等候小明的时间是_______秒;(4)小亮在AB段的平均速度为________米/秒.20.(12分)为了参加“圆梦抚州、冬季旅游文化节”活动,甲、乙两山地自行车选手进行骑行训练.他们同地出发,反向而行,分别前往A地和B地甲先出发1 min且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.两人之间的距离y (km)与乙出发时间x(min)之间关系的图象如图所示请根据图象解决下列问题:(1)直接写出甲车和乙车的速度;(2)求图中a,b的值;(3)乙车出发多长时间两车首次相距22.6 km?21.(12分)在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1)由图象可知,新设备因工人操作不当停止生产了__________天;(2)求新,旧设备每天分别生产多少万个口罩?(3)在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案以及解析1.答案:D 解析:体重y (g )随月份t (月)的变化而变化,所以自变量是时间t ,故选D.2.答案:B解析:由题意得:()8 1.62y x =+-,即 1.6 4.8y x =+,故选:B.3.答案:D解析:根据题意可知随着抽水机工作,剩下的水量越来越少.而且一台抽水机工作的效率比两台抽水机工作效率慢,所以两台抽水机工作时,剩下的水量减少的速度更快. 故选:D.4.答案:A解析:开始时水温为30℃,每增加1 min ,水温增加7 ℃,所以水温T 与时间t 之间的关系式为730T =+.因为水温T 随时间t 的变化而变化,所以因变量为T .故选A.5.答案:B解析:由题意得:()8 1.62 1.6 4.8y x x =+-=+,故选B.6.答案:D解析:从图D 提供的信息可知:表示乌龟赛跑的图象应该是一条一直上升的直线,且比兔子早到达终点;表示兔子赛跑的图象应该是开始时是一条上升的直线,中途变为水平直线,然后又变为上升,且比乌龟晚到达终点.故选:D.7.答案:B解析:随着时间的增多,汽车离剧场的距离y (千米)减少,排除A 、C 、D ;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y 没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.8.答案:C解析:由表格可知从0秒到3秒的过程中,随着飞行时间t 的增加,飞行高度h 增加;3秒以后,随着飞行时间t 的增加,飞行高度h 减小.所以A 、B 选项不正确;由表格可知飞行高度h 在3秒左右是对称的,所以C 选项正确;已知中没有涉及合格的标准,所以D 选项不正确.故选C.9.答案:D解析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意; B.乙先出发,0.5小时,两车相距()10070km -,∴乙车的速度为:60km/h ,故乙行驶全程所用时间为:10021603=(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.750.5 1.25-=(小时),故甲车的速度为:()100 1.2580km/h ÷=,故B 选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,4060100+=,故两车相遇,故C 选项正确,不合题意;D.由以上所求可得,乙到A 地比甲到B 地早:211.751312-=,(小时),故此选项错误,符合题意.故选:D.10.答案:D解析:由题意可知,货车从西昌到雅安的速度为:240460(km/h)÷=,故选项B 不合题意;轿车从西昌到雅安的速度为:(24075)(3 1.5)110(km/h)-÷-=,故选项C 不合题意;轿车从西昌到雅安所用时间为:2240110211÷=(小时), 29321111-=(小时), 设货车出发x 小时后与轿车相遇,根据题意得:96011011x x ⎛⎫=- ⎪⎝⎭, 解得 1.8x =,∴货车出发1.8小时后与轿车相遇,故选项A 不合题意;轿车到雅安20分钟后,货车离雅安还有60206040(km)60-⨯=,故选项D 符合题意. 故选:D.11.答案: 3.1 -3y x =解析:由题意得,y 与x 之间的关系式为(0.13) -3 3.1 -3y x x =+=12.答案:t ,v ,15解析:根据函数的定义,则自变量是t ,因变量是v ;要使0v =,则3020t -=,解得15t =.13.答案:6010y x =-解析:由表格数据可知,行驶时间每延长1小时,剩余油量减少10升,即耗油量为10升/时,所以6010y x =-.14.答案:(1)-10;(2)206T h =-;(3)9.8;20;(4)2;(5)-38.8解析:(1)由题中表格可知,海拔5千米的气温约为-10℃.(2)由题中表格可知,海拔每上升1千米,气温下降6℃,所以当日气温T 与海拔h 之间的关系式为206T h =-.(3)由题中图象可知挡风玻璃在高空爆裂时飞机所处的高度为9.8千米,返回地面用了20分钟.(4)飞机在2千米高空水平面上大约盘旋了12102-=(分).(5)当9.8h =时,2069.838.8T =-⨯=-(℃).15.答案:36解析:解:根据题意得:由降价前40千克西瓜卖了64元,那么售价为:6440 1.6÷=元,降价0.4元后单价变为1.60.4 1.2-=,钱变为了76元,说明降价后卖了766412-=元,那么降价后卖了12 1.210÷=千克.总质量将变为401050+=千克,那么小李的成本为:500.840⨯=元,赚了764036-=元.16.答案:(1)根据题意得,海沟每年扩张的宽度为0.06米,∴海沟扩张时间x (年)与海沟的宽度y (米)之间的关系式为0.06100y x =+.(2)当400y =时,0.06100400x +=,解得5000x =.答:海沟宽度扩张到400米需要5000年.17.答案:(1)题中表格反映了提出概念所用的时间x 和学生对概念的接受能力y 之间的关系,其中x 是自变量,y 是因变量.(2)由题中表格可知,当提出概念所用的时间是10分钟时,学生对概念的接受能力是59.(3)由题中表格可知;当提出概念所用的时间为13分钟时,学生对概念的接受能力最强.(4)由题中表格可知,当提出概念所用的时间x 在2分钟至13分钟范围内时,学生对概念的接受能力逐步增强;当提出概念所用的时间x 在13分钟至20分钟范围内时,学生对概念的接受能力逐步降低.18.答案:(1)对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①当0.7t =s 时,0.5h =m ,它的实际意义是秋千摆动0.7s 时,离地面的高度为0.5m.②由题图可知,秋千摆动第一个来回需2.8s.19.答案:(1)由题意可得自变量是x ,因变量是y ,故答案为x ;y .(2)小明共跑了900米,小明的速度为900600 1.5÷=米/秒,故答案为900;1.5.(3) 1.5500750a =⨯=,小亮在途中等候小明的时间是500(750150) 1.5100--÷=秒,故答案为750;100.(4)小亮在AB 段的平均速度为750[(750150) 1.5100] 2.5÷-÷-=米/秒,故答案为2.5.20.答案:(1)甲的速度是0.636160=(km/h ). 乙的速度是33.60.6366636303060--=-=(km/h ). (2)根据题意,得3630(3630)0.660-⨯-=(km ), 33.6-0.6=33(km ),所以33a =.因为33(3630)0.5÷+=(h ),0.5 h=30 min ,36+30=66(min ),所以66b =.(3)设乙车出发x min 两车首次相距22.6 km , 根据题意,得36300.622.66060x x ⨯+⨯+=,解得20x =. 所以乙车出发20 min 后两车首次相距22.6 km.21.答案:(1)2;(2)甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同 解析:(1)由图象知,新设备因工人操作不当停止生产了2天, 故答案为:2;(2)新设备:4.81 4.8÷=(万个/天),乙设备:16.87 2.4÷=(万个/天), 答:甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)①2.4 4.8x =,解得2x =;②()2.4 4.82x x =-,解得4x =;答:在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同.。

北师大版七年级下册数学第三章变量之间的关系单元测试卷(Word版,含答案)

北师大版七年级下册数学第三章变量之间的关系单元测试卷(Word版,含答案)

第 1 页 共 10 页 北师大版七年级下册数学第三章变量之间的关系单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的关系式是( )A .()0.20100Q t t =≤≤B .()200.20100Q t t =-≤≤C .()0.2020t Q Q =≤≤D .()200.2020t Q Q =-≤≤2.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对3.小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( )A .23y x =B .32y x =C .12y x =D .18=y x4.在△ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此函数关系式中( ) A .S ,h 是变量,12,a 是常量 B .S ,h ,a 是变量,12是常量 C .a ,h 是变量,12,S 是常量 D .S 是变量,12,a ,h 是常量 5.为积极响应振兴乡村的号召,某工作队步行前往某乡村开展入户调查.队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地.设行进时间为t (单位:min ),行进的路程为x (单位:m ),则能近似刻画x 与t 之间的函数关系的大致图象是( )A .B .C.D.6.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a7.甲、乙两人在一次赛跑中,路程s(米)与时间t(秒)的关系如图所示,则下列结论错误的是()A.甲的速度为8米/秒B.甲比乙先到达终点C.乙跑完全程需12.5秒D.这是一次100米赛跑8.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8679.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y(米)第2页共10页。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(包含答案解析)(4)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(包含答案解析)(4)

一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C.D.4.在一张边长为 30 cm 的正方形纸片的四角上分别剪去一个边长为 x cm 的小正方形,然后将剩余部分折叠成一个无盖的长方体.则使得长方体的体积最大的 x 的取值是 ( )A.7 B.6 C.5 D.45.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D6.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x7.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1) 8.下列说法不正确的是()A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应9.新农村社区改造中,有一部分楼盘要对外销售. 某楼共30层,从第八层开始,售价x (元/平方米)与楼层n(8≤n<30)之间的关系如下表:楼层n89101112…售价x(元/平方米)20002050210021502200…则售价x(元/平方米)与楼层n之间的关系式为()A.x=2000+50n B.x=2000+50(n-8) C.n=2000+50(x-8) D.n=2000+50x 10.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积11.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,两人行驶的路程y(km)与甲出发的时间x(h)之间的函数图象如图所示.根据图象得到如下结论,其中错误的是()A.甲的速度是60km/h B.乙比甲早1小时到达C.乙出发3小时追上甲D.乙在AB的中点处追上甲12.下列各曲线中表示y是x的函数的是()A.B.C.D.二、填空题13.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为_____,该汽车最多可行驶_____小时.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表:所售豆子数量/千克00.51 1.52 2.53 3.54总售价/元012345678(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.16.根据图中的程序,当输入x=2时,输出的结果y=_______.17.甲、乙两人在一条直线道路上分别从相距1500米的A,B两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒)之间的关系如图所示.则甲到B点时,乙距B点的距离是_____米.18.某兴趣小组从学校出发骑车去植物园参观,先经过一段上坡路后到达途中一处景点,停车10分钟进行参观,然后又经一段下坡路到达植物园,行程情况如图,若他们上、下坡路速度不变,则这个兴趣小组的同学按原路返回所用的时间为________分钟.(途中不停留)19.一个装有10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y(千克)与时间t(小时)之间的关系式是__________,自变量t的取值范围是__________.20.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=6x;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是______(只填序号).三、解答题21.一根长80cm的弹簧,一端固定,如果另一端挂上物体,那么在弹性范围内,物体的质量每增加1kg,弹簧伸长2cm.(1)填写下表:所挂物体的质量/kg1234…弹簧的总长度/cm…(2)如何表示在弹性范围内所挂物体的质量(kg)与弹簧的总长度(cm)之间的数量关系?22.指出下面各关系式中的常量与变量.运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步速度v(m/s)之间的函数关系式为t=.23.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.24.一次越野赛跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程S(米)与时间t(秒)的关系如图,结合图象解答下列问题:(1)请你根据图象写出二条信息;(2)求图中S1和S0的位置.25.某电影院地面的一部分是扇形,座位按下列方式设置:排数1234座位数60646872(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由;(4)若某排有136座,则该排的排数是多少?26.如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点……数(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.2.B解析:B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x +12.因为菜园的一边是足够长的墙,所以0<x<24.故选B .3.B解析:B 【分析】根据油箱内余油量=原有的油量-t 小时消耗的油量,可列出函数关系式,得出图象. 【详解】解:由题意得,油箱内余油量Q (升)与行驶时间t (小时)的关系式为: Q=40-5t (0≤t≤8), 结合解析式可得出图象:故选:B . 【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.4.C解析:C 【解析】设长方体的体积为y ,则由题意可得:2(302)y x x =-,当x=7时,y=1792;当x=6时,y=1944;当x=5时,y=2000;当x=4时,y=1936; ∴当x=5时,y 的值最大. 故选C.5.A解析:A 【解析】由题意可知,符合实际情况的是A 选项中的图象,而选项B 、C 、D 中的图象都与实际情况不符. 故选A.6.C解析:C 【解析】选项A ,y=3x ,根据表格对应数据代入得出y≠3x ,选项A 错误;选项B,y=x-4,根据表格对应数据代入得出y≠x -4,选项B 错误;选项C ,y=x 2-4,根据表格对应数据代入得出y=x 2-4,选项C 正确;选项D,y=3x ,根据表格对应数据代入得出y≠3x,选项D 错误.故选C.7.A解析:A【解析】观察可知:当n=1时,y=4=3×1+1,当n=2时,y=7=3×2+1,当n=3时,y=10=3×3+1,……所以有n个正方形时,y=3n+1,故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.C解析:C【解析】A. 表格可以准确的表示两个变量的数值关系,正确;B. 图象能直观的反应两个变量之间的数量关系,正确;C. 两个变量间的关系能用关系式表示,还能用列表法和图象法表示,故错误;D. 当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应,正确,故选C.9.B解析:B【解析】观察表格可知楼层n(8≤n<30)每增加1,售价x就增加50元,所以:x=2000+50(n-8) (8≤n<30),故选B.10.B解析:B【解析】根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选B.11.C解析:C【解析】A.根据图象得:360÷6=60km/h,故正确;B. 根据图象得,乙比甲早到1小时;C.乙的速度为:360÷4=90km/h,设乙a小时追上甲,90a=60(a+1)解之得a=2,故不正确;D. ∵90×2=180km, ∴乙在AB的中点处追上甲,故正确;12.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.二、填空题13.y=40﹣5x8【分析】根据:油箱内余油量=原有的油量﹣x小时消耗的油量可列出函数关系式进而得出行驶的最大路程【详解】依题意得油箱内余油量y(升)与行驶时间x(小时)的关系式为:y=40﹣5x当y=解析:y=40﹣5x 8【分析】根据:油箱内余油量=原有的油量﹣x小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程.【详解】依题意得,油箱内余油量y(升)与行驶时间x(小时)的关系式为:y=40﹣5x,当y=0时,40﹣5x=0,解得:x=8,即汽车最多可行驶8小时.故答案为:y=40﹣5x,8.【点睛】本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.所售豆子数量和总售价总售价总售价所售豆子数量56【分析】根据表中数据售价与所售数量成正比例关系售价=所售豆子的数量×单价【详解】(1)表反映的变量是所售豆子数量和售价售价是因变量售价随所售豆子数量的解析:所售豆子数量和总售价总售价总售价所售豆子数量 5 6【分析】根据表中数据,售价与所售数量成正比例关系.售价=所售豆子的数量×单价.【详解】(1)表反映的变量是所售豆子数量和售价,售价是因变量,售价随所售豆子数量的变化而变化的;(2)5;(3)根据题意设解析式为y=kx,则0.5k=1,解得k=2,∴y=2x,当y=12时2x=12,解得x=6.故答案为所售豆子数量和总售价;总售价;总售价;所售豆子数量;5;6.【点睛】函数的意义是本题考查的重点.明确变量及变量之间的关系是解好本题的关键.16.3【解析】解:当输入x=2时因为x>1所以y=﹣x+5=﹣2+5=3故答案为3 解析:3【解析】解:当输入x=2时,因为x>1,所以y=﹣x+5=﹣2+5=3.故答案为3.17.5【解析】试题解析:5【解析】试题由题可得,甲从A到达B运动的时间为375秒,∴甲的速度为:1500÷375=4m/s,又∵甲乙两人从出发到相遇的时间为200秒,∴乙的速度为:1500÷200﹣4=3.5m/s ,又∵甲从相遇的地点到达B 的路程为:175×4=700米,乙在两人相遇后运动175秒的路程为:175×3.5=612.5米,∴甲到B 点时,乙距B 点的距离为:700﹣612.5=87.5米,故答案为87.5.18.【解析】试题分析:去植物园上坡路120×25=3000(米)下坡路180×(45-35)=1800(米)返回时的上坡路是1800米下坡路是3000米返回时的时间是=(分钟)故答案为点睛:本题考查了函 解析:953【解析】试题分析:去植物园上坡路120×25=3000(米),下坡路180×(45-35)=1800(米),返回时的上坡路是1800米,下坡路是3000米, 返回时的时间是18003000120180+=953(分钟), 故答案为953. 点睛:本题考查了函数图象,从函数图象获得上坡的时间、速度,下坡的时间、速度是解题关键,注意去时的上坡路是返回时的下坡路,去时的下坡路是返回时的上坡路. 19.【解析】依题意有y=10−05tt ⩾0且用水量不能超过原有水量∴05t ⩽10解得t ⩽20∴0⩽t ⩽20故函数关系式是y=10−05t 自变量t 的取值范围是0⩽t ⩽20故答案为 解析:100.5y t =- 020t ≤≤【解析】依题意有y=10−0.5t ,t ⩾0,且用水量不能超过原有水量,∴0.5t ⩽10,解得t ⩽20, ∴0⩽t ⩽20.故函数关系式是y=10−0.5t ,自变量t 的取值范围是0⩽t ⩽20.故答案为 100.5y t =- , 020t ≤≤20.③【解析】①y=2x 是正比例函数函数图象的对称轴不是y 轴错误;②y=是反比例函数函数图象的对称轴不是y 轴错误;③y=x2是抛物线对称轴是y 轴是偶函数正确;④y=(x ﹣1)2+2对称轴是x=1错误故答解析:③【解析】①y=2x ,是正比例函数,函数图象的对称轴不是y 轴,错误;②y=6x是反比例函数,函数图象的对称轴不是y 轴,错误; ③y=x 2是抛物线,对称轴是y 轴,是偶函数,正确;④y=(x ﹣1)2+2对称轴是x=1,错误.故答案为③. 三、解答题21.(1)82 84 86 88;(2)(802)cm y x =+【解析】【分析】(1)根据题意,运用代数法即可完成.(2)根据弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,可得函数解析式.【详解】解:(1)80+1×2=82;80+2×2=84;80+3×2=86;80+4×2=88;故答案为:82 、84 、86 、88.(2)设所挂物体的质量为(0)kg x x ,弹簧从长度为y ;那么弹簧伸长的长度为2cm x ,所以弹簧的总长度: (802)cm y x =+.【点睛】本题考查了函数解析式,利用了弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度;解题的关键在于正确的审题.22.常量是400m ,变量是v 、t【解析】【分析】根据常量是变化过程中保持不变的量,变化过程中变化的量是变量,可得答案.【详解】解:运动员在400m 一圈的跑道上训练,他跑一圈所用的时间t (s )与跑步速度v (m/s )之间的函数关系式为t=,常量是400m ,变量是v 、t .【点睛】本题考查了常量与变量,常量是变化过程中保持不变的量,变化过程中变化的量是变量.属于简单题,熟悉概念是解题关键.23.(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【解析】【分析】(1)根据图象不难得出结论;(2)从图上看出甲在5~7时直线斜率最大,即生产速度最快.【详解】解:(1) ①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产3小时;②由图象可知,甲、乙两条折线相交时,表示甲、乙所生产的零件个数相等.当t=3时,甲乙第一次相交;设甲乙第二次相交时生产时间为t 2,得: 10+()24010575t ---=4+40482--(2t -2), 解得:t 2=193, ∴当t 等于3和193时,甲、乙所生产的零件个数相等; (2)甲在5~7时的生产速度最快,∵(40-10)÷(7-5)=15,∴他在这段时间内每小时生产零件15个. 故答案为:(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【点睛】从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.24.(1)①小刚比李明早到终点100秒;②小刚的速度大于李明的速度;(2)1750.【解析】分析:(1)根据图象可得出小刚和李明第一次相遇的时间是100秒;小刚比李明早到终点100秒;两人匀速跑时,小刚的速度大于李明的速度;(2)求得小刚和李明速度,再乘以相遇的时间,两个路程相减即可得出两人的路程之差150.详解:(1)由图象可得出:①小刚比李明早到终点100秒;②两人匀速跑时,小刚的速度大于李明的速度; (2)∵11450200S -×100-11600300S -×100=150, ∴S 1=2050, ∴S 0=1450+11450200S -×100=1750. 点睛:本题考查了函数图像. 25.(1)排数与座位数在变化.自变量是排数,因变量是座位数;(2)第5排有76座,第6排有80座;(3)第n 排有60+4×(n -1)座,理由见解析;(4)该排的排数是20.【解析】【分析】(1)根据变量的定义得出变化的量,再根据座位数随着排数的变化而变化,从而确定自变量和因变量.(2)从具体数据中,不难发现:后一排总比前一排多4,由此得出第5排、第6排的座位数即可;(3) 根据(2)中的规律,第n排有60+4(n-1)个,再化简即可.(4)根据第n排的座位数列出方程即可.【详解】(1)排数与座位数在变化.其中自变量是排数,因变量是座位数.(2) ∵后一排总比前一排多4个座,∴第5排有76个座,第6排有80个座.(3) 第n排有(4n+56)个座;理由如下:∵第1排有60座,即60+4×(1-1);第2排有64个座,即60+4×(2-1);第3排有68个座,即60+4×(3-1);…;第n排有60+4×(n-1) 个座.∴第n排有60+4×(n-1)=(4n+56)个座.(4) ∵第n排有(4n+56)个座,∴4n+56=136.解得n=20.∴该排的排数是20.【点睛】本题主要考查了函数的定义,列函数关系式,以及解一元一次方程,本题的关键规律是“后一排总比前一排多4个座”.26.(1)见解析;(2)每层点数是随层数增加而增加,所有层的总点数是随层数的增加而增加;;(3) 自变量是层数,因变量是点数;(4) 第n层上的点数为6n-6, n层六边形点阵的总点数为1+3n(n-1);(5)在第17层;(6)没有一层,它的点数为100点,理由见解析【分析】(1)观察点阵可以写出答案;(2)观察由(1)中表格得出结论;(3)根据自变量、因变量的定义即可得出结论;(4)根据六边形有六条边,则第一层有1个点,第二层有2×6-6=6(个)点,第三层有3×6-6=12(个)点,进一步得出第n层有6(n-1)个点,总点数根据求和公式列式计算即可;(5)将96代入6n-6求得答案即可;(4)将100代入6n-6建立方程求解即可判定;【详解】(1)如表:(3)自变量是层数,因变量是点数;(4)第一层上的点数为1;第二层上的点数为6=1×6;第三层上的点数为6+6=2×6;第四层上的点数为6+6+6=3×6;…第n层上的点数为(n-1)×6=6n-6.所以n层六边形点阵的总点数为:1+1×6+2×6+3×6+…+(n-1)×6=1+6[1+2+3+4+…+(n-1)]=1+6[(1+2+3+…+n-1)+(n-1+n-2+…+3+2+1)]÷2=1+6×(1)2n n=1+3n(n-1);(5)第n层有(6n-6)个点,则有6n-6=96,解得n=17,即在第17层;(6)6n-6=100解得n=533,不合题意,所以没有一层,它的点数为100点.【点睛】考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.。

七年级数学下册《第三章 变量之间的关系》单元测试卷-附答案(北师大版)

七年级数学下册《第三章 变量之间的关系》单元测试卷-附答案(北师大版)

七年级数学下册《第三章变量之间的关系》单元测试卷-附答案(北师大版)一、选择题1. 明明从广州给远在上海的爷爷打电话,电话费随着通话时间的变化而变化.在这个过程中,因变量是( )A. 明明B. 电话费C. 通话时间D. 爷爷2. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 23. 下列情境图中能近似地刻画“一面冉冉上升的旗子”其高度与时间关系的是( )A. B.C. D.4. 在地球某地,地表以下岩层的温度y(℃)与所处深度x(km)之间的关系可以近似地用表达式y=35x+20来表示,当自变量x每增加1km时,因变量y的变化情况是( )A. 减少35℃B. 增加35℃C. 减少55℃D. 增加55℃5. 一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度ℎ(米)随飞行时间t(秒)变化的规律如下表所示:t/秒00.51 1.52 2.53 3.54 4.5…ℎ/米1.87.311.815.317.819.319.819.317.815.3…A. 飞行时间t每增加0.5秒,飞行高度ℎ就增加5.5米B. 飞行时间t每增加0.5秒,飞行高度ℎ就减少5.5米C. 估计飞行时间t为5秒时,飞行高度ℎ为11.8米D. 只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格6. 爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的关系是( )A. B.C. D.7. 如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A 中注水,则容器A中水面上升的高度ℎ随时间t变化的大致图象是( )A. B. C. D.8. 如图是一组有规律的图案,第 ①个图案由4个基础图形组成,第 ②个图案由7个基础图形组成⋯设第ⓝ(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是( )A. y=4nB. y=3nC. y=6nD. y=3n+19. 如图所示,在长方形ABCD中AB=6,AD=4,P是CD上的动点,且不与点C,D重合,设DP=x梯形ABCP的面积为y,则y与x之间的关系式和自变量的取值范围分别是( )A. y=24−2x,0<x<6B. y=24−2x,0<x<4C. y=24−3x,0<x<6D. y=24−3x,0<x<410. 甲,乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息。

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。

C.变量是C、r。

D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。

x<2.D。

x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。

B点透露表现此时快车抵达乙地B。

B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。

D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。

发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。

S=10+t。

B.C。

S=D。

S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。

七年级数学下册第三章《变量之间的关系》单元测试卷(含答案)

七年级数学下册第三章《变量之间的关系》单元测试卷(含答案)

七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.某工程队承建一条长30km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为()A. y=30−14x B. y=30+14x C. y=30−4x D. y=14x2.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A. B.C. D.3.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m34.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积()A. 从20cm2变化到64cm2B. 从64cm2变化到20cm2C. 从128cm2变化到40cm2D. 从40cm2变化到128cm25.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随着高度的升高而降低.已知某地地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h千米处的温度t为()A. t=20−6ℎB. ℎ=20−6tC. t=20−ℎ6D. ℎ=20−t66.从某容器口以均匀的速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()A.B.C.D.7.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B.C. D.8.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系().A. B.C. D.9.如图所示图象(折线ABCDE)描述了汽车沿笔直路线行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个10.如图的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中,正确的是()A. y=4n−4B. y=4nC. y=4n+4D. y=n2二、填空题(本大题共5小题,共20.0分)11.河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有行驶路程s(千米)050100150200...剩余油量Q(升)4035302520...则该汽车每行驶100千米的耗油量为__________升.12.如图所示是关于变量x,y的程序计算,若开始输入的x值为6,则最后输出因变量y的值为.13.如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的图象如图2所示,则长方形ABCD的周长等于____.14.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).15.某书定价25元,如果一次购买20本以上,超过20本的部分打八折(原价的80%),试写出付款金额y(单位:元)与购书数量x(单位:本,x>20)之间的关系式:________________.三、解答题(本大题共10小题,共100.0分)16.(8分)某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小王从家到学校的路程共______米,从家出发到学校,小明共用了______分钟;(2)小王吃早餐用了______分钟;(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?17.(10分)某通信公司在某地的资费标准为包月18元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.如表所示是超出部分国内拨打的收费标准.时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果打电话超出25分钟,需付多少电话费?(3)某次打电话超出部分的费用是54元,那么小明的爸爸打电话超出几分钟?18.(10分)某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入−支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)在这个变化关系中,自变量是什么?因变量是什么?(2)若要不亏本,该公交车每天乘客人数至少达到多少?(3)请你判断一天乘客人数为500人时,利润是多少?(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.19.(10分)某车间的甲、乙两名工人分别同时生产同一种零件,他们一天生产零件的个数y与生产时间t(时)的关系如图所示.(1)根据图象填空: ①甲、乙两人中,先完成一天的生产任务;在生产过程中,因机器故障停止生产小时; ②当t=时,甲、乙生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.20.(10分)我市为了提倡节约,用水x吨,自来水收费实行阶梯水价y元,收费标准如下表所示:(1)___________是因变量.(2)若用水量达到15吨,则需要交水费_____________元.(3)用户5月份交水费54元,则所用水为________吨.(4)当x>18时,y与x的关系式是_______________.21.(8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用−支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)−3000−2000−1000010002000…(1)在这个变化过程中,________是自变量;________是因变量;(2)观察表中数据可知,每月乘客量达到________人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?22.(10分)在梯形ABCD中,BC//AD,∠A=90°,AB=2,BC=3,AD=4,点E为AD的中点、点F为CD上一点.过点F作FG⊥AD于点G,且FG=1,点P 为BC上的一个动点(不与点B、C重合),设BP为x,四边形PEFC的面积为y,求y与x之间的关系式并写出x的取值范围.23.(10分)小强买了一张100元的乘车IC卡,如果用x表示他乘车的次数,那么卡内的余额y(元)如表所示:(2)利用上述关系式计算小强乘了25次车后,卡内的余额还有多少元?(3)小强用这张IC卡最多能乘多少次车?24.如果用t示时间,y表示电话费,那么随t的变化,y的变化趋势是______;(2)丽丽打了6分钟电话,那么电话费需付多少元?(3)你能写出y与t之间的关系式吗?25.(12分)端午节小明来到奥体中心观看比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车把小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题:(假设骑自行车和步行的速度始终保持不变)(1)从图中可知,小明家离奥体中心_________米,爸爸在出发后________分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离.(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.答案1.A2.D3.D4.B5.A6.C7.C8.D9.B10.B11.1012.4213.1614.y=20−2t15.y=20x+10016.解:(1)1000,25;(2)10;(3)小王吃早餐以前的平均速度为:500÷10=50米/分钟;小王吃早餐后的平均速度为:(1000−500)÷5=100米/分钟.17.解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量,电话费是因变量.(2)0.36×25=9(元),即如果打电话超出25分钟,需付18+9=27(元)的电话费.(3)54÷0.36=150(分钟).故小明的爸爸打电话超出150分钟.18.解:(1)在这个变化关系中,自变量是每天的乘车人数x(人);变量是每天利润y(元);(2)当y=0时,x=300因此要不亏本,该公交车每天乘客人数至少达到300人;(3)200+100×500−40050=400元,因此当一天乘客人数为500人时,利润是400元;(4)y=100×x−30050=2x−60019.解:(1) ①甲;甲;2. ②3或5.5.(2)甲在4∼7时的生产速度最快,甲在这段时间内每小时生产零件的个数为40−107−4=10.20.(1)收费标准;(2)31.5;(3)23;(3)y=3x−15.21.解:(1)每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.22.解:∵BC=3,BP=x,∴PC=3−x,∵AD=4,E为AD的中点,∴DE=12AD=2,∵BC//AD,FG⊥AD,∠A=90°,AB=2,∴S四边形PEFC =S梯形PEDC−S△EFD=12(3−x+2)×2−12×2×1=5−x−1=4−x,∴y=4−x,0<x<3.23.解:(1)由题意可得:y=100−1.6x;(2)当x=25时,y=100−1.6×25=60(元);(3)令y=0,100−1.6x=0解得:x=62.5x是整数位62.答:这张IC卡最多能乘62次.24.解:(1)时间;电话费;时间;电话费;y随着t的增大而增大;(2)每增加1分钟,电话费增加0.6元,则y=0.6t,当t=6时,y=0.36(元),(3)y=0.6t(t≥0).25.解:(1)3600;15;(2)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15⋅x+3x⋅15=3600,解得x=60(米/分),∴15x=15×60=900(米),即父亲与小明相遇时距离体育馆还有900米;(3)∵从B点到O点的速度为3x=180(米/秒),=5(分),∴返回时,从B点到体育馆所需的时间=900180而小明从体育馆到点B用了15分钟,∴小明从点A到点B,再从点B到点A需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章变量之间的关系
单元测试
一、选择题
1.土地沙漠化是人类生存的大敌,某地原有绿地a万公顷,由于人们环保意识不强,植被遭到严重破坏,经观察前段时间土地沙化速度为0.1万公顷/年,当人们意识到环境恶化的危害性之后,决定改变环境,以每年0.3万公顷的速度进行绿化,那么t年以后该地的绿地面积与时间的关系可用下图中的哪一个来近似地刻画()
2.小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用下图中的哪一幅来近似地刻画()
3.如图所示是某市某天的温度随时间变化的图象,通过观察可知:下列说法中错误的是()
A.这天15点时温度最高
B.这天3点时温度最低
C.这天最高温度与最低温度的差是13℃
D.这无力点时温度是30℃
4.某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水,水池注满后停止注水,又立即按一定的速度放完水池的水,若水池的存水量为V(m3),放水或注水时间为t(min),则V与t的关系的大致图象只能是()
5.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家.下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()
二、填空题
1.小红到批发市场共批了20支笔,她每月平均用3支笔,小红剩下的笔的支数用y表示,用x表示她用的月数,且y与x之间的关系可近似用x
=
y3
20-
表示.试问,当她用了2个月后,还剩____支笔,用了3个月后,还剩____支笔,用了6个月后,还剩____支笔,小红的笔够用7个月吗?____(填“够”或“木够”)
2.如图所示,圆柱的高是4厘米,当圆柱底面半径r(厘米)变化时,圆柱的体积V(厘米3)也随之变化.
(1)在这个变化过程中,自变量是______,因变量是____.
(2)圆柱的体积V与底面半径r的关系式是____.
(3)当圆柱的底面半径由2变化到8时,圆柱的体积由____变化到____.3.如图所示,长方形ABCD的四个顶点在互相平行的两条直线上,AD cm.当B、C在平行线上运动时,长方形的面积发生了变化.
10
(1)在这个变化过程中,自变量是_,因变量是_.
(2)如果长方形的长AB为x(cm),长方形的面积y(cm2)可以表示为_____.
(3)当长AB从15cm变到30cm时,长方形的面积由____cm2变到____cm2.4.已知鞋子的“码”数与“厘米”数的对应关系如下:
设鞋子的“码”数为x,长度为y(厘米),则x与y之间的关系为_________.5.某下岗职工购进一批水果,到集贸市场零售,已知卖出的苹果数量x与售价y的关系如下表所示:
则用x表示y的关系式是_____.
三、解答题
1.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?
(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.
(4)粗略说一说易拉罐底面半径对所需铝质量的影响.
2.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.
(1)下图反映了哪两个变量之间的关系?
(2)爷爷从家里出发后20分钟到30分钟可能在做什么?
(3)爷爷每天散步多长时间?
(4)爷爷散步时最远离家多少米?
(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.
3.青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.
(1)上图反映了哪两个变量之间的关系?自变量是谁?因变量是谁?
(2)A、B两点表示什么?
(3)小蕊10岁时身高多少?
(4)比较小军和小蕊的青春期身高情况有何相同与不同.
4.温度的变化,是人们常谈论的话题.下图是某地某天温度变化的情况.
(1)上午8时的温度是多少?16时呢?
(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
(5)图中的A点表示的是什么?B点呢?
参考答案
一.选择题
1.D 2.C 3.C 4.A 5.D
二.填空题
1.14 11.2 不够
2.(1)底面半径 圆柱体积 (2)24r V π= (3)16π 256π
3.(1)AB 的长度,长方形ABCD 的面积 (2)x y 10= (3)150 300 4.2
10+=x y 5.x y 1.2=
三.解答题
1.(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量 (2)当底面半径为2.4cm 时,易拉罐的用铝量为5.6cm 3
(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低
(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.
2.(1)反映了距离和时间之间的关系
(2)可能在某处休息
(3)45分钟
(4)900米
(5)20分钟内的平均速度为900÷20=45(米/分),30分钟内的平均速度为900÷30=30(米/分),45分钟内的平均速度为900×2÷45=40(米/分).
3.(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高
(2)A 点表示小军和小蕊在10岁半时身高都是140厘米,B 点表示小军和小蕊在14岁时身高都是155厘米
(3)小蕊10岁时身高130厘米,17岁时155厘米
(4)略
4.(1)-3℃,6℃ (2)8℃,14时,-10℃,4时 (3)18℃,经过了
10小时(4) 4时到14时温度在上升,0时到4时及14时到24时温度在下降(5)A点表示0时温度为-6℃,B点表示16时温度为6℃。

相关文档
最新文档