天津市和平区2016-2017年八年级数学上期末冲刺试卷及答案

合集下载

【真卷】2016-2017年天津市部分区八年级上学期数学期末试卷及答案

【真卷】2016-2017年天津市部分区八年级上学期数学期末试卷及答案

第1页(共18页)页)2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分) 1.(3分)下列式子是分式的是(分)下列式子是分式的是( ) A . B .C .+yD .2.(3分)计算(﹣3a 3)2的结果是(的结果是( ) A .﹣6a 5 B .6a 5 C .9a 6 D .﹣9a 63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为(为( ) A .2B .3C .6D .74.(3分)下列平面图形中,不是轴对称图形的是(分)下列平面图形中,不是轴对称图形的是( )A .B .C .D .5.(3分)下列运算正确的是(分)下列运算正确的是( ) A .﹣2(a +b )=﹣2a +2bB .x 5+x 5=xC .a 6﹣a 4=a 2D .3a 2•2a 3=6a 56.(3分)下列从左到右的变形是因式分解的是(分)下列从左到右的变形是因式分解的是( )A .6a 2b 2=3ab•2ab B .﹣8x 2+8x ﹣2=﹣2(2x ﹣1)2C .2x 2+8x ﹣1=2x (x +4)﹣1 1 DD .a 2﹣1=a (a ﹣) 7.(3分)下列说法正确的是(分)下列说法正确的是( )A .形状相同的两个三角形全等.形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等.完全重合的两个三角形全等D .所有的等边三角形全等 8.(3分)下列多项式中,含有因式(y +1)的多项式是()的多项式是( )A .y 2﹣2xy ﹣3x 2B .(y +1)2﹣(y ﹣1)2C .(y +1)2﹣(y 2﹣1)D .(y +1)2+2(y +1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是(分)若一个多边形的内角和与它的外角和相等,则这个多边形是( ) A .三角形.三角形 B .四边形.四边形 C .五边形.五边形D .六边形 10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD ;②AC ⊥BD ;③四边形ABCD 的面积=AC•BD ,其中正确的结论有( )A .0个B .1个C .2个D .3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是(的是( ) A .﹣=20 B .﹣=20 C .﹣= D .﹣=12.(3分)已知a 、b 、c 是△ABC 的三边的长,且满足a 2+b 2+c 2=ab +bc +ac ,关于此三角形的形状有下列判断:于此三角形的形状有下列判断:①是锐角三角形;①是锐角三角形;①是锐角三角形;②是直角三角形;②是直角三角形;②是直角三角形;③是钝角三③是钝角三角形;④是等边三角形,其中正确说法的个数是(角形;④是等边三角形,其中正确说法的个数是( ) A .4个 B .3个 C .2个 D .1个二、填空题(本题包括6小题,每小题3分,共18分) 13.(3分)若分式有意义,则x 的取值范围是的取值范围是. 14.(3分)若a 2+ab +b 2+M=(a ﹣b )2,那么M= . 15.(3分)在实数范围内分解因式:x 2y ﹣4y= .16.(3分)如图,已知AD 所在直线是△ABC 的对称轴,点E 、F 是AD 上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是,则图中阴影部分的面积的值是.17.(3分)若关于x 的方程无解,则m 的值是.18.(3分)如图,在第一个△A 1BC 中,∠B=30°,A 1B=CB ,在边A 1B 上任取一D ,延长CA 2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a 3﹣6a 2+3a )÷3a ; (2)计算(x ﹣y )(x 2+xy +y 2). 20.(4分)解方程:﹣=21.(6分)如图,△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,点F 在AC 上,BD=DF ,求证:CF=BE .22.(6分)已知a +b=3,ab=2,求代数式a 3b +2a 2b 2+ab 3的值. 23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元. (1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC 中,已知AB=AC ,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .度.的度数是(1)若∠ABC=70°,则∠NMA的度数是(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分) 1.(3分)下列式子是分式的是(分)下列式子是分式的是( ) A . B .C .+yD .【解答】解:A 、分母中不含有字母的式子是整式,故A 错误; B 、分母中含有字母的式子是分式,故B 正确; C 、分母中不含有字母的式子是整式,故C 错误; D 、分母中不含有字母的式子是整式,故D 错误; 故选:B .2.(3分)计算(﹣3a 3)2的结果是(的结果是( ) A .﹣6a 5 B .6a 5 C .9a 6 D .﹣9a 6 【解答】解:(﹣3a 3)2=9a 6. 故选:C .3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为(为( ) A .2B .3C .6D .7【解答】解:设第三边长为x ,则由三角形三边关系定理得5﹣2<x <5+2,即3<x <7. 故选:C .4.(3分)下列平面图形中,不是轴对称图形的是(分)下列平面图形中,不是轴对称图形的是( )A .B .C .D .【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)下列运算正确的是(分)下列运算正确的是( )A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2 D.3a2•2a3=6a5 【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是(分)下列从左到右的变形是因式分解的是( )A.6a 2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 1 D D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.7.(3分)下列说法正确的是(分)下列说法正确的是( )A.形状相同的两个三角形全等.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等.完全重合的两个三角形全等 D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()的多项式是( )A.y2﹣2xy﹣3x2 B.(y+1)2﹣(y﹣1)2 C.(y+1)2﹣(y2﹣1) D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][][((y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选:C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是(分)若一个多边形的内角和与它的外角和相等,则这个多边形是( ) A.三角形.五边形 D.六边形.四边形 C.五边形.三角形 B.四边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有( )A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD ≌△CBD (SSS ), 故①正确; ∴∠ADB=∠CDB , 在△AOD 与△COD 中,,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC , ∴AC ⊥DB , 故②正确; 四边形ABCD 的面积==AC•BD ,故③正确; 故选:D .11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是(的是( ) A .﹣=20 B .﹣=20 C .﹣= D .﹣= 【解答】解:由题意可得, ﹣=,故选:C .12.(3分)已知a 、b 、c 是△ABC 的三边的长,且满足a 2+b 2+c 2=ab +bc +ac ,关于此三角形的形状有下列判断:于此三角形的形状有下列判断:①是锐角三角形;①是锐角三角形;①是锐角三角形;②是直角三角形;②是直角三角形;②是直角三角形;③是钝角三③是钝角三角形;④是等边三角形,其中正确说法的个数是(角形;④是等边三角形,其中正确说法的个数是( ) A .4个 B .3个 C .2个 D .1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是的取值范围是 x≠1 .【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M= ﹣3ab .【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y= y(x+2)(x﹣2) .【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,,则图中阴影部分的面积的值是3 .若BC=4,AD=3,则图中阴影部分的面积的值是【解答】解:∵△ABC关于直线AD对称,∴B 、C 关于直线AD 对称,∴△CEF 和△BEF 关于直线AD 对称, ∴S △BEF =S △CEF ,∵△ABC 的面积是:×BC ×AD=×3×4=6, ∴图中阴影部分的面积是S △ABC =3. 故答案为:3.17.(3分)若关于x 的方程无解,则m 的值是的值是2 . 【解答】解:关于x 的分式方程无解即是x=1,将方程可转化为m ﹣1﹣x=0, 当x=1时,m=2. 故答案为2.18.(3分)如图,在第一个△A 1BC 中,∠B=30°,A 1B=CB ,在边A 1B 上任取一D ,延长CA 2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是等腰三角形的底角的度数是度.【解答】解:∵在△ABA 1中,∠B=30°,AB=A 1B , ∴∠BA 1A==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=∠BA 1C=×75°75°=37.5°=37.5°; 同理可得, ∠EA 3A 2=,∠FA 4A 3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.50 度.的度数是(1)若∠ABC=70°,则∠NMA的度数是(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线, ∴AM=BM ,∴△MBC 的周长=BM +CM +BC=AM +CM +BC=AC +BC , ∵AB=8,△MBC 的周长是14, ∴BC=14﹣8=6;②当点P 与M 重合时,△PBC 周长的值最小, 理由:∵PB +PB=PA +PC ,P A +PC ≥AC ,∴P 与M 重合时,P A +PC=AC ,此时PB +PC 最小, ∴△PBC 周长的最小值=AC +BC=8+6=14.附赠:初中数学易错题填空专题一、填空题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

天津市和平区2016-2017年八年级数学上册期末知识点清单及培优题

天津市和平区2016-2017年八年级数学上册期末知识点清单及培优题

八年级数学上册期末复习知识清单三角形认识边的不等 关系 例题:化简b a c c a b c b a +-+----+-32= (a,b,c 为三角形三边) 角的关系与角平分线有关的三个公式已知OB 、OC 平分∠ABC 、 ∠ACB,则∠BOC 与∠A 的关系结论:已知PB 、PC 是△ABC 外角∠CBD 、∠BCE 平分线,则∠BPC 与∠A 关系结论: 已知PB 、PC 是△ABC 一内角和一外角的平分线,则∠BPC 与∠A 关系结论:多边形问题 多边形内角和公式: 多边形对角线总数公式:N= 正n 边形每一个外角公式: 正n 边形每个内角公式: 重点题型:(1)已知多边形及一外角总和度数,求此外角度数及边数;(2)已知多边形及少一内角总和度数,求此内角度数及边数;(3)已知多边形,剪去一个角,求剪去后多边形内角和度数或多边形边数。

全等三角形五种基本判断方法(1) ;(2) ;(3) ;(4) ;(5) .常用辅助线倍长中线作法:如图,已知AB=4,AC=2,D 是BC中点,AD 是整数,求AD的长.如图,△ABC中,D是BC的中点,过D点作直角∠EDF,与AB交于E点,与AC交于F点,连接EF.请你判断BE+CF与EF的大小关系,并说明理由.截长补短作法:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.在△ABC中,AB>AC,AD是∠BAC的平分线.P是AD上任意一点.求证:AB-AC>PB-PC.角平分线性质已知OP平分∠AOB,PC⊥OB于C点。

已知OP平分∠AOB,PC⊥OP于P点。

辅助线作法:辅助线作法:轴对称与等腰三角形最短路程问题在直线上找一点P,使PA+PB 最小在直线上找一P,使PBPA-最小在直线上找一P,使PBPA-最大在OA、OB上分别找一点C、D,使△PCD周长最小并求出∠CPD 的度数. 在平面内找一点P,使P到OA、OB距离相等,同时到C、D两点距离相等。

2016-2017年天津市部分区八年级上学期期末数学试卷与答案

2016-2017年天津市部分区八年级上学期期末数学试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a56.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.。

天津市和平区八年级(上)期末数学试卷(解析版)

天津市和平区八年级(上)期末数学试卷(解析版)

天津市和平区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.将0.00002用科学记数法表示应为()A.2×10﹣5B.2×10﹣4C.20×10﹣6D.20×10﹣53.分式方程=的解为()A.x=0B.x=3C.x=5D.x=94.分式﹣可变形为()A.﹣B.C.﹣D.5.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5B.10C.11D.126.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F7.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab8.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE =∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS9.计算(2m2n﹣2)2•3m﹣3n3的结果等于()A.B.C.12mn D.12mn710.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为()A.35B.70C.140D.28011.小刚沿公路以akm/h的速度行走全程的一半,又以bkm/h的速度行走余下的一半路程;小明以akm/h的速度行走全程时间的一半,又以bkm/h的速度行走另一半时间.已知a≠b,则他们两人走完全程所用时间的关系是()A.小明比小刚用的时间少B.小刚比小明用的时间少C.小刚比小明用的时间相等D.不能确定12.如图,△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,AD,CE交于点F,则()A.AE+CD>AD B.AE+CD=AD C.AE+CD>AC D.AE+CD=AC二、填空题(本大题共6小题,每小题3分,共18分)13.当x=时,分式的值为0.14.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是.15.如图,△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.16.已知a2+b2=1,a﹣b=,则(a+b)4的值为.17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是.18.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为.三、解答题(本大题共8小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(4分)运用完全平方公式计算:992.20.(4分)计算:[(3x+1)(x+3)﹣3(6x+1)]÷2x.21.(8分)计算:(1)(+)÷(﹣)(2)+.22.(6分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.23.(6分)如图,在Rt△ABC中,∠B=90°,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M、N,直线MN与AC,BC分别交于点D、E,连接AE.(1)∠ADE的大小等于(度)(2)当AB=3,BC=4时,求△ABE的周长.24.(6分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.改良玉米品种后,迎春村玉米平均每公顷增加产量a吨,原来产60吨玉米的一块土地,现在的总产量增加了20吨,原来和现在玉米的平均每公顷产量各是多少?(1)设原来玉米平均每公顷产量为x吨,填写下表:(2)列出方程,并求出问题的解.25.(6分)分解因式:(1)x2+5x+6=;(2)3x2﹣4x+1=;(3)(a﹣3b)2﹣4c2+12ab=.26.(6分)已知△ABC,△EFG是边长相等的等边三角形,点D是边BC,EF的中点.(1)如图①,连接AD,GD,则∠ADC的大小=(度);∠GDF的大小=(度);AD与GD的数量关系是;DC与DF的数量关系是;(2)如图②,直线AG,FC相交于点M,求∠AMF的大小.天津市和平区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不可以看作是轴对称图形,故本选项错误;B、不可以看作是轴对称图形,故本选项错误;C、可以看作是轴对称图形,故本选项正确;D、不可以看作是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 02=2×10﹣5.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选:D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.【点评】本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.5.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.6.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.7.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.8.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.9.【分析】直接利用积的乘方运算法则化简,进而利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2m2n﹣2)2•3m﹣3n3=4m4n﹣4•3m﹣3n3=12mn﹣1=.故选:A.【点评】此题主要考查了积的乘方运算以及单项式乘以单项式运算,正确掌握运算法则是解题关键.10.【分析】先把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.【解答】解:根据题意得:a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故选:B.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.【分析】设全程为1,小明走完全程所用时间是x小时,用代数式表示小刚、小明所用时间,然后做减法比较大小.【解答】解:设全程为1,小刚所用时间是=设小明走完全程所用时间是x小时.根据题意,得ax+bx=1,x=则小明所用时间是小刚所用时间减去小明所用时间得﹣=>0即小刚所用时间较多.故选:A.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键12.【分析】通过角之间的转化可得出△AGF≌△AEF,进而可得出线段之间的关系,即可得出结论.【解答】解:在AC上截取AG=AE,连接GF,如图所示:∵∠ABC=60°,AD,CE分别平分∠BAC,∠BCA,∴∠FAC+∠FCA=60°,∴∠AFE=∠FAC+∠FCA=60°,在△AGF和△AEF中,,∴△AGF≌△AEF(SAS),∴FG=FE,∠AFG=∠AFE=60°,∴∠GFC=∠AFC﹣∠AFG=120°﹣60°=60°,∵∠CFD=∠AFE=60°,∴∠CFD=∠CFG在△CFG和△CFD中,,∴△CFG≌△CFD(AAS),∴CG=CD,∴AE+CD=AG+CG=AC.故选:D.【点评】本题考查了全等三角形的判定与性质,关键是需要通过作辅助线证明三角形全等才能得出结论.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【解答】解:∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为:85°.【点评】本题考查了角平分线的定义,三角形内角和定理等知识,解答本题的关键是根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°.15.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.【点评】本题主要考查等腰三角形的性质,熟练掌握等腰三角形中的三线合一是解题的关键.16.【分析】把a﹣b=两边平方得到a2﹣2ab+b2=,则2ab=,所以(a+b)2=,然后两边平方得到(a+b)4的值.【解答】解:∵a﹣b=,∴(a﹣b)2=,即a2﹣2ab+b2=,∵a2+b2=1,∴2ab=,∴a2+2ab+b2=,即(a+b)2=,∴(a+b)4=.故答案为.【点评】本题考查了完全平方公式:记住公式(a±b)2=a2±2ab+b2.17.【分析】根据等边三角形的性质,如右下角的第二小的三角形,设它的边长为x,则可依次求出等边三角形的边长,进而求出六边形周长为7x+9a,由图知最大的三角形的边长等于第二小的三角形边长的2倍,即x+3a=2x,求出x=3a.即可求六边形周长.【解答】解:因为每个三角形都是等边的,从其中一个三角形入手,比如右下角的第二小的三角形,设它的边长为x,则等边三角形的边长依次为x,x+a,x+a,x+2a,x+2a,x+3a,所以六边形周长是,2x+2(x+a)+2(x+2a)+(x+3a)=7x+9a,而最大的三角形的边长等于第二小的三角形边长的2倍,即x+3a=2x,故x=3a.所以周长为7x+9a=30a.故答案为:30a.【点评】本题考查了等边三角形的性质,认真观察图形,找出等量关系,解一元一次方程即可.关键是要找出其中的等量关系.18.【分析】根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠C与∠A之间的关系,最后根据三角形内角和定理不难求解.【解答】解:①如图(1),∵AB=AC,AD=BD=BC,∴∠ABC=∠C=∠BDC,∠A=∠ABD,∵∠BDC=2∠A,∴∠ABC=2∠A,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°.②如图(2)AD=BD,BC=CD,设∠A=β,则∠ABD=β,∴∠1=2β=∠2,∵∠ABC=∠C,∴∠C=∠2+∠β,∴∠C=3β,∴7β=180°,∴β=;即∠A=;③如图(3)AD=DB=DC,则∠ABC=90°,不可能.故原等腰三角形纸片的顶角为36°或.【点评】此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.三、解答题(本大题共8小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.【分析】直接利用完全平方公式计算得出答案.【解答】解:992=(100﹣1)2=1002﹣2×100×1+12=9801.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.20.【分析】原式利用多项式乘以多项式、单项式乘以单项式法则计算,在运用多项式除以单项式法则即可得到结果.【解答】解:[(3x+1)(x+3)﹣3(6x+1)]÷2x.=[3x2+9x+x+3﹣18x﹣3]÷2x.=(3x2﹣8x)÷2x.=x﹣4.【点评】本题考查整式混合的运算,解题的关键是熟练运用整式的运算法则,注意单项式与多项式相乘时的符号.21.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=÷=•=(2)原式==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【分析】直接利用平行线的性质结合全等三角形的判定方法得出答案.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,,∴△ABC≌△EDB(SAS),∴∠A=∠E.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.23.【分析】(1)根据线段垂直平分线的画法可判断MN垂直平分AC,从而得到∠ADE的度数;(2)根据线段垂直平分线的性质得AE=CE,则利用等线段代换得到△ABE的周长=AB+BC,然后把AB=3,BC=4代入计算即可.【解答】解:(1)利用作图得MN垂直平分AC,即DE⊥AC,AD=CD,所以∠ADE=90°;故答案为90;(2)∵MN垂直平分AC,∴AE=CE,∴△ABE的周长=AB+AE+BE=AB+EC+BE=AB+BC=3+4=7.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.【分析】如果设原来玉米平均每公顷产量是x吨,则现在玉米平均每公顷产量是(x+a)吨.由于种植玉米地的面积=这块地的总产量÷平均每公顷产量,根据改良玉米品种前后种植玉米地的面积不变列方程求解.【解答】解:(1)原来玉米平均每公顷产量是x吨,则现在玉米平均每公顷产量是(x+a)吨.这块土地的面积分别为:,;故答案为:x+a;;;(2)由题意,有,解得x=3a.把x=3a代入x(x+a)≠0,经检验x=3a是原方程的根,∴x+a=3a+a=4a.故原来和现在玉米平均每公顷产量各是3a吨,4a吨.【点评】本题考查了分式方程的应用.关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.25.【分析】(1)十字相乘法分解可得;(2)十字相乘法分解可得;(3)先将括号内展开,再合并同类项,最后利用公式法分解可得.【解答】解:(1)x2+5x+6=(x+2)(x+3),故答案为:(x+2)(x+3);(2)3x2﹣4x+1=(x﹣1)(3x﹣1),故答案为:(x﹣1)(3x﹣1);(3)(a﹣3b)2﹣4c2+12ab=a2﹣6ab+9b2﹣4c2+12ab=a2+6ab+9b2﹣4c2=(a+3b)2﹣4c2=(a+3b+2c)(a+3b﹣2c),故答案为:(a+3b+2c)(a+3b﹣2c).【点评】本题主要考查因式分解,解题的关键是熟练掌握十字相乘法和公式法分解因式的能力.26.【分析】(1)如图①中,根据等边三角形的性质解答即可.(2)如图连接AD,DG,利用等边三角形的性质即可解决问题.【解答】解:(1)如图①,连接AD,GD,∵△ABC是等边三角形,BD=DC,则∠ADC的大小=90°;∵△EGF是等边三角形,ED=DF,∴∠GDF=90°;∵BC=EF,∴AD=GD;DC=DF;(2)连接AD,DG,由(1)得:∠ADC=∠GDF=90°,∴∠ADC﹣∠GDC=∠GDF﹣∠GDC,即∠1=∠2,由(1)得:AD=GD,∴∠DGA=∠DAG=,由(1)得:DC=DF,∴∠3=∠DCF=,∴∠DGA=∠3,∵∠AMF=∠AGF+∠5,∴∠AMF=∠DGA+∠5+∠4=∠3+∠5+∠4=180°﹣∠GDF=180°﹣90°=90°.故答案为:90;90;AD=GD;DC=DF.【点评】本题考查等边三角形的判定和性质等知识,解题的关键是根据等边三角形的性质解答.。

天津市和平八年级数学上学期期末模拟试卷(含解析) 新人教版

天津市和平八年级数学上学期期末模拟试卷(含解析) 新人教版

2016-2017学年天津市和平二十中八年级(上)期末数学模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个2.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为()A.10 B.8 C.6 D.43.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b24.下列算式中,你认为错误的是()A.B.C.D.5.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.196.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a67.化简,可得()A.B.C.D.8.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.119.方格纸中,每个小格顶点叫做格点.以格点连线为边的三角形叫格点三角形.如图在4×4的方格纸中,有两个格点三角形△ABC、△DEF.下列说法中,成立的是()A.∠BCA=∠EDFB.∠BCA=∠EFDC.∠BAC=∠EFDD.这两个三角形中没有相等的角10.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°11.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°12.在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米B.千米C.千米D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)13.已知﹣(x﹣1)0有意义,则x的取值范围是.14.分解因式:8(a2+1)﹣16a= .15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °.16.一个等腰三角形的两边长分别是4cm和7cm,且它的周长大于16cm,则第三边是.17.已知a+=3,则a2+的值是.18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.三、计算题(本大题共3小题,共24分)19.(ab2)2•(﹣a3b)3÷(﹣5ab);(2)(x+1)2﹣(x+2)(x﹣2).20.(8分)化简:(1)+÷.(2)÷(x+2﹣).21.(8分)分解因式:(1)3x﹣12x3;(2)3m(2x﹣y)2﹣3mn2.四、解答题(本大题共4小题,共22分)22.如右图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,(1)试证明:DE=BF;(2)连接DF、BE,猜想DF与BE的关系?并证明你的猜想的正确性.23.如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.24.在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数比甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.2016-2017学年天津市和平二十中八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:,,,这四个是最简分式.而==.最简分式有4个,故选C.【点评】判断一个分式是最简分式,主要看分式的分子和分母是不是有公因式.2.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为()A.10 B.8 C.6 D.4【考点】三角形的面积.【分析】由中线得:S△ABD=S△ADC得S△ABD=S△ABE,由已知S△ABC=24,得出△ABE和△ABD的面积为12,根据等式性质可知S△AEF=S△BDF,结合中点得:S△AEF=S△EFC=S△DFC=,相当于把△ADC的面积平均分成三份,每份为4,由此可得S△ABF=S△ABD﹣S△BDF.【解答】解∵AD是中线,∴S△ABD=S△ADC=S△ABC,∵S△ABC=24,∴S△ABD=S△ADC=×24=12,同理S△ABE=12,∴S△ABD=S△ABE,∴S△ABD﹣S△ABF=S△ABE﹣S△ABF,即S△AEF=S△BDF,∵D是中点,∴S△BDF=S△DFC,同理S△AEF=S△EFC,∴S△AEF=S△EFC=S△DFC=S△ADC=×12=4,∴S△ABF=S△ABD﹣S△BDF=12﹣4=8,故选B.【点评】本题考查了三角形的面积问题,应用了三角形的中线将三角形分成面积相等的两部分,与各三角形面积的和与差相结合,分别求出各三角形的面积;本题是求三角形的面积,思考的方法有两种:①直接利用面积公式求;②利用面积的和与差求;本题采用了后一种方法.3.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b2【考点】完全平方公式.【分析】根据整式乘法中完全平方公式(a±b)2=a2±2ab+b2,即可作出选择.【解答】解:A.(a﹣b)2=a2﹣2ab+b2,故A选项正确;B.(a﹣b)2=a2﹣2ab+b2,故B选项错误;C.(a﹣b)2=a2﹣2ab+b2,故C选项错误;D.(a﹣b)2=a2﹣2ab+b2,故D选项错误;故选:A.【点评】本题考查了完全平方公式,关键是要了解(x﹣y)2与(x+y)2展开式中区别就在于2xy项的符号上,通过加上或者减去4xy可相互变形得到.4.下列算式中,你认为错误的是()A.B.C.D.【考点】分式的乘除法;分式的加减法.【分析】A、利用同分母分式的加法法则计算得到结果,即可做出判断;B、利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到结果,即可做出判断;C、原式通分并利用同分母分式的减法法则计算得到结果,即可做出判断;D、原式约分得到结果,即可做出判断.【解答】解:A、原式==1,本选项正确;B、原式=1××=,本选项错误;C、原式==﹣,本选项正确;D、原式=•=,本选项正确.故选B.【点评】此题考查了分式的乘除法,分式的乘除法的关键是约分,约分的关键是找公因式.5.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.19【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的性质、三角形的三边关系解答即可.【解答】解:三角形的三边长为13、13、6时,它的周长为32,三角形的三边长为13、6、6时,不能组成三角形,∴三角形的周长为32,故选:C.【点评】本题考查的是等腰三角形的性质、三角形的三边关系,掌握三角形两边之和大于第三边是解题的关键.6.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a6【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用完全平方公式化简得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=a4,错误;B、原式=2a2,错误;C、原式=a2﹣2ab+b2,错误;D、原式=a6,正确,故选D【点评】此题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.7.化简,可得()A.B.C.D.【考点】分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ==.故选B.【点评】本题考查了分式的加减运算,题目比较容易.8.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11【考点】线段垂直平分线的性质.【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC 的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.9.方格纸中,每个小格顶点叫做格点.以格点连线为边的三角形叫格点三角形.如图在4×4的方格纸中,有两个格点三角形△ABC、△DEF.下列说法中,成立的是()A.∠BCA=∠EDFB.∠BCA=∠EFDC.∠BAC=∠EFDD.这两个三角形中没有相等的角【考点】全等三角形的判定与性质.【分析】在4×4的方格纸中,观察图形可知△ABC≌△DEF,根据全等三角形对应角相等作答.【解答】解:观察图形可知△ABC≌△DEF,∴∠BCA=∠EFD,∠BAC=∠EDF.故选B.【点评】本题考查了全等三角形的判定及性质;认真观察图形,在图形上找着有用的条件是一种很重要的能力,注意培养.10.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.11.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.【分析】由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.【解答】解:∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即3∠1﹣∠2=180°.故选:D.【点评】主要考查了等腰三角形的性质及三角形的外角、内角和等知识;(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.12.在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米B.千米C.千米D.无法确定【考点】列代数式(分式).【分析】平均速度=总路程÷总时间,题中没有单程,可设单程为1,那么总路程为2.【解答】解:依题意得:2÷(+)=2÷=千米.故选C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.二、填空题(本大题共6小题,每小题3分,共18分)13.已知﹣(x﹣1)0有意义,则x的取值范围是x≠2且x≠1 .【考点】分式有意义的条件;零指数幂.【分析】根据分式有意义,分母不等于0,零指数幂的底数不等于0解答.【解答】解:由题意得,x﹣2≠0且x﹣1≠0,解得x≠2且x≠1.故答案为:x≠2且x≠1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.分解因式:8(a2+1)﹣16a= 8(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式8,进而利用完全平方公式分解因式得出即可.【解答】解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= 55 °.【考点】旋转的性质.【分析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.【解答】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.【点评】此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.16.一个等腰三角形的两边长分别是4cm和7cm,且它的周长大于16cm,则第三边是7cm .【考点】等腰三角形的性质;三角形三边关系.【分析】因为给的两个边长没说哪个是腰,哪个底,所以分两种情况讨论:①4cm为底,7cm 为腰;②7cm为底,4cm为腰.【解答】解:①4cm为底,7cm为腰时,周长为:4+7+7=18(cm);②7cm为底,4cm为腰,周长为:7+4+4=15(cm).∵等腰三角形的周长大于16cm,∴第三边是7cm.故答案为:7cm.【点评】此题主要考查了等腰三角形的性质,关键是分情况讨论时,分出的两种情况,都要满足三角形的三边关系.17.已知a+=3,则a2+的值是7 .【考点】完全平方公式.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为120°或75°或30°.【考点】等腰三角形的判定.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.【点评】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.三、计算题(本大题共3小题,共24分)19.(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)(x+1)2﹣(x+2)(x﹣2).【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=x2+2x+1﹣x2+4=2x+5.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)+÷.(2)÷(x+2﹣).【考点】分式的混合运算.【分析】(1)原式先计算除法运算,再计算加减运算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则计算,约分即可得到结果.【解答】解:(1)原式=﹣•=﹣==;(2)原式=﹣•=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.分解因式:(1)3x﹣12x3;(2)3m(2x﹣y)2﹣3mn2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式3x,再利用平方差公式分解因式;(2)直接提取公因式3m,再利用平方差公式分解因式.【解答】解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n);【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.四、解答题(本大题共4小题,共22分)22.(2016秋•天津期末)如右图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,(1)试证明:DE=BF;(2)连接DF、BE,猜想DF与BE的关系?并证明你的猜想的正确性.【考点】全等三角形的判定与性质.【分析】(1)求出AF=CE,∠AFB=∠DEC=90°,根据平行线的性质得出∠DCE=∠BAF,根据ASA推出△AFB≌△CED即可;(2)根据平行四边形的判定得出四边形是平行四边形,再根据平行四边形的性质得出即可.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∵DC∥AB,∴∠DCE=∠BAF,在△AFB和△CED中∴△AFB≌△CED,∴DE=EF;(2)DF=BE,DF∥BE,证明:∵DE⊥AC,BF⊥AC,∴DE∥BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE,DF∥BE.【点评】本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.23.(2016秋•天津期末)如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD ∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.【考点】含30度角的直角三角形;角平分线的性质.【分析】过P作PF⊥OB于F,根据角平分线的定义可得∠AOC=∠BOC=15°,根据平行线的性质可得∠DPO=∠AOP=15°,从而可得PD=OD,再根据30度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.【点评】此题主要考查:(1)含30°度的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)角平分线的性质:角的平分线上的点到角的两边的距离相等.24.(2012•贵阳模拟)在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数比甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?【考点】分式方程的应用.【分析】设甲班平均每人捐款为x元,根据甲班比乙班多5人,以人数做为等量关系可列方程求解,从而求出结果.【解答】解:设甲班平均每人捐款为x元,依题意得整理得:4x=8,解之得x=2经检验,x=2是原方程的解.答:甲班平均每人捐款2元【点评】本题考查理解题意的能力,关键是以人数做为等量关系,列方程可求出解.25.(2016秋•安图县期末)已知△ABC为等边三角形,点D为直线BC上的一动点(点D 不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质及等式的性质就可以得出△ABD≌△ACE,从而得出结论;(2)根据等边三角形的性质及等式的性质就可以得出△ABD≌△ACE,就可以得出BD=CE,就可以得出AC=CE﹣CD;(3)先根据条件画出图形,根据等边三角形的性质及等式的性质就可以得出△ABD≌△ACE,就可以得出BD=CE,就可以得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.。

天津市和平区八年级(上)期末数学试卷(解析版)

天津市和平区八年级(上)期末数学试卷(解析版)

天津市和平区八年级(上)期末数学试卷、选择题(本大题共12小题,每小题3分,共36 分)9 3分式方程一=—的解为X-3 K6. 如图,△ ABC和厶DEF中,AB= DE、/ B =Z DEF,添加下列哪一个条件无法证明△ABC8. 如图,小敏做了一个角平分仪ABCD,其中AB= AD , BC = DC .将仪器上的点A与/ PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A, C画一条射线AE, AE就是/ PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ ABCADC,这样就有/ QAE在一些美术字中,有的汉字是轴对称图形. F面4个汉字中, 可以看作是轴对称图形的是()2. 将0.00002用科学记数法表示应为(—5A . 2X 10—42X 10C.C. _620 X 10_520 X 103.4.5.A . x= 0分式-1可变形为(1-XA . - !x-1已知三角形两边长分别为x= 31+xC.C.x= 53和8,则该三角形第三边的长可能是10 C. 11x= 912A . AC // DFB . / A =Z D7. 下列计算正确的是( )A. a2?a3= a6C. ( a2) 3= a5C . AC = DFD . / ACB = Z F2 2 2B. (—2ab) = 4a b3 2 2 2D . 3a b - a b = 3abDEF ( )=/ PAE .则说明这两个三角形全等的依据是()A . SASB . ASA C. AAS D.SSS9 .计算(2m2n 2)2?3m 3n3的结果等于( )A1加r 12n C. 12m n D. “7A .B .12m nn ID10.边长为a, b的长方形,它的周长为14,面积为10,则a2b+ab2的值为(A . 35B . 70C. 140D. 28011 •小刚沿公路以akm/h的速度行走全程的一半,又以bkm/h的速度行走余下的一半路程;小明以akm/h的速度行走全程时间的一半,又以bkm/h的速度行走另一半时间.已知a^ b,则他们两人走完全程所用时间的关系是()A •小明比小刚用的时间少B •小刚比小明用的时间少C.小刚比小明用的时间相等D .不能确定12. 如图,△ ABC 中,/ B= 60° , AD, CE 分别平分/ BAC, / BCA, AD , CE 交于点F,则( )二、填空题(本大题共6小题,每小题3分,共18分)/ 一]13. ____________ 当x= 时,分式… 的值为0.x+114. 如图,在△ ABC 中,/ A= 50°,/ ABC = 70°, BD 平分/ ABC,则/ BDC 的度数是____________A . AE+CD> ADB . AE+CD = AD C. AE+CD > ACD . AE+CD = AC两弧相交于点 M 、N ,直线MN 与AC , BC 分别交于点D 、E ,连接AE . (1)Z ADE 的大小等于 _______ (度) (2)当AB = 3, BC = 4时,求△ ABE 的周长.17•如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是 a ,则六边形的18•有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片, 则原等 腰三角形纸片的顶角为解答题(本大题共 8小题,共46分.解答应写出文字说明、演算步骤或推理过程) 19.2(4分)运用完全平方公式计算: 99 .20. (4分)计算: [(3x+1) ( x+3)— 3 (6x+1) ] - 2x .21. (8分)计算:(1) (>1) (2) —=—+1 1(飞-我)a b1(6分)如图,点 B 在线段AD 上,BC // DE , AB = ED , BC = DB .求证:/A =Z E ./ B = 90。

2016-2017学年天津市和平区八年级第一学期期末数学试卷带答案

2016-2017学年天津市和平区八年级第一学期期末数学试卷带答案

2016-2017学年天津市和平区初二(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A.B.C.D.2.(3分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.6,8,16 D.5,6,103.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②∠B=∠E,BC=EF,∠C=∠F;③AB=DE,∠B=∠E,AC=DF.其中,能使△ABC≌△DEF的条件共有()A.0组 B.1组 C.2组 D.3组4.(3分)将0.000000567用科学记数法表示为()A.5.67×10﹣10B.5.67×10﹣7C.567×10﹣7D.567×10﹣95.(3分)李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS6.(3分)下列等式从左到右的变形一定正确的是()A.=B.=C.=D.=﹣7.(3分)下列计算正确的是()A.(a2)3=a5B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2D.a﹣2b3•(a2b﹣1)﹣2=8.(3分)根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b29.(3分)以x为未知数的方程=(s>0,v>0)的解为()A.x=B.x=C.x=D.x=10.(3分)已知a=2017x+2016,b=2017x+2017,c=2017x+2018,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1 B.C.2 D.311.(3分)一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a 千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能12.(3分)有一张长方形纸片ABCD,按下面步骤进行折叠:第一步:如图①,点E在边BC上,沿AE折叠,点B落在点B′处;第二步:如图②,沿EB′折叠,使点A落在BC延长线上的点A′处,折痕为EF.有下列结论:①△AEF是等边三角形;②EF垂直平分AA′;③CA′=FD.()A.只有②正确B.只有①②正确C.只有①③正确D.①②③都正确二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)当时,分式有意义.14.(3分)已知等腰三角形的一个底角为70°,则它的顶角为度.15.(3分)已知一个多边形的内角和与它的外角和的比是9:2,则这个多边形是边形.16.(3分)已知a1、a2、a3、a4是彼此不相等的负数,且M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),那么M与N的大小关系是M N.(填“>”,“<”或“=”)17.(3分)如图,△ABC和△CDE都是等边三角形,且∠EBD=70°,则∠AEB=.18.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DC;③∠DBC=∠DAC;④△ABD是正三角形.请写出正确结论的序号(请你认为正确结论的序号都填上)三、解答题:本大题共7小题,共46分,解答应写出文字说明、演算步骤或推理过程.19.(5分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.20.(5分)如图,△ABC中,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D分别作DM⊥AB于点M,DN⊥AC于点N.求证:BM=CN.21.(8分)计算:(1)(2y+1)2﹣(y﹣1)(y+5);(2)(ab2)3÷(﹣ab)2.22.(8分)计算:(1)÷;(2)(m+2+)•.23.(6分)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?24.(8分)因式分解:(1)x2﹣2x﹣8=;(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).25.(6分)如图,△ABC中,∠ABC=45°,P为BC边长一点,且PC=2PB,∠APC=60°.(1)求∠BAP的大小;(2)求∠ACB的大小.2016-2017学年天津市和平区初二(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.2.(3分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.6,8,16 D.5,6,10【解答】解:根据三角形任意两边的和大于第三边,得A、3+4=7<8,不能组成三角形,故本选项错误;B、5+6=11,不能组成三角形,故本选项错误;C、6+8<16=3,不能够组成三角形,故本选项错误;D、5+6=11>10,能组成三角形,故本选项错正确;故选:D.3.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②∠B=∠E,BC=EF,∠C=∠F;③AB=DE,∠B=∠E,AC=DF.其中,能使△ABC≌△DEF的条件共有()A.0组 B.1组 C.2组 D.3组【解答】解:①AB=DE,BC=EF,AC=DF,满足SSS,可证明△ABC≌△DEF;②∠B=∠E,BC=EF,∠C=∠F,满足ASA,可证明△ABC≌△DEF;③AB=DE,∠B=∠E,AC=DF,满足SSA,不能证明△ABC≌△DEF,故选:C.4.(3分)将0.000000567用科学记数法表示为()A.5.67×10﹣10B.5.67×10﹣7C.567×10﹣7D.567×10﹣9【解答】解:0.000000567用科学记数法表示为5.67×10﹣7,故选:B.5.(3分)李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【解答】解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选:A.6.(3分)下列等式从左到右的变形一定正确的是()A.=B.=C.=D.=﹣【解答】解:(A),故A错误;(C)≠,故C错误;(D)=,故D错误;故选:B.7.(3分)下列计算正确的是()A.(a2)3=a5B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2D.a﹣2b3•(a2b﹣1)﹣2=【解答】解:A、(a2)3=a6,故A错误;B、(15x2y﹣10xy2)÷5xy=3x﹣2y,故B正确;C、10ab3÷(﹣5ab)=﹣2b2,故C错误;D、a﹣2b3•(a2b﹣1)﹣2=,故D错误;故选:B.8.(3分)根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b2【解答】解:根据图②的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.9.(3分)以x为未知数的方程=(s>0,v>0)的解为()A.x=B.x=C.x=D.x=【解答】解:=(s>0,v>0)去分母,得sx+sv=sx+40x,解得:x=,经检验:x=是原分式方程的解,故选:A.10.(3分)已知a=2017x+2016,b=2017x+2017,c=2017x+2018,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1 B.C.2 D.3【解答】解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3.故选:D.11.(3分)一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a 千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能【解答】解:设两次航行的路程都为S,静水速度设为v,第一次所用时间为:+=第二次所用时间为:+=∵b>a,∴b2>a2,∴v2﹣b2<v2﹣a2∴>∴第一次的时间要短些.故选:A.12.(3分)有一张长方形纸片ABCD,按下面步骤进行折叠:第一步:如图①,点E在边BC上,沿AE折叠,点B落在点B′处;第二步:如图②,沿EB′折叠,使点A落在BC延长线上的点A′处,折痕为EF.有下列结论:①△AEF是等边三角形;②EF垂直平分AA′;③CA′=FD.()A.只有②正确B.只有①②正确C.只有①③正确D.①②③都正确【解答】解:∵∠BEA=∠AEF=∠A′EF,又∠BEA+∠AEF+∠A′EF=180°,∴∠BEA=∠AEF=∠A′EF=60°,∵BC∥AD,∴∠BEA=∠EAF=60°,∴∠AEF=∠EAF=∠EFA=60°,∴△AEF是等边三角形,故①正确,∴△EFA′是等边三角形,∴AE=EA′=A′F=AF,∴四边形AEA′F是菱形,∴EF垂直平分AA′,故②正确,由于AB、BC的长度不确定,所以AC不一定等于DF,故③错误,故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)当x≠1时,分式有意义.【解答】解:根据题意得:x﹣1≠0,即x≠1.14.(3分)已知等腰三角形的一个底角为70°,则它的顶角为40度.【解答】解:∵等腰三角形的一个底角为70°∴顶角=180°﹣70°×2=40°.故答案为:40.15.(3分)已知一个多边形的内角和与它的外角和的比是9:2,则这个多边形是十一边形.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°:360°=9:2,解得n=11.故答案为:十一.16.(3分)已知a1、a2、a3、a4是彼此不相等的负数,且M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),那么M与N的大小关系是M>N.(填“>”,“<”或“=”)【解答】解:∵M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),∴M﹣N=(a1+a2+a3)(a2+a3+a4)﹣(a1+a2+a3+a4)(a2+a3)=(a1+a2+a3)(a2+a3)+(a1+a2+a3)•a4﹣(a1+a2+a3)(a2+a3)﹣a4(a2+a3)=(a1+a2+a3)•a4﹣a4(a2+a3)=a1•a4>0,∴M﹣N>0,∴M>N,故答案为:>.17.(3分)如图,△ABC和△CDE都是等边三角形,且∠EBD=70°,则∠AEB= 130°.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,∴∠ACB﹣∠ECB=∠ECD﹣∠ECB,∴∠ACE=∠BCD,在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠EBD=70°,∴70°﹣∠EBC=60°﹣∠BAE,∴70°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=50°,∴∠AEB=180°﹣(∠ABE+∠BAE)=130°.故答案为:130°.18.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DC;③∠DBC=∠DAC;④△ABD是正三角形.请写出正确结论的序号①②③(请你认为正确结论的序号都填上)【解答】解:∵AB=AC,AC=AD,∴AB=AD,∵AC平分∠DAB,∴AC⊥BD,BE=DE,故①正确;∴AC是BD的垂直平分线,∴BC=DC,故②正确;∵AB=AC,AC=AD,∴B,C,D都在以A为圆心,AB为半径的圆上,∴∠DBC=∠DAC,故③正确;∵∠BAD不一定等于60°,∴△ABD不一定是正三角形.∴正确结论有①②③.故答案为:①②③.三、解答题:本大题共7小题,共46分,解答应写出文字说明、演算步骤或推理过程.19.(5分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.【解答】证明:如图,∵AB∥ED,∴∠ABC=∠CED.∵在△ABC与△CED中,,∴△ABC≌△CED(SAS),∴AC=CD.20.(5分)如图,△ABC中,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D分别作DM⊥AB于点M,DN⊥AC于点N.求证:BM=CN.【解答】证明:连接BD,CD,如图,∵O是BC的中点,DO⊥BC,∴OD是BC的垂直平分线,∴BD=CD,∵AD是∠BAC的平分线,DM⊥AB,DN⊥AC,∴DM=DN,在Rt△BMD和Rt△CND中,,∴Rt△BMD≌Rt△CND(HL),∴BM=CN.21.(8分)计算:(1)(2y+1)2﹣(y﹣1)(y+5);(2)(ab2)3÷(﹣ab)2.【解答】解:(1)原式=4y2+4y+1﹣y2﹣4y+5=3y2+6;(2)原式=a3b6÷a2b2=ab4.22.(8分)计算:(1)÷;(2)(m+2+)•.【解答】解:(1)÷==;(2)(m+2+)•===3+m.23.(6分)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?【解答】解:设小王用自驾车方式上班平均每小时行驶x千米,∵小王家距上班地点18千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27经检验x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.24.(8分)因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)25.(6分)如图,△ABC中,∠ABC=45°,P为BC边长一点,且PC=2PB,∠APC=60°.(1)求∠BAP的大小;(2)求∠ACB的大小.【解答】解:(1)∵∠ABC=45°,∠APC=60°,∴∠BAP=∠APC﹣∠ABC=15°;(2)过C作AP的垂线CD,垂足为点D.连接BD;∵∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC﹣∠ABC=60°﹣45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°﹣15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

天津市和平区八年级(上)期末数学试卷(解析版)

天津市和平区八年级(上)期末数学试卷(解析版)

天津市和平区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .2.将0.00002用科学记数法表示应为()A .2×10﹣5B .2×10﹣4C .20×10﹣6D .20×10﹣53.分式方程=的解为()A .x =0B .x =3C .x =5D .x =94.分式﹣可变形为()A .﹣B .C .﹣D .5.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A .5B .10C .11D .126.如图,△ABC 和△DEF 中,AB =DE 、∠B =∠DEF ,添加下列哪一个条件无法证明△ABC ≌△DEF ()A .AC ∥DFB .∠A =∠DC .AC =DFD .∠ACB =∠F 7.下列计算正确的是()A .a 2?a 3=a6B .(﹣2ab )2=4a 2b 2C .(a 2)3=a5D .3a 3b 2÷a 2b 2=3ab 8.如图,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS9.计算(2m2n﹣2)2?3m﹣3n3的结果等于()A.B.C.12mn D.12mn710.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为()A.35B.70C.140D.28011.小刚沿公路以akm/h的速度行走全程的一半,又以bkm/h的速度行走余下的一半路程;小明以akm/h的速度行走全程时间的一半,又以bkm/h的速度行走另一半时间.已知a≠b,则他们两人走完全程所用时间的关系是()A.小明比小刚用的时间少B.小刚比小明用的时间少C.小刚比小明用的时间相等D.不能确定12.如图,△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,AD,CE交于点F,则()A.AE+CD>AD B.AE+CD=AD C.AE+CD>AC D.AE+CD=AC二、填空题(本大题共6小题,每小题3分,共18分)13.当x=时,分式的值为0.14.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是.15.如图,△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.16.已知a2+b2=1,a﹣b=,则(a+b)4的值为.17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是.18.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为.三、解答题(本大题共8小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(4分)运用完全平方公式计算:992.20.(4分)计算:[(3x+1)(x+3)﹣3(6x+1)]÷2x.21.(8分)计算:(1)(+)÷(﹣)(2)+.22.(6分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.23.(6分)如图,在Rt△ABC中,∠B=90°,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M、N,直线MN与AC,BC分别交于点D、E,连接AE.(1)∠ADE的大小等于(度)(2)当AB=3,BC=4时,求△ABE的周长.24.(6分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.改良玉米品种后,迎春村玉米平均每公顷增加产量a吨,原来产60吨玉米的一块土地,现在的总产量增加了20吨,原来和现在玉米的平均每公顷产量各是多少?(1)设原来玉米平均每公顷产量为x吨,填写下表:平均每公顷的玉米产量(吨)这块土地的玉米产量(吨)这块土地的面积原来x60现在60+20(2)列出方程,并求出问题的解.25.(6分)分解因式:(1)x2+5x+6=;(2)3x2﹣4x+1=;(3)(a﹣3b)2﹣4c2+12ab=.26.(6分)已知△ABC,△EFG是边长相等的等边三角形,点D是边BC,EF的中点.(1)如图①,连接AD,GD,则∠ADC的大小=(度);∠GDF的大小=(度);AD与GD的数量关系是;DC与DF的数量关系是;(2)如图②,直线AG,FC相交于点M,求∠AMF的大小.天津市和平区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不可以看作是轴对称图形,故本选项错误;B、不可以看作是轴对称图形,故本选项错误;C、可以看作是轴对称图形,故本选项正确;D、不可以看作是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 02=2×10﹣5.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选:D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.【点评】本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.5.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.6.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.7.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2?a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a 2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.8.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.9.【分析】直接利用积的乘方运算法则化简,进而利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2m2n﹣2)2?3m﹣3n3=4m4n﹣4?3m﹣3n3=12mn﹣1=.故选:A.【点评】此题主要考查了积的乘方运算以及单项式乘以单项式运算,正确掌握运算法则是解题关键.10.【分析】先把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.【解答】解:根据题意得:a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故选:B.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.【分析】设全程为1,小明走完全程所用时间是x小时,用代数式表示小刚、小明所用时间,然后做减法比较大小.【解答】解:设全程为1,小刚所用时间是=设小明走完全程所用时间是x小时.根据题意,得ax+bx=1,x=则小明所用时间是小刚所用时间减去小明所用时间得﹣=>0即小刚所用时间较多.故选:A.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键12.【分析】通过角之间的转化可得出△AGF≌△AEF,进而可得出线段之间的关系,即可得出结论.【解答】解:在AC上截取AG=AE,连接GF,如图所示:∵∠ABC=60°,AD,CE分别平分∠BAC,∠BCA,∴∠FAC+∠FCA=60°,∴∠AFE=∠FAC+∠FCA=60°,在△AGF和△AEF中,,∴△AGF≌△AEF(SAS),∴FG=FE,∠AFG=∠AFE=60°,∴∠GFC=∠AFC﹣∠AFG=120°﹣60°=60°,∵∠CFD=∠AFE=60°,∴∠CFD=∠CFG在△CFG和△CFD中,,∴△CFG≌△CFD(AAS),∴CG=CD,∴AE+CD=AG+CG=AC.故选:D.【点评】本题考查了全等三角形的判定与性质,关键是需要通过作辅助线证明三角形全等才能得出结论.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【解答】解:∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为:85°.【点评】本题考查了角平分线的定义,三角形内角和定理等知识,解答本题的关键是根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°.15.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.【点评】本题主要考查等腰三角形的性质,熟练掌握等腰三角形中的三线合一是解题的关键.16.【分析】把a﹣b=两边平方得到a2﹣2ab+b2=,则2ab=,所以(a+b)2=,然后两边平方得到(a+b)4的值.【解答】解:∵a﹣b=,∴(a﹣b)2=,即a2﹣2ab+b2=,∵a2+b2=1,∴2ab=,∴a2+2ab+b2=,即(a+b)2=,∴(a+b)4=.故答案为.【点评】本题考查了完全平方公式:记住公式(a±b)2=a2±2ab+b2.17.【分析】根据等边三角形的性质,如右下角的第二小的三角形,设它的边长为x,则可依次求出等边三角形的边长,进而求出六边形周长为7x+9a,由图知最大的三角形的边长等于第二小的三角形边长的2倍,即x+3a=2x,求出x=3a.即可求六边形周长.【解答】解:因为每个三角形都是等边的,从其中一个三角形入手,比如右下角的第二小的三角形,设它的边长为x,则等边三角形的边长依次为x,x+a,x+a,x+2a,x+2a,x+3a,所以六边形周长是,2x+2(x+a)+2(x+2a)+(x+3a)=7x+9a,而最大的三角形的边长等于第二小的三角形边长的2倍,即x+3a=2x,故x=3a.所以周长为7x+9a=30a.故答案为:30a.【点评】本题考查了等边三角形的性质,认真观察图形,找出等量关系,解一元一次方程即可.关键是要找出其中的等量关系.18.【分析】根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠C与∠A之间的关系,最后根据三角形内角和定理不难求解.【解答】解:①如图(1),∵AB=AC,AD=BD=BC,∴∠ABC=∠C=∠BDC,∠A=∠ABD,∵∠BDC=2∠A,∴∠ABC=2∠A,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°.②如图(2)AD=BD,BC=CD,设∠A=β,则∠ABD=β,∴∠1=2β=∠2,∵∠ABC=∠C,∴∠C=∠2+∠β,∴∠C=3β,∴7β=180°,∴β=;即∠A=;③如图(3)AD=DB=DC,则∠ABC=90°,不可能.故原等腰三角形纸片的顶角为36°或.【点评】此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.三、解答题(本大题共8小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.【分析】直接利用完全平方公式计算得出答案.【解答】解:992=(100﹣1)2=1002﹣2×100×1+12=9801.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.20.【分析】原式利用多项式乘以多项式、单项式乘以单项式法则计算,在运用多项式除以单项式法则即可得到结果.【解答】解:[(3x+1)(x+3)﹣3(6x+1)]÷2x.=[3x2+9x+x+3﹣18x﹣3]÷2x.=(3x2﹣8x)÷2x.=x﹣4.【点评】本题考查整式混合的运算,解题的关键是熟练运用整式的运算法则,注意单项式与多项式相乘时的符号.21.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=÷=?=(2)原式==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【分析】直接利用平行线的性质结合全等三角形的判定方法得出答案.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,,∴△ABC≌△EDB(SAS),∴∠A=∠E.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.23.【分析】(1)根据线段垂直平分线的画法可判断MN垂直平分AC,从而得到∠ADE的度数;(2)根据线段垂直平分线的性质得AE=CE,则利用等线段代换得到△ABE的周长=AB+BC,然后把AB=3,BC=4代入计算即可.【解答】解:(1)利用作图得MN垂直平分AC,即DE⊥AC,AD=CD,所以∠ADE=90°;故答案为90;(2)∵MN垂直平分AC,∴AE=CE,∴△ABE的周长=AB+AE+BE=AB+EC+BE=AB+BC=3+4=7.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.【分析】如果设原来玉米平均每公顷产量是x吨,则现在玉米平均每公顷产量是(x+a)吨.由于种植玉米地的面积=这块地的总产量÷平均每公顷产量,根据改良玉米品种前后种植玉米地的面积不变列方程求解.【解答】解:(1)原来玉米平均每公顷产量是x吨,则现在玉米平均每公顷产量是(x+a)吨.这块土地的面积分别为:,;故答案为:x+a;;;(2)由题意,有,解得x=3a.把x=3a代入x(x+a)≠0,经检验x=3a是原方程的根,∴x+a=3a+a=4a.故原来和现在玉米平均每公顷产量各是3a吨,4a吨.【点评】本题考查了分式方程的应用.关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.25.【分析】(1)十字相乘法分解可得;(2)十字相乘法分解可得;(3)先将括号内展开,再合并同类项,最后利用公式法分解可得.【解答】解:(1)x2+5x+6=(x+2)(x+3),故答案为:(x+2)(x+3);(2)3x2﹣4x+1=(x﹣1)(3x﹣1),故答案为:(x﹣1)(3x﹣1);(3)(a﹣3b)2﹣4c2+12ab=a2﹣6ab+9b2﹣4c2+12ab=a2+6ab+9b2﹣4c2=(a+3b)2﹣4c2=(a+3b+2c)(a+3b﹣2c),故答案为:(a+3b+2c)(a+3b﹣2c).【点评】本题主要考查因式分解,解题的关键是熟练掌握十字相乘法和公式法分解因式的能力.26.【分析】(1)如图①中,根据等边三角形的性质解答即可.(2)如图连接AD,DG,利用等边三角形的性质即可解决问题.【解答】解:(1)如图①,连接AD,GD,∵△ABC是等边三角形,BD=DC,则∠ADC的大小=90°;∵△EGF是等边三角形,ED=DF,∴∠GDF=90°;∵BC=EF,∴AD=GD;DC=DF;(2)连接AD,DG,由(1)得:∠ADC=∠GDF=90°,∴∠ADC﹣∠GDC=∠GDF﹣∠GDC,即∠1=∠2,由(1)得:AD=GD,∴∠DGA=∠DAG=,由(1)得:DC=DF,∴∠3=∠DCF=,∴∠DGA=∠3,∵∠AMF=∠AGF+∠5,∴∠AMF=∠DGA+∠5+∠4=∠3+∠5+∠4=180°﹣∠GDF=180°﹣90°=90°.故答案为:90;90;AD=GD;DC=DF.【点评】本题考查等边三角形的判定和性质等知识,解题的关键是根据等边三角形的性质解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017年八年级数学上册期末冲刺
一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一
个选项是符合题目要求的)
1.下列约分正确的是()
A. B. =﹣1
C. =
D. =
2.在等腰三角形ABC中,AB=AC,其周长为20cm,则边AB的取值范围是( ).
A.1cm<AB<4cm
B.5cm<AB<10cm
C.4cm<AB<8cm
D.4cm<AB<10cm
3.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()
A.ab
B.(a+b)2
C.(a﹣b)2
D.a2﹣b2
4.化简,可得()
A. B. C. D.
5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()
A.8
B.9
C.10
D.11
6.下列运算正确的是()
A.a-2a=a
B.(-2a2)3=﹣8a6
C.a6+a3=a2
D.(a+b)2=a2+b2
7.如果()2÷()2=3,那么a8b4等于()
A.6
B.9
C.12
D.81
8.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()
A.△ABC三边垂直平分线的交点
B.△ABC三条角平分线的交点
C.△ABC三条高所在直线的交点
D.△ABC三条中线的交点
9.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()
A.∠B=∠B′
B.∠C=∠C′
C.BC=B′C′
D.AC=A′C′
10.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()
A.线段CD的中点
B.OA与OB的中垂线的交点
C.OA与CD的中垂线的交点
D.CD与∠AOB的平分线的交点
11.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2关系是()
A.∠1=2∠2
B.∠1+∠2=180°
C.∠1+3∠2=180°
D.3∠1-∠2=180°
12.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()
A. =1
B. =1
C. =1
D. =1
二、填空题(本大题共6小题,每小题3分,共18分)
13.代数式在实数范围内有意义,则x的取值范围是.
14.分解因式:x2+2x-3=____________.
15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: ,使△AEH≌△CEB.
16.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.
17.计算:()2007×(﹣1)2008= .
18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.
三、计算题(本大题共7小题,共66分)
19.计算:(1)(x+1)2﹣(x+2)(x﹣2). (2).
(3) (4)(1﹣).
20.因式分解:
(1)3x﹣12x3;(2)1-a2-b2-2ab;
21.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
22.如图,已知等边三角形ABC中,D为AC边的中点,E为BC延长线上一点,CE=CD,DM⊥BC于M,求证:M是BE的中点.
23.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,
某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
24.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.
(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ 是等腰三角形?
2016-2017年八年级数学上册期末冲刺答案
1.D.
2.B.
3.C.
4.B.
5.C
6.B
7.B
8.A
9.C 10.D 11.D 12.B
13.【解答】答案为:x≠3 14. (x+3)(x-1); 15.答案:AH=CB或EH=EB或AE=CE.16.3
17.【解答】解:()2007×(﹣1)2008=()2007×(﹣1)2007×(﹣1)
=(﹣×1)2007×(﹣1)=﹣1×(﹣1)=.故答案为:.
18.【解答】
解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,
①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;
②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;
③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.
19.(1)原式=x2+2x+1﹣x2+4=2x+5.
(2)【解答】解:原式=•﹣=﹣=0.
(3)原式==(4)【解答】解:原式==1.
20.(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);
(2)1-(a+b)2=(1+a+b)(1-a-b);
21.证明:做BE的延长线,与AP相交于F点,
∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线
∴三角形FAB为等腰三角形,AB=AF,BE=EF
在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,
∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC.
22.证明:如图,连接BD,
∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.
∵ CD=CE,∴∠CDE=∠E=30°.
∵ BD是AC边上的中线,∴ BD平分∠ABC,即∠DBC=30°,
∴∠DBE=∠E.∴ DB=DE.又∵ DM⊥BE,
∴ DM是BE边上的中线,即M是BE的中点.
23.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,
根据题意得:,解得x=4经检验,x=4原方程的根,
答:客车由高速公路从甲地到乙地需4时.
24.。

相关文档
最新文档