第三讲+多属性决策分析
多属性决策分析范文

多属性决策分析范文多属性决策分析(Multi-Attribute Decision Analysis,简称MADA)是一种决策支持方法,用于解决决策问题中存在多个评估指标的情况。
该方法通过对不同属性进行权重分配,并对备选方案进行评估和比较,以找到最佳的决策方案。
首先,确定决策目标并明确评估指标。
在决策问题中,需要明确要达到的目标,并确定用于评估备选方案的指标。
例如,如果我们需要选择一种新的投资项目,决策目标可能是最大化投资回报率,评估指标可能包括投资风险、市场潜力、竞争情况等。
然后,构建层次结构。
层次结构是多属性决策分析的基础,它通过将决策目标、评估指标和备选方案按照层次关系组织起来,形成一个树状结构。
例如,在选择投资项目的决策问题中,可以将决策目标放在最顶层,评估指标放在中间层,备选方案放在底层。
接下来,建立判断矩阵。
判断矩阵用于描述层次结构中各个层次之间元素之间的相对重要性。
对于每一对元素,通过专家判断或问卷调查的方式,使用比较刻度(如1-9)对其重要性进行评估,并填写到判断矩阵中。
例如,在评估指标层次,可以比较每个评估指标相对于决策目标的重要性。
然后,计算权重向量。
利用判断矩阵,可以通过特征向量法计算出各级指标的权重。
计算过程中,需要对判断矩阵进行一致性检验,以确保判断矩阵的一致性。
一般来说,判断矩阵的一致性指标CI应满足CI<0.1,若CI>0.1,则需进行修正。
之后,进行一致性检验。
通过计算一致性比例CR来检验判断矩阵的一致性。
一致性比例CR的计算公式为CR=CI/RI,其中RI为随机一致性指标,根据判断矩阵的阶数n可以在AHP准则表格中找到。
最后,进行评估和排序。
将备选方案的各个属性值与权重值相乘得出加权得分,然后将加权得分进行加总,将各个备选方案按照加权得分的高低进行排序,得出最佳决策方案。
综上所述,多属性决策分析是一种常用的决策支持方法,可以有效地帮助决策者在多个评估指标的情况下做出合理的决策。
多属性决策分析课件(PPT 55页)

…. …. …. ….. …..
方 案 属 性 ( c1(1)
1
x11
2
x21
c 2(2) x12 x22mx m1x2……c n(n)
……
x1n
……
x2n
xmn
• 在多属性决策问题中,由于属性指标之间的相互矛盾 与制衡,因而不存在通常意义下的最优解。取而代之 的是有效解(也称非劣解)、满意解、优先解、理想 解、负理想解和折衷解,它们被分别定义如下:
多属性决策与多目标决策
• 其共性在于:
1. 两者对事物好坏的判断准则都不是惟一的 ,且准则与准则之间常常会相互矛盾。
2. 不同的目标或属性通常有不同的量纲,因 而是不可比较的。
• 差别在于:
• 多属性的决策空间是离散的;多目标的 决策空间是连续的。多属性的选择范围 是有限的、已知的;多目标的选样范围 是无穷的、未知的。多属性的约束条件 隐含于准则之中。不直接起限制作用; 多目标的约束条件独立于准则之外,是 决策模型中不可缺少的组成部分
• 例:某中东国家拟从美国购买一种机型 的喷气式战斗机若干架,美五角大楼的 官员提供了准予出售的4种机型的有关 信息。该中东国家派出专家组对4种飞 机进行了详细考察,考察结果见表,问 应选购哪一种飞机以使决策的总效用值 最大
属性 最大速度 巡航半径 最大载荷 价格
机型
/340m. s1 /1.6Km
A(c1....,cJ....,cn )
式 中 c j m iin U j(x ij),j 1 ,2 .....n ?
• 折衷解(Compromise Solution):距离 理想解最近或距离反理想解最远或以某 种方式将二者结合在一起的可行解被称 为折衷解。
属性指标的量化与转换
李荣钧多属性决策分析

——引自李荣钧、邝英强《运筹学》华南理工大 学出版社 管理就是决策—— 赫伯特· 西蒙(Herbert A.Simon,1916~?)
一、多准则决策分析简介
在关于多准则决策的文献中常见的3个名词或术语是属性、目标和准则。 它们在多准则决策发展的早期阶段并没有一个为研究者普遍接受的明确 定义,许多作者将之视为可替换性名词而在文献中不加区分地使用、因 而时有混淆,容易被读者误解。直到20世纪70年代末和80年代初,这3 个基本概念之间的差别开始被注意并逐渐统一了认识,对它们的使用才 变得规范起来。 所谓准则是决策事物或现象有效性的某种度量,是事物或现象评价的基 础。它在实际问题中有两种基本的表现形式,即属性与目标。其中,属 性是伴随着决策事物或现象的某些特点、性质或效能,如 汽车的最高 时速,飞机的最大飞行高度,产品的成本与价格,工厂对环境的污染, 或城市的消费指数等。每一种属性应该能提供某种测量其水平高低的方 法。而目标是决策者对决策事物或现象的某种追求,如制造商希望获得 产品的最大利润,贸易公司希望最大限度地扩展国外市场,或政府希望 尽可能地减轻环境污染等。一个目标通常表明决策者在未来针对某一事 物或现象确定的努力方向。
多属决策分析与多目标决策分析
与上述概念相对应,多准则决策的研究领域被划分成多属性决策 和多目标决策两个主要部分。其共性在于两者对事物好坏的判断 准则都不是惟一的,且准则与准则之间常常会相互矛盾。如选购 一辆汽车时要求高性能往往会导致高价格,事情很难两全。此外, 不同的目标或属性通常有不同的量纲,因而是不可比较的。如汽 车的速度一般采用每小时公里来度量,而汽车的价格单位却是每 辆元,两者必须经过某种适当的变换之后才具有可比性。 而多属性决策与多目标决策之间的差别在于:前者的决策空间是 离散的;后者的决策空间是连续的。前者的选择范围是有限的、 已知的;后者的选择范围是无穷的、未知的。前者的约束条件隐 含于准则之中,不直接起限制作用;后者的约束条件独立于准则 之外,是决策模型中不可缺少的组成部分。简而言之,从本质上 说,前者是对事物的评价选择问题;后者是对方案的规划设计问 题。由多属性决策领域可自然延伸到群决策领域;而多目标决策 空间将会扩展到系统的优化与设计空间。
决策理论与方法之多属性决策

决策理论与方法之多属性决策多属性决策是决策理论与方法中的一种重要决策方法,主要用于解决具有多个评价指标的决策问题。
在实际生活和工作中,我们常常需要面对的是多因素影响下的决策问题。
多属性决策方法的应用可以帮助我们全面、客观、科学地对待问题,提高决策的准确性和决策结果的有效性。
多属性决策方法的核心思想是将决策问题中的多个属性进行定量化,并将各个属性的权重进行合理分配,最终得出综合评价结果,从而选择最优的决策方案。
在多属性决策中,常用的方法包括层次分析法、利用等价关系建立模型、TOPSIS方法等。
层次分析法是一种常用的多属性决策方法,其主要思想是将决策问题拆分成若干个子问题,并构建层次结构,通过比较不同层次的准则,得出最终的决策结果。
该方法的优点是能够考虑多个属性的重要性,并将其量化成权重,从而进行综合评估。
但是,层次分析法需要进行一系列的判断和计算,比较繁琐,容易受到主管者主观判断的影响。
利用等价关系建立模型是另一种常用的多属性决策方法,其主要思想是通过对各个属性之间的关系进行建模,从而得出最终的决策结果。
该方法的优点是能够考虑属性之间的相互影响,更加真实地反映决策问题的本质。
但是,建立等价关系模型需要对问题有一定的了解和分析能力,并且需要进行一定的计算,对于一些复杂问题来说,可能会存在一定的困难。
TOPSIS方法(Technique for Order Preference by Similarity to an Ideal Solution)是一种较为常用的多属性决策方法,其主要思想是将各个决策方案与最佳解和最差解进行比较,通过计算得出每个方案与最佳解和最差解的接近程度,并根据接近程度确定优劣排序。
TOPSIS方法具有计算简单、易于理解和应用的优点,但是在实际应用中,需要对决策问题进行一定的约束条件和假设。
综上所述,多属性决策方法是一种重要的决策理论和方法,可以帮助我们解决多因素影响下的决策问题。
第三讲多属性决策分析

第三讲多属性决策分析
多属性决策分析也被称为多目标决策分析,它是一种在系统决策分析
中更为广泛使用的方法,它通常用于解决那些不仅有一个目标,而且还有
多个矛盾冲突目标的复杂决策问题。
它主要用于多目标决策分析,以支持
决策者对多个目标进行分析,确定最佳解决方案,以达到最大化或最小化
一系列决策目标。
多属性决策分析包括三个基本步骤:首先,决策者需要识别决策问题,确定决策目标及其相关属性;其次,根据决策者的要求和态度,以及正确
识别的内容,确定所有可行的解决方案;最后,根据决策者估计的各个解
决方案的满意度,根据每个解决方案的优势和劣势,选出最佳解决方案。
除此之外,多属性决策分析还有一个很重要的特性,就是可以在多项
目标的前提下,更好地比较不同决策之间的各种差异。
第3章:多属性决策及不确定性多属性决策方法

a L aU ,则 a 退化为一个实数。
1, a b 定义 3.2.1 当 a, b 均为实数时,称 p(a b) 0, a b
为 a b 的可能度。
3.2.1
p(b a) 1, b a 相应地, b a 的可能度定义为 0, b a
3.2.2
3.2.3
为 a b 的可能度。 类似地,称
p(b a ) m ax 1 aU b L max l (a ) l b( ) , 0 , 0
3.2.4
为 b a 的可能度。
对于给定的一组区间数 a [a L , aU ], i 1, 2,, n. 用区间数比较的可能度公式对 其进行两两比较,得到相应的可能度 p(ai a j ), i, j 1, 2,, n, ,简记为 pij ,i, j 1, 2,, n,
L n b L w' , d i ij ji j 1
U n bU w'' , d i ij ji j 1
i 1, 2,, m
三、区间数多属性决策的目标规划方法
设属性权重向量为 w w1 , w2 ,, wn T , 这里 w j j 1,2,, m可被视为变量。设方案
n
w L w j wU , j 1,2,, n j j
这个模型的基本含义是要确定每个方案的综合评价值所在的区间并使用同一个 属性权重向量 w w , w 2 ,, w
1 T n
, ,使得所有方案的排序(或评价)具有可比性。
1i i
为了方便求解上述多目标最优化模型,可将式 3.2.11 —— 3.2.14 转化为下列线性 目标规划问题:
决策理论与方法多属性决策多目标及序贯决策

决策理论与方法多属性决策多目标及序贯决策多属性决策是指在决策过程中考虑多个属性或指标,通过对这些属性进行量化和比较,找出最优选择的决策方法。
在实际决策中,我们常常需要考虑多个属性因素,而这些因素往往是相互矛盾甚至相互制约的。
多属性决策的关键是建立合理的评价指标体系,将不同属性进行量化,再通过合适的决策模型或方法进行计算和比较。
常用的多属性决策模型包括加权法、层次分析法和灰色关联法等。
多目标决策是指在决策过程中存在多个决策目标,且这些目标往往是相互冲突或无法同时达到的。
多目标决策的目标是找到一个最佳的折衷方案,使得各个决策目标能够得到尽可能满足。
多目标决策的关键是建立合理的决策模型,将各个决策目标进行量化和比较,再通过适当的优化方法或规划方法寻找最优解。
常用的多目标决策方法包括线性规划、整数规划、动态规划和遗传算法等。
序贯决策是指在决策过程中需要根据不完全的信息和不确定的环境进行连续的决策,即通过一系列的决策步骤逐渐完善和调整决策方案。
序贯决策的关键是建立适当的决策模型,将决策过程分解为多个连续的阶段,每个阶段根据已有的信息和条件做出决策,并根据反馈信息不断调整和优化决策方案。
常用的序贯决策方法包括马尔可夫决策过程、博弈论和贝叶斯决策等。
在实际应用中,多属性决策、多目标决策和序贯决策往往会相互结合使用。
例如,在制定企业的发展战略时,需要考虑多个因素,如市场需求、竞争环境和资源能力等,这涉及到多属性决策的内容。
同时,为了实现企业的长远目标,需要考虑多个决策目标,如利润最大化、成本最小化和风险最小化等,这也涉及到多目标决策的内容。
而在制定战略的实施方案时,可能需要根据不断变化的市场和竞争环境进行序贯的决策,这涉及到序贯决策的内容。
综上所述,多属性决策、多目标决策和序贯决策是决策理论与方法中常用的三个重要方法。
它们分别从不同的角度和需求出发,帮助人们在复杂和不确定的决策环境中做出最佳决策。
这些方法在实际应用中相互结合,能够提供更全面和准确的决策支持。
《多属性决策分析》课件

01
02
03
04
05
单目标决策分析
只考虑一个目标,如成本 最低、时间最短等。
不确定型决策分析
在不确定情况下进行决策 ,如风险型决策和不确定
型决策。
群决策分析
多个决策者共同参与决策 的过程。
02
多属性决策分析的基本概念
多属性决策分析的定义
定义
多属性决策分析是指在多个属性或因 素的条件下,对备选方案进行评估和 选择的方法。
多属性决策分析的应用
在经济管理中的应用
企业决策
多属性决策分析用于评估企业的多个属性,如市场份额、财务状况、创新能力等,以制 定更全面的战略计划。
项目评估
在选择新项目或投资方案时,多属性决策分析可以综合考虑项目的多个方面,如预期收 益、风险、资源需求等。
在资源分配中的应用
资源配置
在资源有限的条件下,多属性决策分 析可以帮助决策者根据不同属性的重 要性进行资源分配,以实现整体效益 最大化。
理想点法
总结词
理想点法是一种基于多属性决策分析的方法,通过构造理想解和负理想解,将问题转化为求目标函数 在约束条件下的最优解。
详细描述
理想点法的步骤包括确定属性、收集数据、构造理想解和负理想解、计算各方案与理想解和负理想解 的距离、选择最优方案。该方法适用于处理多属性决策问题,尤其适用于属性间量纲不同的情况。
多属性决策分析
目录
• 引言 • 多属性决策分析的基本概念 • 多属性决策分析的方法 • 多属性决策分析的应用 • 多属性决策分析的案例分析 • 总结与展望
01
引言
决策分析的定义
决策分析是指根据问题的目标和约束 条件,利用数学方法和计算机技术, 对一组方案进行比较和优选,以求得 最优解的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设有n个决策指标f1 , f 2 ,, f n , (1)将n个指标以任意顺序排列 ,不妨设为f1 , f 2 ,, f n; (2)从前到后,依次赋以相 邻两指标相对重要程度 的比率值,比率值i (i 1,2,, n 1) r ri rn 1; (3)计算各指标的修正值。 赋以f n修正值k n 1, 根据ri 计算各指标的修正评分 值: ki ri ki 1 , (i 1,2,, n 1) (4)归一化处理,求出各指 标的权重,即 k i n i , (i 1,2,, n) ki
设给定的最优属性区间为 [ y ,
0 j
y* ] j
0 0 1- ( y j - yij )/( y j - y j ’)
若 yij < y 0 j 若 yj ≤y ≤ yj
0
ij
zij
其中,
=
1
* 1 - ( yij - y j )/ ( y j ”- y j )
*
*
若 yij > y*j
y j ’为无法容忍下限, y j ”为无法容忍上限。
矩阵Y ( yij ) mn 称为线性比例标准化矩 阵。 经过变换之后,均有 yij 1,并且正、逆向指标均 0 化为 正向指标,1为最优值,但最劣值不 一定为0。
3、极差变换法
设决策矩阵X ( xij ) mn 中,对于正向指标 j,取x* max xij , f j
1i m
指标 f
i
比率值 r
i
修正评分值 指标权重值
ki wi
f1
f2
f
3 1 1 1/3 1/2 1
1/2 1/6 1/6 1/6 1/2 1 2.5
0.20 0.07 0.07 0.02 0.20 0.40 1.01
yn
y 1n
…
xi
…
yi1
…
yij
…
yin
…
xm
…
y m1
…
y mj
…
y mn
例: 学校扩建
(要求扩建的学校既要满足学生就近入学的要求,又要使扩散的费用 尽可能的少。) 学校序 费用(万 号 1 2 3 4 5 6 元) 60 50 44 36 44 30 平均就读距 离 km 1.0 0.8 1.2 2.0 1.5 2.4
1、向量归一化
设决策矩阵X ( xij ) mn中,令 yij xij
x
i 1
m
, (1 i m,1 j n)
2 ij
则矩阵Y ( yij ) mn 称为向量归一标准化矩 阵。显然 0 yij 1, 并且每列的平方和等于1,即列向量的模为 。 1 本方法不改变属性的方 向,常用于计算各方案 与某种虚拟方案 (如理想点和负理想点 )的欧式距离的场合。
二、决策指标的标准化
指标体系中各指标均有不同的量纲,有定量和定性,指标之 间无法进行比较。 将不同量纲的指标,通过适当的变化,化为无量纲的标准化 指标,称为决策指标的标准化,又叫数据预处理。 有三个作用: 1)变为正向指标 2)非量纲化,消除量纲影响,仅用数值表示优劣 3)归一化,把数值均转变为[0,1]区间上,消除指标值标度 差别过大的影响。 指标的标准化可以部分解决目标属性的不可公度性。 下面介绍几个常用的预处理方法。在决策中可以根据情况 选择一种或几种对指标值进行处理。
4、标准样本变换法
设决策矩阵X ( xij ) mn中,令 yij xij x j sj , (1 i m,1 j n)
1 m 1 m 其中,样本均值 j= xij , 样本均方差 j x s ( xij x j ) 2 m i 1 m 1 i 1 矩阵Y ( yij ) mn 称为标准样本变换矩阵 。 经过变化之后,标准化 矩阵每列的均值为 ,方差为 。 0 1
难,列方程和解方程的关系,理论和实践之间的关系)
设有n个决策指标fi(1≤j≤n),m个备选方案ai 1≤i≤m),m 个方案n个指标构成的矩阵 X=(xij)m×n 称为决策矩阵。决策矩阵是规范性分析的基础。 决策指标分两类:效益型(正向)指标,数值越大越优; 成本型指标(逆向指标),数值越小越优。
i
a
i 1 j 1
j 1 n n
a
n
ij
, (i 1,2,, n)
ij
例43
使用本方法时要注意:1、指标之间要有可比性;2、应满 足比较的传递性(一致性)。
2、连环比较法(古林法)
连环比较法也是一种主观赋权法。以任意顺序排列指标,按顺 序从前到后,相邻两指标比较其相对重要性,依次赋以比率值, 并赋以最后一个指标的得分值为1;从后往前,按比率依次求 出各指标的修正评分值;最后进行归一化处理,得到各指标的 权重。
期 望 利 润 (万元) 650
产 品 成 市 场 占 品率(%) 有率(%) )投资 费用 95 30 110
(万元
产 品 外 观 美 观 比 较 美 观
730
97
35
180
520
92
25
50
美 观
数据预处理
(1)属性值有多种类型。 •有些指标的属性值越大越好,如科研成果数、 科研经费等是效益型; •有些指标的值越小越好,称作成本型。 •另有一些指标的属性值既非效益型又非成本 型。
准备工作和方法
• • • • • 决策指标的标准化 决策指标权重的确定 加权和法 加权积法 Topsis法
第一节 多属性决策的准备工作
多属性决策的准备工作包括:决策问题的描述、相关信息 的采集(即形成决策矩阵)、决策数据的预处理和方案的初选 (或称为筛选)。
一、决策矩阵 经过对决策问题的描述(包括设立多属性指标体系)、各 指标的数据采集,形成可以规范化分析的多属性决策矩阵。(困
第三讲 多属性决策分析
多属性多指标综合评价特点
• 指标间的不可公度性,指标之间没有统 一量纲,难以用同一标准进行评价; • 指标之间可能存在一定的矛盾性,某一 方案提高了这个指标,却可能损害另一 指标。 上述问题即为多属性决策方法研究的问题。
基本概念
• 由多个相互联系、相互依存的评价指标, 按照一定层次结构组合而成,具有特定 评价功能的有机整体,称为多属性决策 的指标体系。
5、定性指标的量化处理 如一些可靠性、满意度等指标往往具有模糊性,可以将指标 依问题性质划分为若干级别,赋以适当的分值。一般可以分 为5级、7级、9级等。
6、原始数据的统计处理
zij = j y max y j j
yj
_
_
(1.00 - M) + M 是各方案属性 j 的均值, m 为方案数,
i 1
3(1 3), 2(1 2), 1,
当f i 比f i 1 重要(或相反); 当f i 比f i 1 较重要(或相反); 当f i 和f i 1 同样重要。
(i 1,2, , n 1)
例题(P44)用连环比率法计算例2-1中决策指标的权重。 本方法容易满足传递性,但也容易产生误差的传递。
=
1 m y m i 1 ij
M 的取值可在 0.5-0.75 之间. 上式可以有多种变形, 例如:
zij ' = 01( yij y j ) / j 0.75 .
其中 j 为属性 j 的均方差,当高端与均值差大于 2.5 j 时变换后的值均为 1.00.这种变换的结果与专家打分 的结果比较吻合.
例如研究生院的生师比,一个指导教师指导4至6 名研究生既可保证教师满工作量, 也能使导师有充 分的科研时间和对研究生的指导时间,生师比值过高, 学生的培养质量难以保证;比值过低;教师的工作量 不饱满。
(2)非量纲化
• 多目标评估的困难之一是指标间不可公度, 即在属性值表中的每一列数具有不同的单位 (量纲)。即使对同一属性,采用不同的计量单 位,表中的数值也就不同。 • 在用各种多目标评估方法进行评价时,需要 排除量纲的选用对评估结果的影响,这就是 非量纲化,亦即设法消去(而不是简单删去)量 纲,仅用数值的大小来反映属性值的优劣。
y1
生师比
y2
科研经费 (万元/年)
y3
逾期毕业 率 (%) y4
1 2 3 4 5
0.1 0.2 0.6 0.3 2.8
5 7 10 4 2
5000 4000 1260 3000 284
4.7 2.2 3.0 3.9 1.2
投资决策
指标Xj 替代方案 Ai
自行设计 (A1) 国外引进 (A2) 改 建 (A3)
②各目标属性的差异程度; ③各目标属性的可靠程度
确定权重是非常困难的,因为主观的因素,权重很难准确。
确定权的方法有两大类: 主观赋权法:根据主观经验和判断,用某种方法测定属性指标 的权重; 客观赋权法:根据决策矩阵提供的评价指标的客观信息,用某 种方法测定属性指标的权重。
两类方法各有利弊,实际应用时可以结合使用。
决策矩阵(属性矩阵、属性值表)
方案集 X = { x1, x2 ,, xm }
方案 x i 的属性向量 Yi = { yi1 ,…, yin } 当目标函数为 f j 时,
yij = f j ( x i )
各方的属性值可列成表(或称为决策矩阵):
y1
x1
y11
… … … … … …
yj
y1 j
… … … … … …
下面介绍几种常用的确定权的方法
1、相对比较法
相对比较法是一种主观赋权法。将所有指标分别按行和列,构 成一个正方形的表,根据三级比例标度,指标两两比较进行评 分,并记入表中相应位置,再将评分按行求和,最后进行归一 化处理,得到各指标的权重。
设有n个决策指标f1 , f 2 ,, f n , 按三级比例标度两两相 对比较评分,其分值 设为aij , 三级比例标度的含义是 : 1, 当f i 比f j 重要时; aij 0.5, 当f i 比f j同样重要时; 0, 当f i 比f j 不重要时; 评分值构成矩阵 (aij ) mn , 显然aii 0.5, aij a ji 1, 指标f i 的权重系数: A