行星齿轮减速电机
行星齿轮减速机原理

行星齿轮减速机原理
行星齿轮减速机是一种常用的减速装置,广泛应用于机械传动系统中。
其工作原理如下:
1. 行星齿轮减速机主要由太阳轮、行星轮、内齿圈和传动轴等部件组成。
太阳轮为中心轴,行星轮与母轮(内齿圈)同时绕太
阳轮旋转。
2. 当输入轴驱动太阳轮旋转时,太阳轮会传动力量到行星轮上。
行星轮由行星架支撑,行星架与太阳轮、内齿圈通过轴连接。
3. 当行星轮受到力量作用时,会沿着太阳轮的内齿圈方向旋转。
内齿圈作为固定不动的零件,用于闭合整个齿轮组。
4. 在行星轮的旋转过程中,行星轮和内齿圈之间的齿轮咬合产生了传动效果。
由于行星轮相对于太阳轮的运动方向相反,所以传动比相对较大。
5. 通过行星轮和内齿圈的齿轮咬合作用,输入轴旋转的速度减小,同时扭矩增加,实现了减速的效果。
总的来说,行星齿轮减速机通过太阳轮、行星轮和内齿圈之间的齿轮咬合作用,实现了输入轴的减速和输出扭矩的增加。
它具有结构简单、体积小、传动平稳等特点,在机械传动系统中得到了广泛应用。
行星减速机减速比计算

行星减速机减速比计算行星减速机是一种常见的传动装置,主要用于机械设备中对动力的减速处理,常见的有行星齿轮减速机和行星摆线减速机两种类型。
减速比是衡量行星减速机减速效果的重要参数,它决定了输出转速与输入转速之间的比值关系。
一、行星齿轮减速机减速比计算行星齿轮减速机采用行星齿轮传动,由于行星齿轮的特殊结构,多个行星齿轮同时参与传动,相对于常见的齿轮传动具有更高的减速比,且具有较大的扭矩输出能力。
行星齿轮减速机的减速比可以通过以下公式计算:减速比 = (Zs + Zr)/Zs其中,Zs为行星齿轮的齿数,Zr为行星轮的齿数。
行星齿轮减速机的齿数可以通过以下公式计算:行星齿数 = (2*Z) / (N + 1)其中,Z为中心齿轮的齿数,N为行星轮的个数。
行星齿轮减速机的输入转速与输出转速之间的关系可以通过以下公式计算:输出转速 = 输入转速 / 减速比二、行星摆线减速机减速比计算行星摆线减速机采用行星摆线齿轮传动,行星齿轮与摆线齿轮的配合形成多点接触传动,具有低噪音、高精度和较大扭矩输出的特点。
行星摆线减速机的减速比可以通过以下公式计算:减速比 = (Zr * Zs) / (Zr + Zs)其中,Zr为行星摆线齿轮的齿数,Zs为摆线主动齿轮的齿数。
行星摆线减速机的齿数可以通过以下公式计算:行星摆线齿数 = 外齿轮齿数 * (2*N + 1) / (N+1)其中,N为行星摆线轮的个数。
行星摆线减速机的输入转速与输出转速之间的关系可以通过以下公式计算:输出转速 = 输入转速 / 减速比三、行星减速机减速比的影响因素1. 行星轮的齿数:行星减速机的减速比与行星轮的齿数成正比,行星轮齿数越大,减速比越高。
2. 中心齿轮的齿数:行星齿轮减速机的减速比与中心齿轮的齿数成反比,中心齿轮齿数越大,减速比越小。
3. 行星轮的个数:行星齿轮减速机的减速比与行星轮的个数成反比,行星轮的个数越多,减速比越小。
4. 行星齿轮的齿数:行星摆线减速机的减速比与行星齿轮的齿数和摆线主动齿轮的齿数之间的比例有关。
减速电机型号与参数介绍

减速电机型号与参数介绍减速电机是一种将电能转换为机械能并提供输出转矩的设备。
它通过减速装置将高速电机输出的转矩减速到较低的速度,并广泛应用于各种机械设备中,如输送机、提升机、机床等。
下面将介绍几种常见的减速电机型号及其参数。
1.常用的减速电机型号之一是直流减速电机,它主要由直流电机和减速装置两部分组成。
直流减速电机具有转速范围宽、转矩大、调速性能好等优点。
常见的直流减速电机型号有Z4、Z2、YZR、ZD等。
其参数主要包括额定功率、额定电压、额定转速、输出转矩等。
2.另一种常见的减速电机型号是交流减速电机,它主要由交流电动机和减速装置组成。
交流减速电机具有结构简单、工作可靠、维护方便等优点。
常见的交流减速电机型号有Y、Y2、Y3、YVP、YE2等。
其参数主要包括额定功率、额定电压、额定转速、输出转矩等。
3.步进减速电机是一种将交流电信号转换为相应步进角度的转子运动的设备,主要由步进电机和减速装置组成。
步进减速电机具有运行平稳、精度高、工作可靠等优点。
常见的步进减速电机型号有5E、3N、2W、2H 等。
其参数主要包括步距角、步数、工作电流、输出转矩等。
4.行星减速电机是采用星形轮系,将输入的高速电机转速减速到输出减速电机所需的低速的一种减速装置和电动机的组合。
行星减速电机具有结构紧凑、承载能力强等优点。
常见的行星减速电机型号有NMRV、WPS、WPDA、WPX等。
其参数主要包括传动比、额定功率、输出转矩等。
5.圆锥齿轮减速电机是采用圆锥齿轮传动的减速电机,主要由电动机、减速装置和输出轴组成。
圆锥齿轮减速电机具有传递力矩大、运行平稳、噪音低等优点。
常见的圆锥齿轮减速电机型号有R、RN、RV、RK等。
其参数主要包括传动比、额定功率、额定转速、输出转矩等。
以上是几种常见的减速电机型号及其参数介绍。
不同的减速电机型号适用于不同的应用领域,用户在选择减速电机时应根据具体需求和使用环境综合考虑各方面因素,以确保减速电机的性能和可靠性。
哈默纳科行星齿轮减速机特点、工作原理、型号参数及应用等

哈默纳科行星齿轮减速机特点、工作原理、型号参数及应用等哈默纳科行星齿轮减速机是一种应用广泛的传动装置,具有许多独特的特点和优势。
本文将详细介绍哈默纳科行星齿轮减速机的特点、工作原理、型号参数以及应用领域等内容。
一、特点哈默纳科行星齿轮减速机具有以下几个主要特点:1. 结构紧凑:哈默纳科行星齿轮减速机采用了行星齿轮传动机构,各个齿轮组件紧凑、紧密结合,整体结构非常紧凑,占用空间小。
2. 高减速比:行星齿轮传动机构能够实现较高的减速比,通常可以达到10:1或更高,这使得它在需求高扭矩输出的应用中十分有用。
3. 高精度:哈默纳科行星齿轮减速机具有较高的精度,能够实现非常平稳、可靠的运行,不易产生噪音和振动。
4. 负载能力强:由于采用了行星齿轮传动机构,该减速机的承载能力非常强大,能够承受较大的径向和轴向负载。
5. 耐久性好:哈默纳科行星齿轮减速机采用了高强度、高硬度的材料制造,具有较高的耐久性,能够长时间、稳定地工作。
二、工作原理哈默纳科行星齿轮减速机的工作原理是通过行星齿轮传动机构实现的。
该机构由太阳轮、行星轮和内齿圈组成。
传动过程分为两个阶段:行星轮内摆和行星轮固定。
在行星轮内摆阶段,太阳轮通过输入轴和行星轮上的太阳齿之间的啮合使行星轮开始自转。
同时,行星齿与内齿圈啮合,内齿圈通过固定不动实现阻止行星轮的自转。
在这个阶段,输入轴的转动通过太阳轮和行星轮的转动,实现了减速效果。
在行星轮固定阶段,太阳轮保持静止,而内齿圈固定不动,行星轮则开始转动。
此时,太阳齿和行星齿之间的啮合使行星轮的转动速度降低,从而实现了更大程度的减速。
三、型号参数哈默纳科行星齿轮减速机的型号参数包括功率、转速比、额定扭矩、输出转矩、输入转矩等。
不同型号的减速机具有不同的参数范围,以满足不同应用的需求。
1. 功率:哈默纳科行星齿轮减速机的功率范围很广,从几瓦到几千千瓦不等。
2. 转速比:转速比表示输入轴的转速与输出轴的转速之间的比值。
行星齿轮减速器参数

行星齿轮减速器是一种应用广泛、精度级别较高的减速器,也称为行星齿轮减速电机,主要传动结构由驱动电机、行星齿轮箱减速器组装而成,驱动电机可采用直流无刷电机、直流有刷电机、步进电机、伺服电机等微型电动马达作为驱动源,减速器是采用多级行星齿轮箱作为减速器,技术参数通常是按照需求定制而成,例如减速比,扭矩,转速,噪音,精度等参数是定制开发而成;定制参数范围,直径规格在3.4mm-38mm之间,额定电压在3V-24V,输出力矩范围:1gf.cm到50Kgf.cm之间,减速比范围:5-1500;输出转速范围:5-2000rpm;行星齿轮减速器参数:产品名称:16MM金属行星齿轮减速器产品分类:五金行星齿轮箱外径:16mm材质:五金旋转方向:cw&ccw齿轮箱回程差:≤2°(可定制)轴承:烧结轴承;滚动轴承轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承)输出轴径向负载:≤20N(烧结轴承);≤30N(滚动轴承)输入速度:≤15000rpm工作温度:-30 (100)产品名称:20MM金属行星齿轮减速器产品分类:五金行星齿轮箱外径:20mm材质:金属旋转方向:cw&ccw齿轮箱回程差:≤3°(可定制)轴承:烧结轴承;滚动轴承轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承)输出轴径向负载:≤30N(烧结轴承);≤50N(滚动轴承)输入速度:≤15000rpm工作温度:-20 (85)产品名称:24MM金属行星齿轮减速器产品分类:五金行星齿轮箱外径:24mm材质:五金旋转方向:cw&ccw齿轮箱回程差:≤2°(可定制)轴承:烧结轴承;滚动轴承轴向窜动:≤0.1mm;≤0.1mm输出轴径向负载:≤120N;≤170N输入速度:≤15000rpm工作温度:-30 (100)定制参数、规格范围:尺寸规格系列:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、24mm、28mm、32mm、38mm;电压范围:3V-24V功率范围:0.1W-40W输出力矩范围:1gf.cm到50Kgf.cm减速比范围:5-1500;输出转速范围:5-2000rpm;产品特点:行星齿轮减速器具备传动精度高、体积小、噪音低、耐用、耗能低、定制功率设计,安装方便,方便保养等特点;产品应用:行星齿轮减速器广泛应用在智能汽车驱动、智能通讯设备、智能医疗设备、智能物流设备、智能机器人设备、智能家居设备、消费电子产品设备、个人护理工具设备、自动工业化驱动设备中。
行星齿轮减速机构成及意义、特点

行星齿轮减速机构成及意义、特点行星减速机主要传动结构为:行星轮,太阳轮,外齿圈.行星减速机因为结构原因,单级减速最小为3,最大一般不超过10,常见减速比为:3.4.5.6.8.10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速.相对其他减速机,行星减速机具有高刚性,高精度(单级可做到1分以内),高传动效率(单级在97%-98%),高的扭矩/体积比,终身免维护等特点.因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量.减速机额定输入转速最高可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可做到10000Nm以上.工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度.行星减速机的几个概念:级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降.回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙.行星减速机是一种用途广泛的工业产品,其性能可与其它军品级减速机产品相媲美,却有着工业级产品的价格,被应用于广泛的工业场合。
该减速器体积小、重量轻,承载能力高,使用寿命长、运转平稳,噪声低。
具有功率分流、多齿啮合独用的特性。
最大输入功率可达104kW。
适用于起重运输、工程机械、冶金、矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器和航空航天等工业部门行星系列新品种WGN定轴传动减速器、WN 子母齿轮传动减速器、弹性均载少齿差减速器。
减速电机分类

减速电机分类
减速电机是一种常见的电动机,其作用是将高速旋转的电机转轮减速,以适应不同的工作需求。
根据不同的分类标准,减速电机可以分为多
种类型。
一、按照传动方式分类
1. 齿轮减速电机:采用齿轮传动方式,常见的有斜齿轮、圆柱齿轮、
蜗杆等。
2. 带传动减速电机:采用带传动方式,常见的有皮带、链条等。
3. 摆线针轮减速电机:采用摆线针轮传动方式,具有精度高、噪音小
等优点。
二、按照结构形式分类
1. 行星减速电机:由行星架和行星齿轮组成,具有结构简单、扭矩大
等特点。
2. 锥齿轮减速电机:由锥齿轮和螺旋伞齿轮组成,具有传递扭矩大、
运行平稳等特点。
3. 蜗杆蜗轮减速电机:由蜗杆和蜗轮组成,具有结构紧凑、噪音小等优点。
三、按照功率大小分类
1. 小功率减速电机:通常指功率在0.1kW以下的减速电机,常用于家用电器、医疗设备等领域。
2. 中功率减速电机:通常指功率在0.1kW-10kW之间的减速电机,常用于工业自动化、冶金、矿山等领域。
3. 大功率减速电机:通常指功率在10kW以上的减速电机,常用于水泵、风机、压缩机等大型设备中。
以上是对减速电机分类的详细介绍。
不同类型的减速电机具有不同的特点和应用领域,在选择时需要根据实际需求进行选择。
行星齿轮减速器原理

行星齿轮减速器原理行星齿轮减速器是一种常见的机械传动装置,它通过行星齿轮的组合运动来实现减速的作用。
它由太阳轮、行星轮、内齿轮和外齿轮组成,通过它们之间的互相嵌合来传递动力。
行星齿轮减速器的工作原理如下:1. 太阳轮:太阳轮是行星齿轮减速器的输入轴,它通过电机或其他动力源提供动力。
太阳轮与行星轮之间通过内齿轮的嵌合实现动力传递。
2. 行星轮:行星轮是行星齿轮减速器中最重要的组成部分,它由多个行星齿轮组成。
行星轮通过轴承与太阳轮和内齿轮相连,并绕着太阳轮的中心轴旋转。
行星轮的齿轮与太阳轮和内齿轮之间通过齿轮嵌合实现动力传递。
3. 内齿轮:内齿轮是行星齿轮减速器中的固定齿轮,它通过轴承与行星轮相连,并绕着太阳轮的中心轴旋转。
内齿轮的齿轮与太阳轮和行星轮之间通过齿轮嵌合实现动力传递。
4. 外齿轮:外齿轮是行星齿轮减速器中的输出轴,它通过轴承与内齿轮相连,并绕着太阳轮的中心轴旋转。
外齿轮的齿轮与内齿轮之间通过齿轮嵌合实现动力传递。
行星齿轮减速器的工作原理可以用以下几个步骤来描述:第一步,当太阳轮旋转时,它通过内齿轮的嵌合将动力传递给行星轮。
行星轮绕着太阳轮的中心轴旋转,并且自身也在自转。
第二步,行星轮的齿轮与内齿轮的齿轮之间通过嵌合实现动力传递。
由于行星轮的自转和绕太阳轮的旋转,行星轮的齿轮与内齿轮的齿轮之间形成了一个不断变化的嵌合关系。
第三步,当行星轮的齿轮与内齿轮的齿轮嵌合时,动力被传递到外齿轮上。
外齿轮绕着太阳轮的中心轴旋转,并将动力传递到输出轴上。
通过这样的传递方式,行星齿轮减速器可以实现输入动力的减速作用。
根据太阳轮、行星轮、内齿轮和外齿轮的齿轮比例,可以实现不同的减速比。
减速比越大,输出轴的转速越低,扭矩越大。
行星齿轮减速器具有结构紧凑、扭矩传递平稳、传动效率高等优点,因此被广泛应用于各种机械设备中。
它在工业生产中的应用十分广泛,如机床、起重设备、输送设备等。
总结起来,行星齿轮减速器是一种通过行星轮的组合运动来实现减速作用的机械传动装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行星齿轮减速电机
减速机一般是通过把电动机,内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,减速机是一种用于低转速大扭矩的传动设备,这个是常识性的问题,就不多讲了,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。
作用
1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。
2)降速同时降低了负载的惯量,惯量的减少为减速比的平方。
大家可以看一下一般电机都有一个惯量数值。
种类
一般的减速机有斜齿轮减速机,精密行星减速机、伺服专用行星减速机、直角行星减速机、行星齿轮减速机、螺旋齿轮减速机、强力型减速机、精密型减速机、摆线针轮减速机、蜗轮蜗杆减速机、行星摩擦式机械无级变速机等等。
按级数分一般有三种:一级减速(一般为小于10:1)、二级减速(一般为大于10:1而小于等于200:1)、三级减速(有的品牌没有第三级,最大减速比做到100:1,一般划分原则就是大于100:1),但雷荇行星减速电机可做到五级,减速比最大做到4592:1;
按用途分:军用和民用;
按运行环境分:标准环境、低温环境、清洁室环境和真空环境;
按精度分:标准精度与高精度与超精密级;
按产地分:国产、进口、国内组装;
特点
伺服行星减速机提供了高性价比,应用广泛、经济实用、寿命长等优点,在伺服控制的应用上,发挥了良好的伺服刚性效应,准确的定位控制,在运转平台上具备了中低背隙,高效率,高输入转速,高输入扭矩,运转平顺,低噪音等特性,
外观及结构设计轻小。
使用终身免更换的润滑油,及无论安装在何处,都可以免维修操作全封闭式设计,并且具有IP65的保护程度,因此工作环境差时亦可使用。
业机器人、和自动化的机电产品行业。
行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。
但价格略贵
应用领域
行星减速机可直接安装到交流和直流伺服马达上,广泛应用于中等精度程度的工业领域。
如:印刷机床、火焰切割、激光切割、数控机床、工具机械,食品包装、自动化产业.于航太、半导体设备、医疗器材、机器人、机械手、通讯设备、制药设备、印刷设备、包装机械、纺织机械、数控机床、数控弯管机、停车设备、量测设备、工作母机、精密监控系统、车辆工业、自动控制系统等行业。
扭矩
扭矩=9550×电机功率÷电机输入转速×速度比×使用系数
备注:电机功率单位【Kw】
电机转速单位【r/m】
输出扭矩单位【N·m】
电机使用系数就是电机功率和设备功率的比值。
在使用过程中,要看情况选择系数。
不过不是越大越好,因为那样太浪费了。
一般的情况下如果运行平稳冲击不大,使用系数大于等于1.2就行;如果没有冲击,运行平稳只要大于等于一就好了。
安装方法
正确的安装,使用和维护行星减速机,是保证机械设备正常运行的重要环节。
因此,在安装行星减速机时,请务必严格按照下面的安装使用相关事项,认真地装配和使用。
第一步
安装前确认电机和减速机是否完好无损,并且严格检查电机与减速机相连接的各部位尺寸是否匹配,这里是电机的定位凸台、输入轴与减速机凹槽等尺寸及配合公差。
第二步
旋下减速机法兰外侧防尘孔上的螺钉,调整PCS系统夹紧环使其侧孔与防尘孔对齐,插入内六角旋紧。
之后,取走电机轴键。
第三步
将电机与减速机自然连接。
连接时必须保证减速机输出轴与电机输入轴同心度一致,且二者外侧法兰平行。
如同心度不一致,会导致电机轴折断或减速机齿轮磨损。
另外,在安装时,严禁用铁锤等击打,防止轴向力或径向力过大损坏轴承或齿轮。
一定要将安装螺栓旋紧之后再旋紧紧力螺栓。
安装前,将电机输入轴、定位凸台及减速机连接部位的防锈油用汽油或锌钠水擦拭净。
其目的是保证连接的紧密性及运转的灵活性,并且防止不必要的磨损。
在电机与减速机连接前,应先将电机轴键槽与紧力螺栓垂直。
为保证受力均匀,先将任意对角位置的安装螺栓旋上,但不要旋紧,再旋上另外两个对角位置的安装螺栓最后逐个旋紧四个安装螺栓。
最后,旋紧紧力螺栓。
所有紧力螺栓均需用力矩板手按标明的固定扭力矩数据进行固定和检查。
减速机与机械设备间的正确安装类同减速机与驱动电机间的正确安装。
关键是要必须保证减速机输出轴与所驱动部分轴同心度一致。