[试卷合集3套]衡水市2021届中考一轮复习仿真数学冲刺卷
2021年河北省衡水中学中考招生数学模拟试卷(三)

2021 年河北省衡水中学中考招生数学模拟试卷(三)一、选择题(本大题共8 小题,每小题2 分,共16 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2 分)下列实数为无理数的是()A.﹣5 C.0 D.π2.(2 分)如图,这是由5 个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.3.(2 分)一元二次方程2x2﹣x+1=0 根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断4.(2 分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10 次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差5.(2 分)如图,直线l1∥l2,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2 的度数为()A.92°B.98°C.102°D.108°6.(2 分)下列运算正确的是()A.7a﹣a=6 B.a2•a3=a5 C.(a3)3=a6 D.(ab)4=ab4 7.(2 分)如图,在△ABC 中,∠ACB=90°,过B,C 两点的⊙O 交AC 于点D,交AB 于点E,连接EO 并延长交⊙O 于点F,连接BF,CF,若∠EDC=135°,CF=2 ,则AE2+BE2 的值为()A.8 B.12 C.16 D.208.(2 分)如图,在△ABC 中,∠C=90°,AC=BC=3cm,动点P 从点A 出发,以cm/s 的速度沿AB 方向运动到点B,动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC→CB 方向运动到点B.设△APQ 的面积为y(cm2),运动时间为x(s),则下列图象能反映y 与x 之间关系的是()A.B.C.D.二、填空题(本大题共8 小题,每小题3 分,共24 分)9.(3 分)因式分解:x3﹣4x= .10.(3 分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300 亿元人民币等值专项贷款,将300 亿元用科学记数法表示为元.11.(3 分)如图,这是一幅长为3m,宽为2m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4 附近,由此可估计宣传画上世界杯图案的面积约为m2.12.(3 分)如图,在平面直角坐标系中,每个小方格都是边长为1 个单位长度的正方形,已知△AOB 与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B 都在格点上,则点B1的坐标为.13.(3 分)如图,直线y1=﹣x+a 与y2=bx﹣4 相交于点P,已知点P 的坐标为(1,﹣3),则关于x 的不等式﹣x+a<bx﹣4 的解集是.14.(3 分)如图,菱形ABCD 的对角线AC,BD 相交于点O,过点A 作AH⊥BC=24,则OH 的长为.于点H,连接OH,若OB=4,S菱形ABCD15.(3 分)如图,矩形OABC 的顶点A,C 分别在x 轴,y 轴上,顶点B 在第一象限,AB=1,将线段OA 饶点O 按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B 两点,则k 的值为.16.(3 分)如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60°,过点D (6,0)作DA⊥OM 于点A,作线段OD 的垂直平分线BE 交x 轴于点E,交AD 于点B,作射线OB,以AB 为边在△AOB 的外侧作正方形ABCA1,延长A1C 交射线OB 于点B1,以A1B1为边在△AOB 的外侧作正方形A1B1C1A2,延长A2C1交射线OB 于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为.三、综合题17.(7 分)先化简,再求值)÷,其中x=3.18.(7 分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x/元人数(频数)频率0≤x<30 6 0.1530≤x<60 12 0.3060≤x<90 16 0.4090≤x<120 b 0.10120≤x<150 2 a(1)这次被调查的人数共有人,a= .(2)计算并补全频数分布直方图;(3)请估计该校1500 名学生中每月零花钱数额低于90 元的人数.四、解答题(本大题共 2 小题,每小题8,共16 分)19.(8 分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4 张(小猪佩奇)角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到 A 佩奇,弟弟抽到 B 乔治的概率.20.(8 分)为迎接“七•一”党的生日,某校准备组织师生共310 人参加一次大型公益活动,租用4 辆大客车和6 辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15 个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40 人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2 小题,每小题8 分,共16 分)21.(8 分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5 米,点B 距地面105.米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据≈1.4)22.(8 分)如图,在△ABC 中,∠C=90°,AE 平分∠BAC 交BC 于点E,O 是AB上一点,经过A,E 两点的⊙O 交AB 于点D,连接DE,作∠DEA 的平分线EF 交⊙O 于点F,连接AF.(1)求证:BC 是⊙O 的切线.(2)若,AF=5 ,求线段AC 的长.六、解答题(本大题共 1 小题,共10 分)23.(10 分)某商场销售一种商品,进价为每个20 元,规定每个商品售价不低于进价,且不高于60 元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:每个商品的售价x(元)…30 40 50 …每天的销售量y(个)100 80 60 …(1)求y 与x 之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w 与x 之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?七、解答题(本大题共2 小题,共24 分)24.(12 分)如图1,以▱ABCD 的较短边CD 为一边作菱形CDEF,使点F 落在边AD 上,连接BE,交AF 于点G.(1)猜想BG 与EG 的数量关系,并说明理由;(2)延长DE、BA 交于点H,其他条件不变:①如图2,若∠ADC=60°,的值;②如图3,若∠ADC=α(0°<α<90°),直接写的值(用含α的三角函数表示)25.(12 分)在平面直角坐标系中,直线x﹣2 与x 轴交于点B,与y 轴交于点C,二次函数x2+bx+c 的图象经过B,C 两点,且与x 轴的负半轴交于点A,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM⊥BC 于点M,是否存在点D,使得△CDM 中的某个角恰好等于∠ABC 的2 倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.2018 年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8 小题,每小题2 分,共16 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2 分)下列实数为无理数的是()A.﹣5 C.0 D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5 是整数,是有理数,选项错误;B是分数,是有理数,选项错误;C、0 是整数,是有理数,选项错误;D、π 是无理数,选项正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π 等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2 分)如图,这是由5 个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2 列,每列小正方形数目分别为2,1.故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.(2 分)一元二次方程2x2﹣x+1=0 根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:△=(﹣1)2﹣4×2×1=﹣7<0,所以方程无实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程无实数根.4.(2 分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10 次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(2 分)如图,直线l1∥l2,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2 的度数为()A.92°B.98°C.102°D.108°【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.6.(2 分)下列运算正确的是()A.7a﹣a=6 B.a2•a3=a5 C.(a3)3=a6 D.(ab)4=ab4【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方逐一计算可得.【解答】解:A、7a﹣a=6a,此选项错误;B、a2•a3=a5,此选项正确; C 、(a3)3=a9,此选项错误; D 、(ab)4=a4b4,此选项错误;故选:B.【点评】本题主要考查幂的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方.7.(2 分)如图,在△ABC 中,∠ACB=90°,过B,C 两点的⊙O 交AC 于点D,交AB 于点E,连接EO 并延长交⊙O 于点F,连接BF,CF,若∠EDC=135°,CF=2 ,则AE2+BE2 的值为()A.8 B.12 C.16 D.20【分析】由四边形BCDE 内接于⊙O 知∠EFC=∠ABC=45°,据此得AC=BC,由EF 是⊙O 的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF 是⊙O 的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BFC 得AE=BF,根据Rt△ECF 是等腰直角三角形知EF2=16,继而可得答案.【解答】解:∵四边形BCDE 内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC 是等腰三角形,∴AC=BC,又∵EF 是⊙O 的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF 是⊙O 的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF 中、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.【点评】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.8.(2 分)如图,在△ABC 中,∠C=90°,AC=BC=3cm,动点P 从点A 出发,以cm/s 的速度沿AB 方向运动到点B,动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC→CB 方向运动到点B.设△APQ 的面积为y(cm2),运动时间为x(s),则下列图象能反映y 与x 之间关系的是()A.B.C.D.【分析】作QD⊥AB,分点Q 在AC、CB 上运动这两种情况,由直角三角形的性质表示出QD 的长,利用三角形面积公式得出函数解析式即可判断.【解答】解:(1)过点Q 作QD⊥AB 于点D,①如图1,当点Q 在AC 上运动时,即0≤x≤3,由题意知AQ=x、x,∵∠A=45°,∴QD=AQ=x,则•x=x2;②如图2,当点Q 在CB 上运动时,即3<x≤6,此时点P 与点B 重合,由题意知BQ=6﹣x、,∵∠B=45°,∴QD=BQ=(6﹣x),则×3 (6﹣x)=﹣x+9;故选:D.【点评】本题主要考查动点问题的函数图象,解题的关键是根据题意弄清两点的运动路线,据此分类讨论并得出函数解析式.二、填空题(本大题共8 小题,每小题3 分,共24 分)9.(3 分)因式分解:x3﹣4x= x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.10.(3 分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300 亿元人民币等值专项贷款,将300 亿元用科学记数法表示为3×1010 元.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:300 亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n 的值是解题的关键.11.(3 分)如图,这是一幅长为3m,宽为2m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4 附近,由此可估计宣传画上世界杯图案的面积约为 2.4 m2.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×2=6(m2),∵骰子落在世界杯图案中的频率稳定在常数0.4 附近,∴世界杯图案占长方形世界杯宣传画的40%,∴世界杯图案的面积约为:6×40%=2.4m2,故答案为:2.4.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.12.(3 分)如图,在平面直角坐标系中,每个小方格都是边长为1 个单位长度的正方形,已知△AOB 与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B 都在格点上,则点B1的坐标为(﹣2,﹣).【分析】把B 的横纵坐标分别乘以得到B′的坐标.【解答】解:由题意得:△AOB 与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是),1×(﹣)],即B′的坐标是);故答案为).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(3 分)如图,直线y1=﹣x+a 与y2=bx﹣4 相交于点P,已知点P 的坐标为(1,﹣3),则关于x 的不等式﹣x+a<bx﹣4 的解集是x>1 .【分析】观察函数图象得到当x>1 时,函数y=﹣x+a 的图象都在y=bx﹣4 的图象下方,所以不等式﹣x+a<bx﹣4 的解集为x>1;【解答】解:当x>1 时,函数y=﹣x+a 的图象都在y=bx﹣4 的图象下方,所以不等式﹣x+a<bx﹣4 的解集为x>1;故答案为x>1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0 的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3 分)如图,菱形ABCD 的对角线AC,BD 相交于点O,过点A 作AH⊥BC=24,则OH 的长为 3 .于点H,连接OH,若OB=4,S菱形ABCD【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD 是菱形,=24,∴BO=DO=4,AO=CO,S菱形∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.15.(3 分)如图,矩形OABC 的顶点A,C 分别在x 轴,y 轴上,顶点B 在第一象限,AB=1,将线段OA 饶点O 按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B 两点,则k 的值为.【分析】作PQ⊥OA,由AB=1 知OA=k,由旋转性质知OP=OA=k、∠POQ=60°,据此求得k,PQ=OPsin60°=k,即k,k),代入解析式解之可得.【解答】解:过点P 作PQ⊥OA 于点Q,∵AB=1,∴OA=k,由旋转性质知OP=OA=k、∠POQ=60°,则OQ=OPcos60°= k,PQ=OPsin60°= k,)2016•(1+ )2017即k,k),代入解析式,得k2=k,解得:k=0(舍)或,故答案为.【点评】本题主要考查反比例函数图象上的点,解题的关键是表示出点P 的坐标.16.(3 分)如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60°,过点D (6,0)作DA⊥OM 于点A,作线段OD 的垂直平分线BE 交x 轴于点E,交AD 于点B,作射线OB,以AB 为边在△AOB 的外侧作正方形ABCA1,延长A1C 交射线OB 于点B1,以A1B1为边在△AOB 的外侧作正方形A1B1C1A2,延长A2C1交射线OB 于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为4•(.【分析】从特殊到一般探究规律后即可解决问题;【解答】解:由题意:正方形ABCA1的边长,正方形A1B1C1A2的边长+1,正方形A2B2C2A3…的边长为(),正方形A3B3C3A4的边长为+1)(1+ )2,由此规律可知:正方形A2017B2017C2017A2018的边长为+1)(1+ )2016.﹣ )÷]× ∴正方形 A 2017B 2017C 2017A 2018 的周长为 4•( )2016=4•()2016•(1+)2017.故答案为)2016•(1+)2017.【点评】本题考查规律型问题、解直角三角形、点的坐标等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、综合题17.(7 分)先化简,再求值)÷,其中 x=3.【分析】先根据分式的混合运算顺序和法则化简原式,再将 x 的值代入求解可得 .【解答】解:(2 =[﹣=×=﹣, 当 x=3 时,原式=﹣.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.18.(7 分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表: 请根据以上图表,解答下列问题:零花钱数额 x/元人数(频数)频率 0≤x <30 6 0.15 30≤x <60 12 0.30 60≤x <90160.4090≤x<120 b 0.10120≤x<150 2 a(1)这次被调查的人数共有40 人,a= 0.05 .(2)计算并补全频数分布直方图;(3)请估计该校1500 名学生中每月零花钱数额低于90 元的人数.【分析】(1)根据0≤x<30 组频数及其所占百分比可得总人数,120≤x<150 组人数除以总人数可得 a 的值.(2)根据以上所求结果即可补全直方图;(3)利用总人数1500 乘以对应的比例即可求解.【解答】解:(1)这次被调查的人数共有6÷0.15=40,则a=2÷40=0.05;故答案为:40;0.05;(2)补全频数直方图如下:(3)估计每月零花钱的数额x<90 范围的人数为.【点评】此题主要考查了频数直方图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.四、解答题(本大题共 2 小题,每小题8,共16 分)19.(8 分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4 张(小猪佩奇)角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到 A 佩奇,弟弟抽到 B 乔治的概率.【分析】(1)直接利用求概率公式计算即可;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)∵姐姐从 4 张卡片中随机抽取一张卡片,∴恰好抽到A 佩奇的概率,故答案为;(2)画树状图为:共有12 种等可能的结果数,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果数为1,所以姐姐抽到A 佩奇,弟弟抽到B 乔治的概率.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率= 所求情况数与总情况数之比.20.(8 分)为迎接“七•一”党的生日,某校准备组织师生共310 人参加一次大型公益活动,租用4 辆大客车和6 辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15 个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40 人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?【分析】(1)根据题意结合每辆大客车的座位数比小客车多15 个以及师生共301 人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的座位数是x 个,每辆大客车的座位数是y 个,,解得:根据题意可得:.答:每辆大客车的座位数是 40 个,每辆小客车的座位数是 25 个;(2)设租用 a 辆小客车才能将所有参加活动的师生装载完成,则25a +40(10﹣a )≥310+40, 解得,符合条件的 a 最大整数为 3. 答:最多租用小客车 3 辆.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.五、解答题(本大题共 2 小题,每小题 8 分,共 16 分) 21.(8 分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点 B 处的求救者后,又发现点 B 正上方点 C 处还有一名求救者,在消防车上点 A 处测得点 B 和点 C 的仰角分别为 45°和 65°,点 A 距地面 2.5 米,点 B 距地面 105.米,为救出点 C 处的求救者,云梯需要继续上升的高度 BC 约为多少米? (结果保留整数,参考数据≈1.4)【分析】如图作AH⊥CN 于H.想办法求出BH、CH 即可解决问题;【解答】解:如图作AH⊥CN 于H.在Rt△ABH 中,∵∠BAH=45°,BH=10.5﹣2.5=8(m),∴AH=BH=8(m),在Rt△AHC 中,∴CH=8×2.1≈17(m),∴BC=CH﹣BH=17﹣8=9(m),【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(8 分)如图,在△ABC 中,∠C=90°,AE 平分∠BAC 交BC 于点E,O 是AB 上一点,经过A,E 两点的⊙O 交AB 于点D,连接DE,作∠DEA 的平分线EF 交⊙ O 于点F,连接AF.(1)求证:BC 是⊙O 的切线.(2)若sin∠EFA= ,求线段AC 的长.【分析】(1)连接OE,根据同圆的半径相等和角平分线可得:OE∥AC,则∠BEO= ∠C=90°,解决问题;(2)过A 作AH⊥EF 于H,根据三角函数先计算,证明△AEH 是等腰直角三角形,则AH=8,证明△AED∽△ACE,可解决问题.【解答】证明:(1)连接OE,∵OE=OA,∴∠OEA=∠OAE,∵AE 平分∠BAC,∴∠OAE=∠CAE,∴∠CAE=∠OEA,∴OE∥AC,∴∠BEO=∠C=90°,∴BC 是⊙O 的切线;(2)过A 作AH⊥EF 于H,Rt△AHF 中,∵AF=5,∴AH=4,∵AD 是⊙O 的直径,∴∠AED=90°,∵EF 平分∠AED,∴∠AEF=45°,∴△AEH 是等腰直角三角形,∴AE=AH=8,∵sin∠EFA=sin∠ADE==,∴AD=10,∵∠DAE=∠EAC,∠DEA=∠ECA=90°,∴△AED∽△ACE,∴,∴,∴AC=6.4.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.六、解答题(本大题共 1 小题,共10 分)23.(10 分)某商场销售一种商品,进价为每个20 元,规定每个商品售价不低于进价,且不高于60 元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:…30 40 50 …每个商品的售价x(元)100 80 60 …每天的销售量y(个)则 解得 ,(1)求 y 与 x 之间的函数表达式;(2)设商场每天获得的总利润为 w (元),求 w 与 x 之间的函数表达式; (3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大, 最大利润是多少?【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式; (3)将所得函数解析式配方成顶点式即可得最值情况. 【解答】解:(1)设 y 与 x 之间的函数解析式为 y=kx +b , ,即 y 与 x 之间的函数表达式是 y=﹣2x +160;(2)由题意可得,w=(x ﹣20)(﹣2x +160)=﹣2x 2+200x ﹣3200, 即 w 与 x 之间的函数表达式是 w=﹣2x 2+200x ﹣3200;(3)∵w=﹣2x 2+200x ﹣3200=﹣2(x ﹣50)2+1800,20≤x ≤60, ∴当 20≤x ≤50 时,w 随 x 的增大而增大; 当 50≤x ≤60 时,w 随 x 的增大而减小; 当 x=50 时,w 取得最大值,此时 w=1800 元即当商品的售价为 50 元时,商场每天获得的总利润最大,最大利润是 1800. 【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.七 、 解 答 题 ( 本 大 题 共 2 小 题 , 共 24 分 ) 24.(12 分)如图 1,以▱ABCD 的较短边 CD 为一边作菱形 CDEF ,使点 F 落在边 AD 上,连接 BE ,交 AF 于点 G .(1)猜想 BG 与 EG 的数量关系,并说明理由; (2)延长 DE 、BA 交于点 H ,其他条件不变: ①如图 2,若∠ADC=60°,求 的值;②如图3,若∠ADC=α(0°<α<90°),直接写的值(用含α的三角函数表示)【分析】(1)证明△BAG≌△EFG 可得结论;(2)①如图2,设AG=a,CD=b,则DF=AB=b,分别表示BH 和DG 的长,代入计算即可;②如图3,连接EC 交DF 于O 根据三角函数定义得,则OF=bcosα,DG=a+2bcosα,同理表示AH 的长,代计算即可.【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD 是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED 是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH 是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC 交DF 于O,∵四边形CFED 是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO 中,∴OF=bcosα,∴DG=a+2bcosα,过H 作HM⊥AD 于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM 中,∴AH=,∴= =cosα.【点评】本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.25.(12 分)在平面直角坐标系中,直线x﹣2 与x 轴交于点B,与y 轴交于点C,二次函数x2+bx+c 的图象经过B,C 两点,且与x 轴的负半轴交于点A,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM⊥BC 于点M,是否存在点D,使得△CDM 中的某个角恰好等于∠ABC 的2 倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.【分析】(1)根据题意得到B、C 两点的坐标,设抛物线的解析式为(x﹣4)(x﹣m),将点 C 的坐标代入求得m 的值即可;(2)过点D 作DF⊥x 轴,交BC 与点F,设x2﹣x﹣2),则x2+2x,然后列出S 与x 的关系式,最后利用配方法求得其最大值即可;(3)根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点,过D 作Y 轴的垂线,垂足为R,交AC 的延线于G,设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x,最后,分为∠DCM=2∠BAC 和∠MDC=2∠BAC 两种情况列方程求解即可.【解答】解:(1)把x=0 代y= x﹣2 得y=﹣2,。
{3套试卷汇总}2020-2021衡水市中考复习检测数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵【答案】D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.2.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)【答案】A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.3.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.【答案】C【解析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.4.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM =2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.5.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x =+B .1101002x x =+C .1101002x x =-D .1101002x x =- 【答案】A【解析】设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可. 解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .6.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. 详解:∵y=2x 2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,当x <-1时,y 随x 的增大而减小,故选项C 错误,当x=-1时,y 取得最小值,此时y=-3,故选项D 正确,故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.7.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差【答案】D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D .【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 8.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC【答案】C 【解析】根据旋转的性质得,∠ABD =∠CBE=60°, ∠E =∠C,则△ABD 为等边三角形,即 AD =AB=BD,得∠ADB=60°因为∠ABD =∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD ,得AD ∥BC.故选C.9.如图,在等边三角形ABC 中,点P 是BC 边上一动点(不与点B 、C 重合),连接AP ,作射线PD ,使∠APD=60°,PD 交AC 于点D ,已知AB=a ,设CD=y ,BP=x ,则y 与x 函数关系的大致图象是( )A .B .C .D .【答案】C【解析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD ,进而即可证出△ABP ∽△PCD ,根据相似三角形的性质即可得出y=-1a x 2+x ,对照四个选项即可得出. 【详解】∵△ABC 为等边三角形,∴∠B=∠C=60°,BC=AB=a ,PC=a-x .∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,∴∠BAP=∠CPD ,∴△ABP ∽△PCD , ∴CD PC BP AB =,即y a x x a-=,∴y=- 1ax2+x. 故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax2+x是解题的关键.10.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.二、填空题(本题包括8个小题)11.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.【答案】55°【解析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.12.如图,点P(3a,a)是反比例函kyx(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.【答案】y=12x 【解析】设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得: 14πr 2=10π 解得:r=210.∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k. 22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 13.已知16x x +=,则221x x+=______ 【答案】34 【解析】∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.14.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E. 若AB=12,BM=5,则DE 的长为_________.【答案】1095【解析】由勾股定理可先求得AM ,利用条件可证得△ABM ∽△EMA ,则可求得AE 的长,进一步可求得DE .【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM =AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.15.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.【答案】a≤54且a≠1.【解析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54,又a-1≠0,∴a≤54且a≠1.故答案为a≤54且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.16.函数y x的取值范围是_________.【答案】x≤1且x≠﹣1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020xx-≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____【答案】2【解析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=22,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=22222222OA OC+=+=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=12222⨯=,故答案为2.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.18.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.【答案】210°【解析】根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三、解答题(本题包括8个小题)19.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.【答案】(1)y=x2﹣2x﹣3;(2)554m-<;(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)【解析】(1)把点A (﹣1,0),C (0,﹣3)代入抛物线表达式求得b ,c ,即可得出抛物线的解析式; (2)作CH ⊥EF 于H ,设N 的坐标为(1,n ),证明Rt △NCH ∽△MNF ,可得m =n 2+3n+1,因为﹣4≤n≤0,即可得出m 的取值范围;(3)设点P (x 1,y 1),Q (x 2,y 2),则点H (﹣x 1,y 1),设直线HQ 表达式为y =ax+t ,用待定系数法和韦达定理可求得a =x 2﹣x 1,t =﹣2,即可得出直线QH 过定点(0,﹣2).【详解】解:(1)∵抛物线y =x 2+bx+c 经过点A 、C ,把点A (﹣1,0),C (0,﹣3)代入,得:013b c c =-+⎧⎨-=⎩, 解得23b c =-⎧⎨=-⎩, ∴抛物线的解析式为y =x 2﹣2x ﹣3;(2)如图,作CH ⊥EF 于H ,∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的顶点坐标E (1,﹣4),设N 的坐标为(1,n ),﹣4≤n≤0∵∠MNC =90°,∴∠CNH+∠MNF =90°,又∵∠CNH+∠NCH =90°,∴∠NCH =∠MNF ,又∵∠NHC =∠MFN =90°,∴Rt △NCH ∽△MNF , ∴CH HN NF FM =,即131n n m+=-- 解得:m =n 2+3n+1=23524n ⎛⎫+- ⎪⎝⎭, ∴当32n =-时,m 最小值为54-; 当n =﹣4时,m 有最大值,m 的最大值=16﹣12+1=1.∴m 的取值范围是554m -<. (3)设点P (x 1,y 1),Q (x 2,y 2),∵过点P 作x 轴平行线交抛物线于点H ,∴H (﹣x 1,y 1),∵y =kx+2,y =x 2,消去y 得,x 2﹣kx ﹣2=0,x 1+x 2=k ,x 1x 2=﹣2,设直线HQ 表达式为y =ax+t ,将点Q (x 2,y 2),H (﹣x 1,y 1)代入,得2211y ax t y ax t =+⎧⎨=-+⎩, ∴y 2﹣y 1=a (x 1+x 2),即k (x 2﹣x 1)=ka ,∴a =x 2﹣x 1,∵22x =( x 2﹣x 1)x 2+t ,∴t =﹣2,∴直线HQ 表达式为y =( x 2﹣x 1)x ﹣2,∴当k 发生改变时,直线QH 过定点,定点坐标为(0,﹣2).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m 与n 的函数关系式是解题的关键.20.京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【答案】(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天). 设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.21.如图,△ABC 中,D 是BC 上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.【答案】3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.试题解析:∵BD 3+AD 3=63+83=303=AB 3,∴△ABD 是直角三角形,∴AD ⊥BC ,在Rt △ACD 中,222217815AC AD -=-=, ∴S △ABC =12BC•AD=12(BD+CD)•AD=12×33×8=3, 因此△ABC 的面积为3.答:△ABC 的面积是3.考点:3.勾股定理的逆定理;3.勾股定理.22.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.【答案】10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用23.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.【答案】(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP ABCD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BPBC BA=.∵AB=10,BC=12,∴101210BP =, ∴BP=253. “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.24.如图,在Rt ⊿ABC 中,90ACB ∠=,CD AB ⊥于D ,,AC 20BC 15== .⑴.求AB 的长;⑵.求CD 的长.【答案】(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB 的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在Rt ⊿ABC 中,90ACB ∠=,20,15AC BC ==.∴2222201525AB AC BC =+=+=,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=,∴20×15=25CD.∴12CD =.25.如图,在△ABC 中,AB=AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE=DF .【答案】答案见解析【解析】由于AB=AC ,那么∠B=∠C ,而DE ⊥AC ,DF ⊥AB 可知∠BFD=∠CED=90°,又D 是BC 中点,可知BD=CD ,利用AAS 可证△BFD ≌△CED ,从而有DE=DF .26.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?【答案】1人【解析】解:设九年级学生有x 人,根据题意,列方程得:19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解.答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x 88+,根据题意可得方程19361936?0.8x x 88⋅=+,解方程即可.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .【答案】B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .10【答案】C 【解析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12,即△PCD 的周长为12,故选:C .【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 3.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒【答案】B 【解析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数.【详解】解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.4.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .24【答案】B 【解析】∵四边形ABCD 是平行四边形,∴DC=AB ,AD=BC ,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD 的周长=2×6=12,故选B .5.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P截得的弦AB的长为42,则a的值是()A.4 B.3+2C.32D.33【答案】B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=12AB=1222,在Rt△PBE中,PB=3,∴223-22(),∴22,∴2.故选B.考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )A .55°B .60°C .65°D .70°【答案】C 【解析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC 绕点C 顺时针旋转90°得到△EDC .∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE ,∴∠ACD=90°-20°=70°,∵点A ,D ,E 在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC 中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C .【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.对于二次函数,下列说法正确的是( ) A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点【答案】B 【解析】二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误;当x=2时,取得最大值,最大值为-3,选项B 正确;顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误,故答案选B.考点:二次函数的性质.8.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm【答案】B 【解析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.9.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A 、B 、C 在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm ,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm【答案】C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=2R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=90π2R⋅⋅,解得r=2R,然后利用勾股定理得到(2R)2=(330)2+(2R)2,再解方程求出R即可得到这块圆形纸片的直径.【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=2R,根据题意得:2πr=90π2R⋅⋅,解得:r=24R,所以(2R)2=(330)2+(24R)2,解得:R=12,所以这块圆形纸片的直径为24cm.故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A .0B .1C .2D .3【答案】D 【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x 图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;故答案选D .考点:反比例系数的几何意义.二、填空题(本题包括8个小题)11.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A ′,B ,则的值为_________.43 【解析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.12.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为【答案】7 2°或144°【解析】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14.如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .如果35DE BC =,CE=16,那么AE 的长为_______【答案】1【解析】根据DE ∥BC ,得到35DE EA BC AC ==,再代入AC=11-AE ,则可求AE 长. 【详解】∵DE ∥BC , ∴DE EA BC AC=. ∵35DE BC =,CE=11, ∴3 165AE AE -=,解得AE=1. 故答案为1.【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.15.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.【答案】2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.16.已知关于x 的方程x 2-3-k =0有两个相等的实数根,则k 的值为__________.【答案】-3【解析】试题解析:根据题意得:△=(32-4×1×(-k )=0,即12+4k=0,解得:k=-3,17.在平面直角坐标系中,点A (2,3)绕原点O 逆时针旋转90°的对应点的坐标为_____.【答案】(﹣3,2)【解析】作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.18.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.【答案】4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x ﹣4).三、解答题(本题包括8个小题)19.已知:如图,∠ABC=∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB=DC .【答案】∵AC 平分BCD BC ∠,平分ABC ∠,∴ACB DBC ∠=∠在ABC 与DCB 中,{ABC DCBACB DBC BC BC∠=∠∠=∠=ABC ∴DCB ≌AB DC ∴=.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC ,根据ASA 推出△ABC ≌△DCB ,根据全等三角形的性质推出即可.解答:证明:∵AC 平分∠BCD ,BC 平分∠ABC ,。
(汇总3份试卷)2021年衡水市中考数学毕业升学考试三模试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列几何体中,俯视图为三角形的是( )A.B.C.D.【答案】C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.2.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-【答案】D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.3.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.【答案】D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.4.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.5.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.6.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是(). A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>1【答案】A【解析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.7.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关【答案】C【解析】试题分析:连接AR,根据勾股定理得出22AD DR得出EF=12AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线8.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.9.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4【答案】C【解析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.10.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A.1 B.3 C.14-D.74【答案】D【解析】先解方程组求出74x y-=,再将,,x ay b=⎧⎨=⎩代入式中,可得解.【详解】解:3, 354,x yx y+=⎧⎨-=⎩①②+①②,得447x y-=,所以74x y-=,因为,,x ay b=⎧⎨=⎩所以74x y a b-=-=.故选D.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.二、填空题(本题包括8个小题)11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.3【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴223BD DE-=3.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.如图,若点A的坐标为(3,则sin1∠=________.【答案】3【解析】根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA=22OB AB+=1.sin∠1=3ABOA=,故答案为3.13.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.【答案】5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x1,x2是方程x2-3x+2=0的两根,∴x1+ x2=3ba-=,x1x2=2ca=,∴x1+x2+x1x2=3+2=5.故答案为:5.14.关于x的一元二次方程24410x ax a+++=有两个相等的实数根,则581a aa--的值等于_____.【答案】3-【解析】分析:先根据根的判别式得到a-1=1a,把原式变形为23357a a a a+++--,然后代入即可得出结果.详解:由题意得:△=2(4)44(1)0a a-⨯+=,∴210a a--=,∴221,1a a a a=+-=,即a(a-1)=1,∴a-1=1a,5562232888()811a a a aa a a aaa--∴==-=--33232(1)8(1)33188357a a a a a a a a a=+-+=+++--=+--(1)3(1)57a a a a=+++--24a a=--143=-=-故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义. 15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】60 17.【解析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC =ADAC,∴x5=12-x12,∴x=6017,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.16.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.【答案】1【解析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC 的长.【详解】∵在Rt △ABC 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,∴∠AMN=∠NMC=∠B ,∠NCM=∠BCM=∠NMC ,∴∠ACB=2∠B ,NM=NC ,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.如图,以AB 为直径的半圆沿弦BC 折叠后,AB 与BC 相交于点D .若13CD BD =,则∠B =________°.【答案】18°【解析】由折叠的性质可得∠ABC=∠CBD ,根据在同圆和等圆中,相等的圆周角所对的弧相等可得=AC CD ,再由13CD BD =和半圆的弧度为180°可得 AC 的度数×5=180°,即可求得AC 的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.【详解】解:由折叠的性质可得∠ABC=∠CBD ,∴=AC CD ,∵13CD BD =, ∴AC 的度数+ CD 的度数+ BD 的度数=180°,即AC 的度数×5=180°,∴AC 的度数为36°,∴∠B=18°.故答案为:18.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系.18.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.【答案】6.【解析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE ⊥x 轴,AD ⊥x 轴,垂足分别为点E 、D ,∴BE∥AD,∴△BOE∽△AOD,∴22BOEAODS OBS OA=,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==,∴13OBOA=,∴23ABOA=,∴23ABCAOCSS=,∴2963ABCS⨯==,故答案为6.三、解答题(本题包括8个小题)19.计算:﹣14﹣2×(﹣3)2+327-÷(﹣13)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D 分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.【答案】(1)﹣10;(2)∠EFC=72°.【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM ,∴设∠EFM=∠EFC=x ,则有∠BFM=12x , ∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°, 解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质. 20.庐阳春风体育运动品商店从厂家购进甲,乙两种T 恤共400件,其每件的售价与进货量m (件)之间的关系及成本如下表所示: T 恤每件的售价/元 每件的成本/元 甲 0.1100m -+50乙()0.21200200m m -+<< 60()600050200400m m +≤≤ (1)当甲种T 恤进货250件时,求两种T 恤全部售完的利润是多少元;若所有的T 恤都能售完,求该商店获得的总利润y (元)与乙种T 恤的进货量x (件)之间的函数关系式;在(2)的条件下,已知两种T 恤进货量都不低于100件,且所进的T 恤全部售完,该商店如何安排进货才能使获得的利润最大?【答案】(1)10750;(2)220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元. 【解析】(1)根据“利润=销售总额-总成本”结合两种T 恤的销售数量代入相关代数式进行求解即可; (2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++ ⎪⎣⎦⎝⎭;故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴==②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤,综上,最大利润为10750元.【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键. 21.已知△ABC 在平面直角坐标系中的位置如图所示.分别写出图中点A 和点C 的坐标;画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B′C′;求点A 旋转到点A′所经过的路线长(结果保留π).【答案】(1)()04A ,、()31C ,(2)见解析(3)32 【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则903232180n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.22.解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解. 【答案】﹣2,﹣1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.>-【详解】解:解不等式(1),得x3解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,223.已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.【答案】(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.24.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?【答案】客房8间,房客63人【解析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则+=-7799x xx=解得8x+=⨯+=7778763答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.25.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤ ),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:E 类学生有 人,补全条形统计图;D 类学生人数占被调查总人数的 %;从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤ 中的概率.【答案】(1)5;(2)36%;(3)310. 【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=该组频数数据总数,进行求解即可; (3)利用列举法求概率即可.试题解析:(1)E 类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D 类:18÷50×100%=36%,故答案为:36%; (3)设这5人为12123A A B B B ,,,,有以下10种情况:12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A B A B A B A B A B B B B B B B 其中,两人都在24t <≤ 的概率是:310P =. 26.用你发现的规律解答下列问题. 111122=-⨯1112323=-⨯ 1113434=-⨯ ┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 【答案】解:(1)56;(2)n n 1+;(3)n=17. 【解析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n 的一元一次方程,从而得出n 的值.【详解】(1)原式=1−12+12−13+13−14+14−15+15−16=1−16=56. 故答案为56; (2)原式=1−12+12−13+13−14+…+1n −1n 1+=1−1n 1+=n n 1+ 故答案为n n 1+; (3)113⨯ +135⨯+157⨯+…+1n n (2-1)(2+1)=12 (1−13+13−15+15−17+…+12n 1-−12n 1+) =12(1−12n 1+) =n 2n 1+ =1735解得:n=17.考点:规律题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.2)A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4【答案】C﹣﹣算,由3<<4可知﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.3.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.5.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【答案】B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.6.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A .①②B .①③④C .①②③⑤D .①②③④⑤【答案】C 【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C7.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 【答案】B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.8.计算:9115()515÷⨯-得( ) A .-95 B .-1125 C .-15 D .1125【答案】B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化. 【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125 故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.9.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A.99°B.109°C.119°D.129°【答案】B【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.10.下列方程中,没有实数根的是( )A.2x2x30-+=--=B.2x2x30C.2x2x10--=-+=D.2x2x10【答案】B【解析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D 、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D 选项错误. 故选:B . 【点睛】本题考查根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 二、填空题(本题包括8个小题)11.某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=151025 9⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654, 8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472, ∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549. 故答案为:143549 【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键. 12.因式分解:x 2y-4y 3=________. 【答案】y (x++2y )(x-2y )【解析】首先提公因式y ,再利用平方差进行分解即可. 【详解】原式()224(2)(2)y x yy x y x y =-=-+.故答案是:y (x+2y )(x-2y ). 【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 13.分解因式:229ax ay -= ____________. 【答案】【解析】试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:. 考点:因式分解14.如图,正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=32x-3【解析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=6x=3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=32,∴y=32x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.15.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.5【解析】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2, 在Rt △ACO 中,AO=22224225AC OC +=+=,∴sin ∠OAB=25525OC OA ==. 故答案为55. 16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 【答案】13. 【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比. 17.Rt △ABC 中,AD 为斜边BC 上的高,若, 则ABBC= . 【答案】12【解析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题. 【详解】如图,∵∠CAB=90°,且AD ⊥BC ,∴∠ADB=90°,∴∠CAB=∠ADB ,且∠B=∠B , ∴△CAB ∽△ADB ,∴(AB :BC )1=△ADB :△CAB ,又∵S △ABC =4S △ABD ,则S △ABD :S △ABC =1:4, ∴AB :BC=1:1.18.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.【答案】5k <【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可. 详解:由图象可知:二次函数y=ax 2+bx+c 的顶点坐标为(1,1), ∴244ac b a-=1,即b 2-4ac=-20a ,∵ax 2+bx+c=k 有两个不相等的实数根,∴方程ax 2+bx+c-k=0的判别式△>0,即b 2-4a (c-k )=b 2-4ac+4ak=-20a+4ak=-4a (1-k )>0 ∵抛物线开口向下 ∴a <0 ∴1-k >0 ∴k <1. 故答案为k <1.点睛:本题主要考查了抛物线与x 轴的交点问题,以及数形结合法;二次函数中当b 2-4ac >0时,二次函数y=ax 2+bx+c 的图象与x 轴有两个交点. 三、解答题(本题包括8个小题)19.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:。
2021年河北省衡水市中考数学模拟试卷(七)解析版

2021年河北省衡水市中考数学模拟试卷(七)一、选择题〔本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数轴上,若点N表示原点,则表示负数的点是()A.M点B.P点C.A点D.Q点2.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件3.在解二元一次方程组时,若①﹣②可直接消去未知数y,则⊕和⊗()A.互为倒数B.大小相等C.都等于0D.互为相反数4.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm5.如图,在平面直角坐标系中,直线OA过点(2,1),则cosα的值是()A.B.C.D.26.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是中心对称图形的是()A.B.C.D.7.要想了解九年级1000名考生的数学成绩,从中抽取了100名考生的数学成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.每位考生的数学成绩是个体C.1000名考生是总体D.100名考生是样本的容量8.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了米,用科学记数法表示为()A.2×10﹣5B.2×10﹣6C.5×10﹣5D.5×10﹣69.下列等式变形正确的是()A.若2x=1,则x=2B.若4x﹣1=2﹣3x,则4x+3x=2﹣1C.若2x=3,则x=D.若,则3(3x+1)﹣2(1﹣2x)=110.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数11.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则该正六边形的边长是()A.6B.C.D.1212.在半径为1的⊙O中,弦AB、AC的长分别为、,则∠BAC所对的弧长为()A.B.C.或D.或13.在平面直角坐标系中,已知点A(4,2),B(4,4),抛物线L:y=﹣(x﹣t)2+t(t ≥0),当L与线段AB有公共点时,t的取值范围是()A.3≤t≤4B.5≤t≤6C.3≤t≤4,t=6D.3≤t≤4或5≤t≤614.对于两个不相等的实数a、b,我们规定符号min{a,b}表示a、b中的较小的值,如min{2,4}=2,按照这个规定,方程min{,}=﹣2的解为()A.B.2C.或2D.1或﹣215.在分割矩形的课外实践活动中,甲、乙两人进行如下操作:甲:将矩形按图1所示分割成四个三角形,然后将四个三角形分别沿矩形的边向外翻折,得到一个面积是原来矩形面积2倍的菱形;乙:将矩形按图2所示分割成四个三角形,然后将四个三角形分别沿矩形的边向外翻折,得到一个面积是原来矩形面积2倍的矩形.对于这两人的操作,以下判断正确的是()A.甲、乙都正确B.甲、乙都不正确C.甲不正确、乙正确D.甲正确、乙不正确16.已知反比例函数y1=的图象与一次函数y2=﹣x+n的图象如图所示,点A(a,b),B(c,d)是两个图象的交点,下列命题:①过点A作AM⊥x轴,M为垂足,连接OA,若△AMO的面积为3,则k=6;②若x>c,则y1>y2;③若a=d,则b=c;④直线AB 分别与x轴、y轴交于点C,D,则BC=AD.其中真命题的个数是()A.1B.2C.3D.4二、填空题(本大题共3个小题,共12分,17-18小题各3分;19小题有3个空,每空2分把答案写在题中横线上)17.若(2x+4y)2=4x2﹣2(m﹣1)xy+16y2,则m的值为.18.如图,⊙O内接△ABC中,CD⊥AB,cos∠ACD=,BC=2,则⊙O半径为.19.(6分)如图,矩形ABCO在平面直角坐标系xOy中,点A(﹣5,0),点C(0,6),已知双曲线L1:y=(x<0)经过点(﹣1,6),双曲线L2:y=(x<0).(1)k1的值为;(2)把矩形ABCO内部(不含边界)横、纵坐标均为整数的点称为“优点”.①当k2=﹣12时,L2和坐标轴之间(不含边界)有个“优点”;②当﹣12≤k2≤﹣2,则L1和L2之间(不含边界)最多有个“优点”.三、解答题(本大題共7个小题,共66分。
〖汇总3套试卷〗衡水市知名学校2021年中考数学第一次阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断 【答案】B【解析】比较OP 与半径的大小即可判断.【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B .【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<. 2.要使分式有意义,则x 的取值应满足( ) A .x=﹣2B .x≠2C .x >﹣2D .x≠﹣2【答案】D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x 的取值应满足:x≠﹣1.故选D . 考点:分式有意义的条件.3.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元 【答案】A【解析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 4.二次函数y=x 2+bx –1的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2–2x –1–t=0(t 为实数)在–1<x<4的范围内有实数解,则t 的取值范围是A .t≥–2B .–2≤t<7C .–2≤t<2D .2<t<7【答案】B 【解析】利用对称性方程求出b 得到抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x <4时对应的函数值的范围为﹣2≤y <7,由于关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,然后利用函数图象可得到t 的范围.【详解】抛物线的对称轴为直线x=﹣2b =1,解得b=﹣2, ∴抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),当x=﹣1时,y=x 2﹣2x ﹣1=2;当x=4时,y=x 2﹣2x ﹣1=7,当﹣1<x <4时,﹣2≤y <7,而关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,∴﹣2≤t <7,故选B .【点睛】本题考查了二次函数的性质、抛物线与x 轴的交点、二次函数与一元二次方程,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解题的关键. 5.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等【答案】C【解析】图中,线段GH 和EF 将大平行四边形ABCD 分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠1【答案】C【解析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A.1 B.-6 C.2或-6 D.不同于以上答案【答案】C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.8.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c <0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤【答案】C【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a >0,c <0,∴ac <0,故①错误;②由于对称轴可知:b 2a -<1, ∴2a+b >0,故②正确;③由于抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,故③正确;④由图象可知:x =1时,y =a+b+c <0,故④正确;⑤当x >b 2a-时,y 随着x 的增大而增大,故⑤错误; 故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.9.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12【答案】A【解析】先根据勾股定理得到2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴2,∴S 扇形ABD =2302=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.10.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A 【解析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=(2+3)a ,∴tan ∠DAC=2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.二、填空题(本题包括8个小题)11.如图,在直角坐标系中,点A ,B 分别在x 轴,y 轴上,点A 的坐标为(﹣1,0),∠ABO=30°,线段PQ 的端点P 从点O 出发,沿△OBA 的边按O→B→A→O 运动一周,同时另一端点Q 随之在x 轴的非负半轴上运动,如果PQ=3,那么当点P 运动一周时,点Q 运动的总路程为__________.【答案】4【解析】首先根据题意正确画出从O→B→A 运动一周的图形,分四种情况进行计算:①点P 从O→B 时,路程是线段PQ 的长;②当点P 从B→C 时,点Q 从O 运动到Q ,计算OQ 的长就是运动的路程;③点P 从C→A 时,点Q 由Q 向左运动,路程为QQ′;④点P 从A→O 时,点Q 运动的路程就是点P 运动的路程;最后相加即可.【详解】在Rt △AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO=22-=213①当点P从O→B时,如图1、图2所示,点Q运动的路程为3,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵3∴AQ=2∴OQ=2﹣1=1,则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=23,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q33+1=4故答案为4.考点:解直角三角形12.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.【答案】5750【解析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩, ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格13.如图,点A (m ,2),B (5,n )在函数k y x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .【答案】2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A (2,2),∴k=2×2=2.故答案为2. 考点:2.反比例函数系数k 的几何意义;2.平移的性质;3.综合题.14.若a 是方程2310x x -+=的解,计算:22331a a a a -++=______. 【答案】1【解析】根据一元二次方程的解的定义得a 2﹣3a+1=1,即a 2﹣3a=﹣1,再代入22331a a a a -++,然后利用整体思想进行计算即可.【详解】∵a 是方程x 2﹣3x+1=1的一根,∴a 2﹣3a+1=1,即a 2﹣3a=﹣1,a 2+1=3a∴2233=11=01-+-++a a a a 故答案为1.【点睛】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm ,则截面圆的半径为 cm .【答案】1【解析】过点O 作OM ⊥EF 于点M ,反向延长OM 交BC 于点N ,连接OF ,设OF=r ,则OM=80-r ,MF=40,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】过点O 作OM ⊥EF 于点M ,反向延长OM 交BC 于点N ,连接OF ,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.16.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键17.不等式组21736xx->⎧⎨>⎩的解集是_____.【答案】x>1【解析】首先分别求出两个不等式的解集,再根据大大取大确定不等式组的解集.【详解】解:21736xx->⎧⎨>⎩①②,由①得:x>1,由②得:x>2,不等式组的解集为:x>1.故答案为:x>1.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式的方法.18.分解因式:32a 4ab -= .【答案】()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-.三、解答题(本题包括8个小题)19.已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.【答案】见解析【解析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE .【详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ).∴BC=DE .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .20.数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值. 【答案】(1)3;(2)1312n +-;(3)1218,95N N == 【解析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.21.先化简,再求值:()()()2111x x xx +-+-,其中2x =-. 【答案】3x -1, -9.【解析】先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.22.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 2217 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19 对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一 二 三 四 五 六 七 销售额1619x < 1922x < 2225x < 2528x < 2831x < 3134x < 频数 7 9 3 2 b 2 数据分析表平均数众数 中位数 20.3 18请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.【答案】 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在2225x <范围内的数据有3个,在2831x <范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.23.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.【答案】(1)答案见解析;(2)45°.【解析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【详解】(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC 12=∠ABC =75°,DC ∥AB ,∠A =∠C , ∴∠ABC =150°,∠ABC+∠C =180°,∴∠C =∠A =30°.∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.24.如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .【答案】这栋楼的高度BC 是4003米. 【解析】试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长.试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100,∴在Rt ABD 中,1003tan BD AD BAD ⋅∠= 在Rt ACD 中,tan 1003CD AD CAD ⋅∠==.∴4003BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.25.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【答案】(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:血型 A B AB O 人数12 10 5 23 故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A 型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.26.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .求证:△ADE ≌△CBF ;若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.【答案】(1)证明见解析(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS ,ASA ,SSS )来证明全等;(2)先由菱形的性质得出AE=BE=DE ,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD 是矩形.【详解】解:()1证明:∵四边形ABCD 是平行四边形,∴4C ∠=∠,AD CB =,AB CD =.∵点E 、F 分别是AB 、CD 的中点, ∴12AE AB =,12CF CD =. ∴AE CF =.在AED 和CBF 中,AD CB DAE C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF SAS ≅.()2解:当四边形BEDF 是菱形时,四边形AGBD 是矩形.证明:∵四边形ABCD 是平行四边形,∴//AD BC .∵//AG BD ,∴四边形AGBD 是平行四边形.∵四边形BEDF 是菱形,∴DE BE =.∵AE BE =,∴AE BE DE ==.∴12∠=∠,34∠=∠.∵1234180∠+∠+∠+∠=,∴2223180∠+∠=.∴2390∠+∠=.即90ADB ∠=.∴四边形AGBD 是矩形.【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS ,SAS ,AAS ,ASA .中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【答案】D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.2.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π【答案】A【解析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S 扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=2222106CG CD-=-=8,又∵EF=8,∴DG=EF,∴DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.3.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.4.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.5.下列各数中是有理数的是()A.πB.0 C2D35【答案】B【解析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A 、π是无限不循环小数,属于无理数,故本选项错误;B 、0是有理数,故本选项正确;C 、2是无理数,故本选项错误;D 、35是无理数,故本选项错误, 故选B .【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键. 6.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用.7.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°【答案】B【解析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数. 【详解】解:∵要使木条a 与b 平行, ∴∠1=∠2,∴当∠1需变为50 º,∴木条a 至少旋转:70º-50º=20º. 故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
<合集试卷3套>2021届衡水市知名学校中考数学联合模拟试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10 %【答案】C【解析】观察直方图,根据直方图中提供的数据逐项进行分析即可得. 【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A 选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B 选项错误;C. 全班共有12+20+8+4+6=50名学生,故C 选项正确;D. 最喜欢田径的人数占总人数的4100%50⨯=8 %,故D 选项错误, 故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键. 2.如图,已知正五边形 ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒【答案】C【解析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB =∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒ 故选:C . 【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.3.如图,甲圆柱型容器的底面积为30cm 2,高为8cm ,乙圆柱型容器底面积为xcm 2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y (cm )与x (cm 2)之间的大致图象是( )A .B .C .D .【答案】C【解析】根据题意可以写出y 关于x 的函数关系式,然后令x=40求出相应的y 值,即可解答本题. 【详解】解:由题意可得, y=308x ⨯=240x, 当x=40时,y=6, 故选C . 【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键. 4.下列各运算中,计算正确的是( ) A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得. 【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.5.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A【解析】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.6.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题7.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【答案】A【解析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.8.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合; Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ, 故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x ) 【答案】D【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.10.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 二、填空题(本题包括8个小题)11.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.【答案】258或5或1. 【解析】根据以点A ,D ,E 为顶点的三角形是等腰三角形分类讨论即可.【详解】解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1, (3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位: 则AN=3,AC=223(m-4)+,AD=m , 得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.12.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.【答案】x<-2或x>1【解析】试题分析:根据函数图象可得:当12y y 时,x <-2或x >1.考点:函数图象的性质13.如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则正六边形的边心距是__________cm .3【解析】连接OA ,作OM ⊥AB 于点M , ∵正六边形ABCDEF 的外接圆半径为2cm ∴正六边形的半径为2 cm , 即OA =2cm 在正六边形ABCDEF 中,∠AOM=30°, ∴正六边形的边心距是OM= cos30°323=故答案为3.14.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.【答案】(6053,2).【解析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.15.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n【答案】3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.16.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).【答案】②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.17.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.【答案】4 5 .【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.18.已知代数式2x﹣y的值是12,则代数式﹣6x+3y﹣1的值是_____.【答案】5 2 -【解析】由题意可知:2x-y=12,然后等式两边同时乘以-3得到-6x+3y=-32,然后代入计算即可.【详解】∵2x-y=12,∴-6x+3y=-32.∴原式=-32-1=-52.故答案为-52.【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-32是解题的关键.三、解答题(本题包括8个小题)19.如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.【答案】(1) AB的解析式是y=-13x+1.点B(3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-13x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,∴S△PAB=S△APD+S△BPD=12n-13+n-23=32n-1;(3)当S△ABP=2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB 和△PEB 中,{CP EBCPB EBP BP BP=∠=∠=∴△PCB ≌△PEB (SAS ),∴PC=CB=PE=EB=2,∴C (3,2).∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2). 考点:一次函数综合题.20.如图,AD 是等腰△ABC 底边BC 上的高,点O 是AC 中点,延长DO 到E ,使AE ∥BC ,连接AE .求证:四边形ADCE 是矩形;①若AB =17,BC =16,则四边形ADCE的面积= .②若AB =10,则BC = 时,四边形ADCE 是正方形.【答案】 (1)见解析;(2)①1; ②102.【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC ,根据勾股定理求出AD ,根据矩形的面积公式求出即可;②要使ADCE 是正方形,只需要AC ⊥DE ,即∠DOC=90°,只需要OD 2+OC 2=DC 2,即可得到BC 的长.试题解析:(1)证明:∵AE ∥BC ,∴∠AEO=∠CDO .又∵∠AOE=∠COD ,OA=OC ,∴△AOE ≌△COD ,∴OE=OD ,而OA=OC ,∴四边形ADCE 是平行四边形.∵AD 是BC 边上的高,∴∠ADC=90°.∴□ADCE 是矩形. (2)①解:∵AD 是等腰△ABC 底边BC 上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD=22AC CD -=22178-=12,∴四边形ADCE 的面积是AD×DC=12×8=1. ②当BC=102时,DC=DB=52.∵ADCE 是矩形,∴OD=OC=2.∵OD 2+OC 2=DC 2,∴∠DOC=90°,∴AC ⊥DE ,∴ADCE 是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.21.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.【答案】(1)证明参见解析;(2)半径长为154,AE =6. 【解析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.22.如图,某反比例函数图象的一支经过点A (2,3)和点B (点B 在点A 的右侧),作BC ⊥y 轴,垂足为点C ,连结AB ,AC .求该反比例函数的解析式;若△ABC 的面积为6,求直线AB 的表达式.【答案】(1)y 6x =;(2)y 12=-x+1. 【解析】(1)把A 的坐标代入反比例函数的解析式即可求得;(2)作AD ⊥BC 于D ,则D(2,b),即可利用a 表示出AD 的长,然后利用三角形的面积公式即可得到一个关于b 的方程,求得b 的值,进而求得a 的值,根据待定系数法,可得答案.【详解】(1)由题意得:k =xy =2×3=6,∴反比例函数的解析式为y 6x=; (2)设B 点坐标为(a ,b),如图,作AD ⊥BC 于D ,则D(2,b),∵反比例函数y 6x =的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6, 解得a =6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124kb ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.23.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.【答案】 (1)见解析;(2)13. 【解析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.24.如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求AD DB 的值.【答案】(1)10;(2)35AD BD =. 【解析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A 作AE ⊥BC ,在Rt △ABE 中,tan ∠ABC=34AE BE =,AB=5, ∴AE=3,BE=4,∴CE=BC ﹣BE=5﹣4=1,在Rt △AEC 中,根据勾股定理得:AC=2231+=10;(2)∵DF 垂直平分BC ,∴BD=CD ,BF=CF=52, ∵tan ∠DBF=34DF BF =, ∴DF=158, 在Rt △BFD 中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=258, ∴AD=5﹣258=158, 则35AD BD =.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.25.已知关于 x 的一元二次方程 x 2﹣2(k ﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.【答案】方程的根120=2x x =-或【解析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根,∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0,解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x1=0,x1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.26.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确; ∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C .考点:反比例函数与一次函数的交点问题.2.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.3.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°【答案】C【解析】试题解析:∵sin ∠CAB=32262BC AC ==∴∠CAB=45°. ∵333B C sin C AB AC '''∠===', ∴∠C′AB′=60°. ∴∠CAC′=60°-45°=15°, 鱼竿转过的角度是15°. 故选C .考点:解直角三角形的应用. 4.2-的相反数是 A .2- B .2C .12D .12-【答案】B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( ) A .0.129×10﹣2 B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C . 考点:科学记数法—表示较小的数.6.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .10【答案】C【解析】根据折叠易得BD ,AB 长,利用相似可得BF 长,也就求得了CF 的长度,△CEF 的面积=12CF•CE . 【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2, 因为BC ∥DE , 所以BF :DE=AB :AD , 所以BF=2,CF=BC-BF=4, 所以△CEF 的面积=12CF•CE=8; 故选:C . 点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.7.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD 的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .【答案】C【解析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出. 【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8, ∴矩形ABCD 的面积为4×8=32, 故选:C. 【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP 面积变化情况是解题的关键,属于中考常考题型.8.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10 B .10C .﹣6D .2【答案】D【解析】根据“一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.9.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【答案】B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义10.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样【答案】B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.二、填空题(本题包括8个小题)11.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1), 故答案为n(n-m)(m+1).12..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.【答案】2【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为 r , ∵AC=6,∠ACB=120°, ∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在 Rt △AOC 中,OA=2,AC=6,根据勾股定理得,22AC OA -2,故答案为2. 【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA 的长是解本题的关键. 13.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____. 【答案】1【解析】根据题意得x 1+x 2=2,x 1x 2=﹣1, 所以x 1+x 2﹣x 1x 2=2﹣(﹣1)=1. 故答案为1.14.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:。
〖汇总3套试卷〗衡水市达标名校2021年中考复习检测数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4【答案】C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0), ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4, 故选C . 【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.2.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .60050x -=450xB .60050x +=450xC .600x =45050x + D .600x=45050x - 【答案】B【解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x=+. 故选B . 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°【答案】A【解析】试题分析:∵AB ∥CD ,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE 的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A . 考点:平行线的性质.4.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.5.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=- C .9232x x -+= D .9232x x +-=【答案】A【解析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x-2)=2x+1.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.6.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF 的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【答案】A【解析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮 【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时, ∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时, ∴小亮走的路程为:1×12=12km , ∴妈妈在距家12km 出追上小亮,故正确;D 、由图象可知,当t=9时,妈妈追上小亮,故错误; 故选D . 【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键. 8.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( ) A .13∠=∠ B .11803∠=-∠ C .1903∠=+∠ D .以上都不对【答案】C【解析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算. 【详解】∵∠1+∠2=180° ∴∠1=180°-∠2 又∵∠2+∠1=90° ∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1. 故选C . 【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度. 9.如图,已知O 的周长等于6cm π ,则它的内接正六边形ABCDEF 的面积是( )A.934B.2734C.2732D.273【答案】C【解析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=332cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C. 【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.10.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.19【答案】D【解析】试题分析:列表如下黑白1 白2黑(黑,黑)(白1,黑)(白2,黑)白1 (黑,白1)(白1,白1)(白2,白1)白2 (黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.二、填空题(本题包括8个小题)11.已知关于x的方程x2-23x-k=0有两个相等的实数根,则k的值为__________.【答案】-3【解析】试题解析:根据题意得:△=(23)2-4×1×(-k)=0,即12+4k=0,解得:k=-3,12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.【答案】1或32.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴2243+,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2=,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE的长为32或1.故答案为:32或1.13.若a2+3=2b,则a3﹣2ab+3a=_____.【答案】1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.14.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.15.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.【答案】28m.【解析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:22m , ∴扇形的弧长为:2902180π⨯ =24πm , ∴圆锥的底面半径为:24π÷2π=2m .【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.16.与直线2y x =平行的直线可以是__________(写出一个即可). 【答案】y=-2x+5(答案不唯一)【解析】根据两条直线平行的条件:k 相等,b 不相等解答即可. 【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一). 故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠) 【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.17.如图,ABC 与ADB △中,90ABC ADB ︒∠=∠=,C ABD ∠=∠,5AC =,4AB =,AD 的长为________.【答案】165【解析】先证明△ABC ∽△ADB ,然后根据相似三角形的判定与性质列式求解即可. 【详解】∵90ABC ADB ︒∠=∠=,C ABD ∠=∠, ∴△ABC ∽△ADB , ∴AB ADAC AB=, ∵5AC =,4AB =,∴454AD , ∴AD=165.故答案为:165.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.18.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.【答案】(2,0)【解析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE ≌△PAF ,根据PE=AF=3,列式可得结论.【详解】连接PB 、PA ,过B 作BE ⊥x 轴于E ,过A 作AF ⊥x 轴于F ,∵A (m ,﹣3)和点B (﹣1,n ), ∴OE=1,AF=3, ∵∠ACB=45°, ∴∠APB=90°, ∴∠BPE+∠APF=90°, ∵∠BPE+∠EBP=90°, ∴∠APF=∠EBP ,∵∠BEP=∠AFP=90°,PA=PB , ∴△BPE ≌△PAF , ∴PE=AF=3, 设P (a ,0), ∴a+1=3, a=2, ∴P (2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.三、解答题(本题包括8个小题)19.全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?【答案】(1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个);故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36;(4)根据题意得: 3000×903020200++=2100(个). 答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值. 【答案】1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.21.已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__【答案】10【解析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为10 .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.22.计算:﹣14﹣2×(﹣3)2+327÷(﹣13)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.【答案】(1)﹣10;(2)∠EFC=72°.【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=12 x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°,解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质. 23.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【答案】(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.【答案】(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴,∵AB=4,AE=1,∴,∴BF=2.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.25.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316【解析】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=1 2 .(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=3 16.考点:列表法与树状图法;概率公式.26.先化简,再求值:(m+2﹣52m-)•243mm--,其中m=﹣12.【答案】-2(m+3),-1.【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243mm--,=() 22245•23mmm m-----,=-()22 (3)(3)•23mm mm m-+---,=-2(m+3).把m=-12代入,得,原式=-2×(-12+3)=-1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体【答案】D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.2.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差【答案】A【解析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.3.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【答案】A【解析】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;4.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,4 【答案】B 【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.5.已知圆内接正三角形的面积为33,则边心距是( )A .2B .1C .3D .32【答案】B【解析】根据题意画出图形,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,由三角形重心的性质得AD=3x , 利用锐角三角函数表示出BD 的长,由垂径定理表示出BC 的长,然后根据面积法解答即可.【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,则AD=3x ,∵tan ∠BAD=BD AD, ∴BD= tan30°·3,∴3,∵1332BC AD ⋅=, ∴1233, ∴x =1所以该圆的内接正三边形的边心距为1,【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.6.下列方程中,没有实数根的是( )A .2x 2x 30--=B .2x 2x 30-+=C .2x 2x 10-+=D .2x 2x 10--= 【答案】B【解析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A 、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A 选项错误; B 、△=(-2)2-4×3=-8<0,方程没有实数根,所以B 选项正确;C 、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C 选项错误;D 、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D 选项错误.故选:B .【点睛】本题考查根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( ) A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣3 【答案】A【解析】分析:详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x 在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.8.一、单选题点P (2,﹣1)关于原点对称的点P′的坐标是( )A .(﹣2,1)B .(﹣2,﹣1)C .(﹣1,2)D .(1,﹣2) 【答案】A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P (2,-1)关于原点对称的点的坐标是(-2,1).故选A .【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【答案】B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.10.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF 的周长是()A.5 B.7 C.9 D.11【答案】B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为_____.【答案】1【解析】根据题意和旋转的性质,可以得到点C 的坐标,把点C 坐标代入反比例函数y=kx中,即可求出k 的值.【详解】∵OB 在x 轴上,∠ABO=90°,点A 的坐标为(2,4),∴OB=2,AB=4 ∵将△AOB 绕点A 逆时针旋转90°,∴AD=4,CD=2,且AD//x 轴 ∴点C 的坐标为(6,2),∵点O 的对应点C 恰好落在反比例函数y=kx的图象上, ∴k=2612⨯=, 故答案为1. 【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.12.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 【答案】x 2+7x-4【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++- 2253221,x x x x =-+-++- 27 4.x x =+-他所捂的多项式为27 4.x x +- 故答案为27 4.x x +- 【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算; 13.如图,Rt △ABC 中,∠C=90° , AB=10,3cos 5B =,则AC 的长为_______ .【答案】8【解析】在Rt △ABC 中,cosB=35BC AB =,AB=10,可求得BC ,再利用勾股定理即可求AC 的长. 【详解】∵Rt △ABC 中,∠C=90°,AB=10 ∴cosB=35BC AB =,得BC=6 由勾股定理得BC=2222106==8AB BC --故答案为8. 【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理. 14.比较大小:4 17(填入“>”或“<”号)【答案】>【解析】试题解析:∵16<17∴4<17.考点:实数的大小比较. 【详解】请在此输入详解!15.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为_________________.【答案】1【解析】先求出直线y=13x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD ,得到C 点坐标. 【详解】解:令x=0,得y=13x+2=0+2=2,∴B (0,2), ∴OB=2, 令y=0,得0=13x+2,解得,x=-6, ∴A (-6,0), ∴OA=OD=6, ∵OB ∥CD , ∴CD=2OB=4,。
(汇总3份试卷)2021年衡水市达标名校中考数学练兵模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④【答案】B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a ,故①正确,因为b 点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a ,所以ab<0,故③错误,由①知a-b>a+b ,所以④正确.故选B.2.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .【答案】D【解析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.3.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C 【解析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m【答案】D 【解析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴, 即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×108【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.6.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CD ACB .BC AB C .BD BC D .AD AC【答案】D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC ==. 故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.7.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:2【答案】B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B8.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×1010【答案】C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于56亿有10位,所以可以确定n =10﹣1=1.【详解】56亿=56×108=5.6×101,故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.9.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A .∠α=60°,∠α的补角∠β=120°,∠β>∠αB .∠α=90°,∠α的补角∠β=90°,∠β=∠αC .∠α=100°,∠α的补角∠β=80°,∠β<∠αD .两个角互为邻补角【答案】C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A 、∠α的补角∠β>∠α,符合假命题的结论,故A 错误;B 、∠α的补角∠β=∠α,符合假命题的结论,故B 错误;C 、∠α的补角∠β<∠α,与假命题结论相反,故C 正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.10.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B. C.D.【答案】B【解析】试题解析:选项,,A C D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.二、填空题(本题包括8个小题)11.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键12.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.3【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴223BD DE-=3.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.已知x+y=8,xy=2,则x2y+xy2=_____.【答案】1【解析】将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.【详解】∵x+y=8,xy=2,∴x2y+xy2=xy(x+y)=2×8=1.故答案为:1.【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.15.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×1【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.【答案】1【解析】根据弧长公式l=,可得r=,再将数据代入计算即可.【详解】解:∵l=,∴r===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).17.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【答案】3 4【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18.如图AB是O直径,C、D、E为圆周上的点,则C D∠+∠=______.【答案】90°【解析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故答案为:90°.【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题(本题包括8个小题)19.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.【答案】53米.【解析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为:53米.【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.20.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=22,CD=1,求FE的长.【答案】(1)见解析;(2)EF=5 3 .【解析】(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.【详解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC =45°,∵将△ADC 绕点A 顺时针旋转90°,得到△AFB ,∴∠BAF =∠DAC ,AF =AD ,CD =BF ,∠ABF =∠ACD =45°,∴∠BAF+∠BAE =45°=∠FAE ,∴∠FAE =∠DAE ,AD =AF ,AE =AE ,∴△AEF ≌△AED (SAS ),∴DE =EF(2)∵AB =AC =22,∠BAC =90°,∴BC =4,∵CD =1,∴BF =1,BD =3,即BE+DE =3,∵∠ABF =∠ABC =45°,∴∠EBF =90°,∴BF 2+BE 2=EF 2,∴1+(3﹣EF )2=EF 2,∴EF =53【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.21.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).【答案】5.6千米【解析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.22.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.求AB的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【答案】(1)24.2米(2) 超速,理由见解析【解析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒=213?3==,在Rt△BDC中,CDBD73tan603===︒,∴AB=AD-BD=213?73=14314 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.23.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.【答案】48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1 A1 A2 A2 A1 √√A1 √√A2 √√A2 √√∴由上表可得:考点:统计图、概率的计算.24.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC 关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.【答案】(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.25.如图所示,一次函数y=kx+b与反比例函数y=mx的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【答案】(1)反比例函数解析式为y=8x,一次函数解析式为y=x+2;(2)△ACB的面积为1.【解析】(1)将点A坐标代入y=mx可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【详解】解:(1)将点A(2,4)代入y=mx,得:m=8,则反比例函数解析式为y=8x,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:2442k bk b+=⎧⎨-+=-⎩,解得:12kb=⎧⎨=⎩,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=12×2×1=1.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.26.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.【答案】(1)证明见解析;(2)阴影部分的面积为8833π-.【解析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O 的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴22228443-=-=DO OC∴S △OCD =43422⋅⨯=CD OC =83, ∵∠D=30°,∠OCD=90°,∴∠DOC=60°, ∴S 扇形OBC =16×π×OC 2=83π, ∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=83﹣83π, ∴阴影部分的面积为83﹣83π.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A 213B 313C .23D 13 【答案】B【解析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE +∴cos13BF EBF BE ∠===. 故选B .【点睛】 本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 2.cos30°=( )A .12B .2C .2D 【答案】C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.3.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .45【答案】B 【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B 法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba 故选B 4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B 【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .5.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-【答案】A【解析】由题意(),3A m m -,因为O 与反比例函数k y x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】函数3y x =-与k y x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m - O 与反比例函数k y x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称, ()3,B m m ∴-,31m m ∴=-,12m ∴=- ∴点13,22A ⎛⎫- ⎪⎝⎭133224k ∴=-⨯=- 故选:A .【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称.6.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )A .30°B .50°C .40°D .70° 【答案】A【解析】利用三角形内角和求∠B ,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.7.若分式11x x -+的值为零,则x 的值是( ) A .1B .1-C .1±D .2 【答案】A【解析】试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A .8.下列大学的校徽图案是轴对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 9.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .125【答案】B【解析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°,∴2222246()5BC BF -=-=185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.10.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°【答案】D 【解析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.二、填空题(本题包括8个小题)11.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.【答案】15°【解析】分析:根据等腰三角形的性质得出∠ABC 的度数,根据中垂线的性质得出∠ABD 的度数,最后求出∠DBC 的度数.详解:∵AB=AC ,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°,∵MN 为AB 的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.412.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.【答案】160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.【答案】a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.14.如图,a∥b,∠1=40°,∠2=80°,则∠3=度.【答案】120【解析】如图,∵a ∥b ,∠2=80°,∴∠4=∠2=80°(两直线平行,同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.15.如果某数的一个平方根是﹣5,那么这个数是_____.【答案】25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.分解因式:4m 2﹣16n 2=_____.【答案】4(m+2n )(m ﹣2n ).【解析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.17.如图,已知△ABC 和△ADE 均为等边三角形,点OAC 的中点,点D 在A 射线BO 上,连接OE ,EC ,若AB =4,则OE 的最小值为_____.【答案】1【解析】根据等边三角形的性质可得OC =12AC ,∠ABD =30°,根据“SAS”可证△ABD ≌△ACE ,可得∠ACE =30°=∠ABD ,当OE ⊥EC 时,OE 的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC 的等边三角形,点O 是AC 的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.18.计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4,故答案为4.三、解答题(本题包括8个小题)19.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.【答案】(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.20.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数kyx的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.【答案】(1)k=10,b=3;(2)15 2.【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3 ∴当y=0时,x=-3,∴OB=3 ∴S=12×3×5=7.5考点:一次函数与反比例函数的综合问题.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.【答案】见解析【解析】(1)如图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】B
【解析】利用待定系数法求出m,再结合函数的性质即可解决问题.
【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
故选C.
2.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()
A.5B.6C.7D.9
【答案】B
【解析】直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】∵一组数据1,7,x,9,5的平均数是2x,
∴ ,
解得: ,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
【详解】如图,连接AC、CF,
∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
∴AC= ,CF=3 ,
∠ACD=∠GCF=45°,
∴∠ACF=90°,
由勾股定理得,AF= ,
∵CH⊥AF,
∴ ,
即 ,
∴CH= .
故选D.
【点睛】
本题考查了正方形的性质、勾股定理及解题的关键.
A.68π cm2B.74π cm2C.84π cm2D.100π cm2
【答案】C
【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.
考点:圆锥的计算;几何体的表面积.
10.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于( )
此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与 相似的是( )
A. B.
C. D.
【答案】B
【解析】根据相似三角形的判定方法一一判断即可.
【详解】解:因为 中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.
故选D.
【点睛】
此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.
4.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是( )
【解析】试题分析:由 得 , ,即是判断函数 与函数 的图象的交点情况.
因为函数 与函数 的图象只有一个交点
所以方程 只有一个实数根
故选C.
考点:函数的图象
点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
8.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()
A.∠ABD=∠CB.∠ADB=∠ABCC. D.
【答案】C
【解析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
3.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()
A.正方体B.球C.圆锥D.圆柱体
【答案】D
【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.
A. B. C. D.3
【答案】B
【解析】根据勾股定理和三角函数即可解答.
【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
设a=x,则c=3x,b= =2 x.
即tanA= = .
故选B.
【点睛】
本题考查勾股定理和三角函数,熟悉掌握是解题关键.
9.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()
A. B. C. D.
【答案】C
【解析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
【详解】由题意可得:PB=3﹣t,BQ=2t,
则△PBQ的面积S= PB•BQ= (3﹣t)×2t=﹣t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选C.
【点睛】
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是()
A. B. C. D.
【答案】D
【解析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.
【详解】∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
7.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x= ﹣2实数根的情况是()
A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根
【答案】C