七年级下册数学《二元一次方程组》二元一次方程组 知识点整理
人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳第八章 二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2.方程组:有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
8.2 消元——解二元一次方程组二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。
关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v v v =+顺静水 v v v =−逆静水8.4 三元一次方程组的解法三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。
解三元一次方程组的基本思路:通过“代入”或“加减”进行消元。
把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
七年级二元一次方程组知识点总结

人教版七年级下册第八章第一课时认识二元一次方程组一、二元一次方程及其解(1)二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.(2)二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】二、二元一次方程组及其解(1)、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.(2)、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩.】 例1、若方程213257m n xy --+=是关于x y 、的二元一次方程,求m 、n 的值.解:∵方程213257m n x y --+=是关于x y 、的二元一次方程 ∴211321m n -=⎧⎨-=⎩解得11m n =⎧⎨=⎩ 例2、将方程102(3)3(2)y x --=-变形,用含有x 的代数式表示y .解:去括号得,106263y x -+=- 移项得,261063y x =-+-合并同类项得,223y x =- 系数化为1得,232x y -=例3、方程310x y +=在正整数范围内有哪几组解?解:有三组解,分别是147,,321x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ 例4、若23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解,求m n 、的值. 解:∵23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解 ∴431235m n m -=⎧⎨-=-⎩解得11m n =⎧⎨=-⎩ 例5、已知(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程,求m n 的值. 解:∵(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程∴101101m m n n +≠⎧⎪=⎪⎨-≠⎪⎪=⎩ 解得11m n =⎧⎨=-⎩ ∴1(1)1m n =-=-(变式训练)已知218(26)(2)0n m m x n y +--++=是关于x y 、的二元一次方程,当2y =-时,求x 的值. 知识点1:二元一次方程及其解1、下列各式是二元一次方程的是( )..A 67x y -= .B 105x y-= .C 45x xy -= .D 210x x ++= 2、若32x y =⎧⎨=⎩是关于x y 、的二元一次方程30x ay -=的一个(组)解,则a 的值为( ) .A 3 .B 4 .C 4.5 .D 63、对于二元一次方程21x y -=有无数个解,下列四组值不是该方程的解的一组是( ).A 012x y =⎧⎪⎨=⎪⎩ .B 11x y =⎧⎨=⎩ .C 10x y =⎧⎨=⎩.D 11x y =-⎧⎨=-⎩ 4、二元一次方程27x y +=在正整数范围内的解有( )..A 无数个 .B 两个 .C 三个 .D 四个5、若226n m x y +=是二元一次方程,则m = n = .6、关于x y 、的方程11()()0,33m x m y ++-=当m = 时,是一元一次方程;当m = 时,是二元一次方程.7、已知在方程352x y -=中,若用含有x 的代数式表示y ,则y = ,用含有y 的代数式表示x ,则x =8、若5m n -=,则15m n -+=9、已知221(31)0x y ++-=,则2x y -= 10、在二元一次方程2(5)3(2)10x y ---=中,当0x =时,则y = ;当4y =时,则x = . 知识点2:二元一次方程组及其解1、有下列方程组:(1)30430x y x y +=⎧⎨-=⎩ (2)3049x y xy +=⎧⎨=⎩ (3)52m n =⎧⎨=-⎩ (4)1426x x y =⎧⎨+=⎩其中说法正确的是( ). .A 只有(1)、(3)是二元一次方程组 .B 只有(3)、(4)是二元一次方程组 .C 只有(4)是二元一次方程组 .D 只有(2)不是二元一次方程组2、下列哪组数是二元一次方程组324x y x +=⎧⎨=⎩的解( ) .A 30x y =⎧⎨=⎩ .B 12x y =⎧⎨=⎩ .C 52x y =⎧⎨=-⎩ .D 21x y =⎧⎨=⎩ 3、若方程组162ax y x by -=⎧⎨+=⎩有无数组解,则a 、b 的值分别为( ) .A 1,1a b == .B 2,1a b == .C 1,2a b ==- .D 2,2a b ==-4、写出一个以 ⎩⎨⎧-==24y x 为解的二元一次方程组 ;写出以12x y =⎧⎨=⎩为解的一个二元一次方程 . 5、已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 。
数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。
因为我从书本里明白了很多很多的道理。
下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。
x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。
浙教版七年级数学下册《专题02 二元一次方程组及其解法(知识点串讲)(解析版)》

浙教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题02 二元一次方程组及其解法知识网络重难突破知识点一有关概念及应用1.二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。
2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。
同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。
【典例1】(2019春•诸暨市期末)下列方程中,属于二元一次方程的是()A.x+xy=8B.y=x﹣1C.x+=2D.x2﹣2x+1=0【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解析】解:A、含有两个未知数,但是含有未知数的项的最高次数是2,故本选项错误;B、符合二元一次方程定义,是二元一次方程,故本选项正确;C、不是整式方程,故本选项错误;D、x含有一个未知数,不是二元一次方程,故本选项错误.故选:B.【点睛】此题考查二元一次方程定义,关键是根据二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.【变式训练】1.(2019春•余姚市校级月考)若方程x|a|﹣1+(a﹣2)y=3是二元一次方程,则a的值为﹣2.【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面确定a的取值.【解析】解:根据二元一次方程的定义,得|a|﹣1=1且a﹣2≠0,解得a=﹣2.故答案是:﹣2.【点睛】本题考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(2019春•嘉兴期末)已知是二元一次方程mx+4y=2的一个解,则代数式m﹣2n的值为()A.﹣2B.2C.﹣1D.1【点拨】把x与y代入方程计算,即可求出所求.【解析】解:把代入方程得:﹣2m+4n=2,整理得:﹣2(m﹣2n)=2,即m﹣2n=﹣1,故选:C.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.3.(2019春•余姚市期末)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.【点拨】把x、y的值代入方程,看看左边和右边是否相等即可.【解析】解:A、把代入方程2x﹣3y=1得:左边=﹣1,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;B、把代入方程2x﹣3y=1得:左边=1,右边=1,左边=右边,所以是方程2x﹣3y=1的解,故本选项符合题意;C、把代入方程2x﹣3y=1得:左边=﹣5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;D、把代入方程2x﹣3y=1得:左边=5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;故选:B.【点睛】本题考查了二元一次方程的解,能熟记方程的解的定义是解此题的关键.知识点二二元一次方程组的解法常用方法:代入消元法、加减消元法解方程组的基本思想是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
人教版七年级数学下册知识点总结(第八章-二元一次方程组)

第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
二元一次方程组复习概念~zhu

考点三: 考点三:解的定义
x = −2, 1、已知 y = 3 是方程 是方程3x-3y=m和5x+y=n的公共 、 和 的公共 解,则m2-3n= 246.
关于解法
1、解二元一次方程组你有几种方法? 、解二元一次方程组你有几种方法? 两种: 两种:代入法和加减法 2、代入法和加减法解方程组,“代入”与“加 、代入法和加减法解方程组, 代入” 的目的是什么? 减”的目的是什么? 消元: 消元:把二元一次方程转化为一元一次方程 3、解二元一次方程组的步骤是什么? 、解二元一次方程组的步骤是什么?
关于应用
在列二元一次方程组解实际问题的过 程中,你认为最关键的是什么? 程中,你认为最关键的是什么?
找出等量关系, 找出等量关系,列出方程组
知识方法结“网络”
实际问题
数 方程组
数学问题 (二元一次方程组 二元一次方程组) 二元一次方程组
解 方 程 组 元
实际问题
数学问题 (二元一次方程 二元一次方程
1.解二元一次方程组的基本思路是 2.用加减法解方程组{ 2x-5y=7①
消元 .
相减 直接消去 x .
由①与② 2x+3y=2②
3.用加减法解方程组{ 由 6x-5y=12② ①与②相加 ,可直接消去
4x+5y=28①
y .
4.用加减法解方程组 用加减法解方程组 具体解法如下
(1) ①-②得x=1
D)
B、只有两个 、 D、有无数个 、
6、下列属于二元一次方程组的是 ( 、 A. B.
A
)
3 5 + =1 x y x− y = 0
x + y = 5 C. 2 2 x + y = 1
七年级数学下册二元一次方程组知识总结

二元一次方程组知识总结及典型例题◆知识要点知识点1:二元一次方程的变形:用一个未知数表示另一个未知数知识点2:二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
(注:①方程中有且只有两个未知数。
②方程中含有未知数的项的次数为1。
③方程为整式方程。
)知识点3:二元一次方程组的定义:由两个二元一次方程所组成的方程组叫二元一次方程组:知识点4:二元一次方程的解的定义:使二元一次方程左右两边的值相等的未知数的值叫做二元一次方程的解。
方程组的解的定义:方程组中所有方程的公共解叫方程组的解。
知识点5:二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.知识点6:二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解。
◆例题解析例1:已知二元一次方程5x-2y=10 ①将其变形为用含x的代数式表示y的形式。
②将其变形为用含y的代数式表示x的形式例2:(1)下列方程中是二元一次方程的是()A.3x-y2=0 B.2x+y1=1 C.3x-52y=6 D.4xy=3(2)已知关于x,y的二元一次方程6)3()42(232=++---nm ynxm,求m,n的值例3:下列方程组中,是二元一次方程的是()①228423119...23754624x yx y a b xB C Dx y b c y x x y+=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩例4 (1)已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.(2)已知方程组44ax y-=⎧⎨⎩,(1)2x+by=14,(2)由于甲看错了方程①中的a得到方程组的解为26xy=-⎧⎨=⎩,,乙看错了方程②中的b得到方程组的解为44.xy=-⎧⎨=-⎩,若按正确的a、b计算,求原方程组的解.例5:(1)6,234()5() 2.x y x yx y x y+-⎧+=⎪⎨⎪+--=⎩(2) 已知⎩⎨⎧=-+=+-3252zyxzyx求:zyxzyx23324+--+的值(3) 已知关于x 、y 的二元一次方程组 4x+y=5 和 3x-2y=1 有相同的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识二元一次方程组
一、本节学习指导
重点理解二元一次方程组的解,二元一次方程组的解一定满足此二元一次方程组,这一点就跟前面学习的一元一次方程一样。
这一节的知识主要是为后面学习求二元一次方程组的解做基础,如果有知识点不理解的话,也不用着急!待学完整章节了,相信你就能够理解了。
二、知识要点
1、二元一次方程组
(1)、概念:二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
(2)、二元一次方程的解和二元一次方程组的解:【重点】
使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;
②、一个二元一次方程的解往往不是唯一的,而是有许多组;
③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
2、二元一次方程组的解的讨论:【重点】
3、用含一个未知数的代数式表示另一个未知数:【重点】
用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。
例:在方程2x + 3y = 18 中,用含x的代数式表示y为:___________,用含y的代数式表示x为:____________.
4、根据二元一次方程的定义求字母系数的值:
要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0
例:已知方程(a-2)x(|a|-1) - (b+3)y(b2-8) = 3 是关于x、y的二元一次方程,求a、b的值。
分析:1、题目中给出的方程明确说明是关于x、y的二元一次方程,那么我们就知道这两个未知数的系数都不会为零,即a-2≠0,b+3≠0
2、既然是二元一次方程,最高次数就是1,所以(|a|-1)=1,(b2-8)=1.
综合上面的可得出,由1条件得a≠2,b≠-3;由2条件得a=2或a=-2,b=3或b=-3
故求出:a=-2,b=3
5、求二元一次方程的整数解【重点】
解这种题要会分析,注意是整数解,往往求出来的是不等式形式,然后根据条件求出整数解。
例:求二元一次方程3x + 4y = 18 的正整数解。
思路:利用含一个未知数的代数式表示另一个未知数的方法,可以求出方程有正整数解时x、y的取值范围,然后再进一步确定解。
解:用含x的代数式表示y,y = 9/2 - (3/4)x 用含y的代数式表示x,x = 6 - (4/3)y
因为是求正整数解,则:9/2 - (3/4)x > 0 , 6 - (4/3)y > 0
所以,0 < x < 6 ,0 < y < 9/2
所以,当y = 1时,x = 6 - 4/3 = 14/3 ,舍去;
当y = 2时,x = 6 - 8/3 = 10/3 ,舍去;
当y = 3时,x = 6 - 12/3 = 2 , 符合;
当y = 4时,x = 6 - 16/3 = 2/3 ,舍去 .
三、经验之谈:
这一节的重中之重是上面总结的第3、4个知识点,知识点多但是简单,希望不要在这里丢分,特别是第4点知识很简单,也容易出错。
本文由索罗学院整理。