二次函数常见关系式符号的判定

合集下载

初三数学_二次函数_知识点总结

初三数学_二次函数_知识点总结

初三数学二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,能够为零.二次函数的定义域是全体实数.(所以:二次函数应满足两个条件:①二次项的系数不等于0,②x 最高项的指数是2)2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y ax①,a 的绝对值决定开口的大小(a 的绝对值越大,抛物线的开口越小,a 的绝对值越小,抛物线的开口越大)②a 的符号决定开口的方向(a>0,开口向上,a<0开口向下)2. 2=+的性质:y ax c上加下减。

(c>0,将2=的图像向下移=向上移动,c<0将2y axy ax动=3. ()2=-的性质:y a x h左加右减。

Array 4. ()2=-+的性质:y a x h k三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方能够得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选择的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式(又称为对称式):2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(又称为两点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都能够化成一般式或顶点式,但并非所有的二次函数都能够写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才能够用交点式表示.二次函数解析式的这三种形式能够互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式(三点式);2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式(对称式);3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式(两点);4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=(即. 二次函数与x 轴两个交点的距离)② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 十、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少注:在实际应用中凡是需要求最大,最小(或极值)问题一般都要考虑用二次函数的最大值或最小值二次函数考查重点与常见题型1.考查二次函数的定义、性质,相关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,假如函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )xA B C D 3.考查用待定系数法求二次函数的解析式,相关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数a.b.c等的符号的确定

二次函数a.b.c等的符号的确定
y
-1 o 1 x
(5)△=b2-4ac决定抛物线与x轴交点情况:
① △>0 ② △=0
抛物线与x轴有两个交点; 抛物线与x轴有唯一的公共点;
③ △<0 抛物线与x轴无交点。
y ox
y ox
y ox
勇攀高峰
1. 二次函数y=ax2+bx+c的图象如图所示,下列结论中:
①abc>0;② a+b+c<0 ③ a-b+c>0 ;
o1 特殊值法
x
y aabb cc 0 0
y=ax2+bx+c 当x 1时 y=a-b+c
y aabbcc0 0 y
y aabbcc00
-1 o
x
y aabbcc00
x=-1
比拼速度
二次函数y ax2 bx c的图象如图,用(< , >或 =)填空: a< 0,b < 0,c > 0,a+b+c< 0,a-b+c> 0, Nhomakorabeay
开口向下
a<0
数形结合法
x
⑵c决定抛物线与y轴交点(0,c)的位置:
① 图象与y轴交点在y轴正半轴;
c>0
② 图象过原点
c=0
③ 图象与y轴交点在y轴负半轴
c<0
y
指出下列二次函数与y轴交点的坐标.
(1) y=x2-8x+7 (2) y=-2x2+9x-17
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
转化 + 特殊值
根据抛物线y=ax2+bx+c图象位置,你 会判断那些字母或代数式的符号?

二次函数字母系数及相关式子符号的判断

二次函数字母系数及相关式子符号的判断

二次函数常见关系式符号的判定
二次函数是初中数学的重点内容之一,它的图像是由字母系数a、b、c的符号确定的,反之在给定抛物线的条件下如何确定字母系数的范围呢?现将二次函数的图像与字母系数的关系归纳如下:
(1)抛物线开口向上;抛物线开口向下.
(2)抛物线开口大小,越大开口越小
(3)、同号对称轴在轴左侧;、异号对称轴在轴右侧;=0对称轴为轴.
(4)抛物线与轴的交点在轴上方;抛物线与轴的交点在轴下方;
抛物线必过原点.
(5)抛物线与轴有两个交点;抛物线与轴有唯一交点;
抛物线与轴没有交点.
(6)的符号由点( 1,)的位置来确定;的符号由点( -1,)的位置来确定;
的符号由点(2,)的位置来确定。

例1如图1是抛物线的图像,则① 0;② 0;③ 0;④ 0;
⑤ 0;⑥ 0;⑦ 0。

解析:由图知:抛物线开口向下,;对称轴在轴左侧,、同号,故
;抛物线与轴的交点在轴上方,;点( 1,)、点( -1,)
分别在第四象限和第二象限,得<0, >0;抛物线与轴有两个交点,
得;由对称轴得=0.
例 2如图2,已知二次函数的图像与轴相交于(,0 ),(, 0)两点,
且,与轴相交于(O,-2),下列结论:①;②;
③;④;⑤。

.其中正确结论的个数为( )
A.1个 B.2个 C.3个D.4个
解析:由图知:.当时,,所以,故③错误;因为抛物
线与轴有两个交点,所以即,所以④正确;当时,由图像得
,即,所以,故①错误;因为,又,所
以,故②错;当时,,即,所以故⑤错误.所以答案选 A.。

二次函数知识点总结1

二次函数知识点总结1

九年级数学学案一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)2二次函数考查重点与常见题型2-32例1.已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 例2.如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )例3.已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数中常见关系式符号的判断

二次函数中常见关系式符号的判断
为对称轴 一 o= 2,
二U
所以 一 b= 4 a .
如果二次函数 Y= a N + +c ( a≠0 ) 的对称轴 =

则4 a+b = 0 .
所以④对.
在点( 1 , 0 ) 的 左边 , 则一 <1 , 当 o>0时 , 得2 a+
当Y =2时 , 对应的的值有两个 , 所以⑤错.
正确是 ( ) .
即①正确.
为 一1 <一 一 < 0,
二“
A . ① ④ C . ②⑤
, :
B . ③④ D . ③⑤
J I 1 Ⅱ一 2 a< 一b .
即 2 a—b<0 .
所 以② 正确. 一Fra bibliotek,? 0 i 2

7 、

因 为 图 象 经 过 (一1 , 2 ) ,
当 = 一 2时 , Y <0 ,
所以 a (一 2 ) +b X(一 2 )+ c < 0
贝 U 4 Ⅱ一 2 6+ c < 0 .
如图所示 , 则下列结论①6 一 4 a c< 0 , ②a b > O , ③n—b+ C : 0 , g ) 4 a+b: 0, ⑤ 当 Y: 2时 , 只能有 一个值. 其 中
A . 1 个 B . 2个
如 果 二 次 函数 y= 似 + +c ( a ≠0 ) 的 对 称 轴 =

) .
经过( 1 , 0 ) , 2 a+b = 0 .
举 例 如 下
分析
由 象得 ;
例 1 已知二 次函数 Y= a x +k +c ( a ≠0 ) 的 图象
所 以选 .
b> 0 , 当 a< 0时 , 2 0+b < 0 .

二次函数中的符号问题

二次函数中的符号问题
1
基础回顾:
1、抛物线y=ax2+bx+c的开口方向、形状与什么 有关?
a>0时,开口向上;a<0时,开口向下。
a 相等
抛物线的形状相同
2、抛物线y=ax2+bx+c与y轴的交点是(0、c).
3、抛物线y=ax2+bx+c的对称轴是 X=- b .
2a
2
归纳知识点:
抛物线y=ax2+bx+c的符号问题:
y
根据图像可得:
1、a>0
2、- b >0
2a
o
x 3、△=b²-4ac>0
4、C>0
6
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
根据图像可得:
1、a>0
b
2、-
<0
2a
o
x 3、△=b²-4ac>0
4、C=0
7
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
M
B 1
Ax
O
1
17
再想一想:
5.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的
图象过正方形ABOC的三个顶点A、B、C,则ac的值是 -2 .
设正方形的对角线长为2n, 根据图像可得:
∵A(0、2n)、B(-n、n)、 C(n、n) ∴n=a(±n)²+2n、c=2n,
∴a=- 1 ,∴ac=2n*(-
②如图2a+b _______0 4a+2b+c_______0
12
根据图象填空:
(1)a_____0; (2)b_____0; (3)c______0; (4)b2 4ac _____0; (5)a+b+c_____0; (6)a-b+c_____0; (7)2a+b_____0;

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。

一、a ,b ,c 符号的确定(1)a 符号的确定。

抛物线的开口向上,a >0,抛物线的开口向下,a <0。

(2)c 符号的确定。

因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。

(3)b 符号的确定。

b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。

二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。

分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。

对称轴ab x 2-=>0,而a >0,故b <0。

(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。

对称轴ab x 2-=<0,而a <0,故b <0。

(C )图中(过程略),a >0,c >0 ,b >0。

(D )图中(过程略),a <0, c <0 ,b >0。

2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。

对称轴ab x 2-=>0,而a <0,故b >0。

因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。

3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。

二次函数a、b、c及有关代数式判定

二次函数a、b、c及有关代数式判定

课题二次函数图象与系数符号学习目标:1.探索发现二次函数的系数a,b,c,△的符号与图象之间的关系;2.由抛物线确定a,b,c,△及相关代数式的符号;学习过程一、知识回顾:1.抛物线y=ax2+bx+c 的开口方向由决定:⇒开口向上⇒开口向下.2.抛物线y=ax2+bx+c与y轴的交点坐标是().c>o⇒与y轴的交点在;c<o⇒与y轴的交点在;c=o⇒抛物线过点3.抛物线y=ax2+bx+c的对称轴是直线 .b=0⇒对称轴是;0⇒对称轴在y轴的侧;a、b同号⇒-b2a0⇒对称轴在y轴的侧.a、b异号⇒-b2a4.若抛物线y=ax2+bx+c与x轴有交点,则交点的横坐标就是一元二次方程ax2+bx+c=0的根,因此抛物线y=ax2+bx+c与x轴的交点个数由决定.抛物线与x轴有两个交点;抛物线与x轴有一个交点;抛物线与x轴没有交点.二、协作归纳,获取新知(一)a、b、c、△=b2-4ac的符号与抛物线位置的关系。

1. 抛物线y=ax2+bx+c开口向上⇒;抛物线y=ax2+bx+c开口向下⇒ .2. 抛物线y=ax2+bx+c与y轴的交点在y轴的负半轴上⇒;抛物线y=ax2+bx+c与y轴的交点在y轴的正半轴上⇒,抛物线经过坐标原点⇒ .3. 抛物线y=ax 2+bx+c 的对称轴是y 轴⇒b 0;抛物线y=ax 2+bx+c 的对称轴在y 轴的左侧⇒-b2a 0⇒a 、b 号; 抛物线y=ax 2+bx+c 的对称轴在y 轴的右侧⇒-b 2a 0⇒a 、b 号. 4. 抛物线y=ax 2+bx+c 与x 轴有两个交点⇒△ ; 抛物线y=ax 2+bx+c 与x 轴有一个交点⇒△ ; 抛物线y=ax 2+bx+c 与x 轴无交点⇒△ . 试一试:根据二次函数c bx ax y ++=2的图象,判断a 、b 、c 、b 2-4ac 的符号,并说明理由.(二)确定代数式a+b+c ; a-b+c ; 4a+2b+c ;4a-2b+c ;2a+b ;2a-b 的符号1.二次函数y=ax 2+bx+c 中,当x=1时,y= ;当x=-1时,y= .2.二次函数y=ax 2+bx+c 中,当x=2时,y= ;当x=-2时,y= . 试一试:抛物线y=ax 2+bx+c 如图所示,判断下列各式的符号 (1)a+b+c (2)a-b+c (3)4a+2b+c (4) 4a-2b+c (5)2a+b (6)2a-b三、归纳小结,升华提高四、累化回味,形成技能1.二次函数y=kx2-3x+2k-k2的图象经过原点,则k= .2.若二次函数y=ax2+3x-1与x轴有两个交点,则a的取值范围是 .3.二次函数cbxaxy++=2与一次函数caxy+=在同一坐标系中的图象大致是( )4. 若0,0,0<><c b a ,则抛物线c bx ax y ++=2的大致图象为( )5.若无论x 取何实数,二次函数y=ax 2+bx+c 的值总为负,则下列结论成立的是( ) A.a>0且b 2-4ac ≥0 B.a>0且b 2-4ac>0 C.a<0且b 2-4ac<0 D.a <0且b 2-4ac ≤0 五、拓广探索: 观察抛物线图象填空:(1)方程ax 2+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2+bx +c =-4的根为__________; (4)不等式ax 2+bx +c >0的解集为________; (5)不等式ax 2+bx +c <0的解集为________; (6)不等式-4<ax 2+bx +c <0的解集为________.xxxx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数常见关系式符号的判定
二次函数是初中数学的重点内容之一,它的图像是由字母系数a、b、c的符号确定的,反之在给定抛物线的条件下如何确定字母系数的范围呢?现将二次函数的图像与字母系数的关系归纳如下:(1)抛物线开口向上;
抛物线开口向下.
(2)抛物线开口大小,越大开口越小
(3)、同号对称轴在轴左侧;
、异号对称轴在轴右侧;
=0对称轴为轴.
(4)抛物线与轴的交点在轴上方;
抛物线与轴的交点在轴下方;
抛物线必过原点.
(5)抛物线与轴有两个交点;
抛物线与轴有唯一交点;
抛物线与轴没有交点.
(6)的符号由点( 1,)的位置来确定;
的符号由点( -1,)的位置来确定;
的符号由点(2,)的位置来确定。

例1如图1是抛物线的图像,则① 0;②
0;③ 0;④ 0;⑤ 0;⑥
0;⑦ 0。

解析:由图知:抛物线开口向下,;对称轴在轴左侧,、同号,故;抛物线与轴的交点在轴上方,;点( 1,
)、点( -1,)分别在第四象限和第二象限,得<0,
>0;抛物线与轴有两个交点,得;由对称轴
得=0.
例 2如图2,已知二次函数的图像与轴相交于(,
0 ),(, 0)两点,且,与轴相交于(O,-2),下
列结论:①;②;③;④;⑤。

.其中正确结论的个数为( )
A.1个 B.2个 C.3个D.4个
解析:由图知:.当时,,所以,故③
错误;因为抛物线与轴有两个交点,所以即,所以④正确;当时,由图像得,即,所以,故①错误;因为,又,所以
,故②错;当时,,即,所以
故⑤错误.
所以答案选 A.。

相关文档
最新文档