概率论起源的故事共23页

合集下载

概率论发展简史

概率论发展简史

概率论发展简史
四、概率论理论基础的建立: 为概率论确定严密的理论基础的是数学
家柯尔莫哥洛夫。1933年,他发表了著名的 《概率论的基本概念》,用公理化结构明确 了概率的定义,是概率论发展史上的一个里 程碑,为以后的概率论的迅速发展奠定了基础。
精品课件
概率论发展简史
五、概率论的应用: 20世纪以来,由于物理学、生物学、工程
概率论发展简史
五、概率论的应用: 为了使大家更直观的了解概率与数理统计
的应用,下面我给大家举一个概率与数理统计 在社会调查中应用的例子。对于某些被调查者 不愿公开回答的问题,运用概率论的方法可以 得到较准确的结论。举个例子,对一批即将出 国留学的学生进行调查,确定学业完成后愿意 回国者所占的比例。
精品课件
概率论发展简史
五、概率论的应用: 例如: 3.按掷硬币的方式回答a或b填是或否 ( ) a: “完成学业后,你是否会回国” b:“你的年龄、概率论的应用:
然后运用概率论方法,我们就可以从调查结
果中得到我们想知道的回国者比例。假定有300
人接受调查,结果有130个"是"。因为被调查者
精品课件
概率论发展简史
二、概率论的起源: 帕斯卡:若在掷一次,甲胜,甲获全部
赌注, 乙胜,甲、乙平分赌注;两种情况可 能性相同,所以这两种情况平均一下,甲应 得赌金的3/4,乙得赌金的1/4。
精品课件
概率论发展简史
二、概率论的起源: 费马:结束赌局至多还要2局,结果为四
种等可能情况: 情况: 1 2 3 4 胜者: 甲甲 甲乙 乙甲 乙乙 前3种情况,甲获全部赌金,仅第四种情况, 乙获全部赌注。所以甲分得赌金的3/4,乙得 赌金的1/4。
精品课件

概率论的渊源

概率论的渊源

概率论的渊源摘要:概率论是一门古老而又年轻的学科,但直到近二三百年才随着微积分等学科的产生而迅速发展起来,现在它正广泛的应用在天气预报,金融证券,保险,军事,航空航天技术等各个领域。

由于历史的原因概率论中某些定理的最早发现权之争众说纷纭,本人通过研读大量的历史文献,对一些争论提出了自己的观点。

关键词:概率论;源流;数学期望;产生概率,probability(英),都是与探求可能性的问题想关联。

我们生活的世界上,广泛地存在着一类所谓随机现象,例如:一枚硬币掷出来,可能出现正面朝上,也可能出现背面朝上;某种测量中,可能由于种种偶然因素而出现各种不同的误差;某种投资,可能由于不测的原因会有成功与失败的可能;……。

实践证明,研究了大量的同类型随机现象之后,通常总能揭示出某种完全确定的规律性。

而研究这种现象的数量规律的学科,就是概率论。

概率论的产生与发展,大致经历了四个阶段:方法积累、理论概括、系统理论、公理体系。

以下,我们依次介绍各个阶段中,概率论的进展情况。

最初,概率论只是对于带有随机的游戏的分析,甚至是对赌博中的输赢的估计。

据文献记载,最早提出这类问题的是意大利数学家帕西奥里(pacioli,1445-1514)。

他于1494年发表了数学巨著《算术、几何、比和比例摘要》,其中提出了这样一个问题:假如在一个比赛中,赢6次才算赢,而两个赌徒在一个赢5次另一个赢2次的情况下中断比赛,问这时如何分配总的赌金。

帕西奥里答案是按5:2分给两个赌徒赌金。

这似乎是合理的,按已赢的次数分成。

但是,假如需16次才算赢,并将两个赌徒分别赢了15次与12次而中断比赛,那么按照帕西奥里的分成法,两人所得赌金相差不大,而其中一个只要有赢一次就能得到全部赌金,另一个则还得连赢四次。

这个不合理的分成法就站不住脚了。

到底应该怎样分成,这就要对剩下的数次比赛进行概率概率估计。

文艺复兴以后,促使概率论产生的强大动力来自社会实践。

随着生产的发展,社会的进步,商业发达了,航海事业也发展起来,意大利最开始出现海上保险业务。

概率论的起源和发展

概率论的起源和发展

概率论的起源和发展2011111159 宁柯琳概率论是一门既古老又年轻的学科。

说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。

而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。

这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。

一般认为,概率论的历史只有短短的三百多年时间。

虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。

在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。

无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。

概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。

1、机会的早期计算古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。

但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。

能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。

公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。

十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。

但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。

概率论与数理统计的起源与发展

概率论与数理统计的起源与发展

概率论与数理统计的起源与发展概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

早在1654年,意大利医生兼数学家卡当,据说曾大量地进行过赌博。

他在赌博时研究不输的方法,实际是概率论的萌芽。

在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论。

十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。

正是这封信使概率论向前迈出了第一步。

帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。

于是,一个新的数学分支--概率论登上了历史舞台。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。

在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。

后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。

这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、普阿松、切贝谢夫、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。

在这段时间里,概率论的发展简直到了使人着迷的程度。

但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。

因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。

概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。

经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。

概率的起源和发展

概率的起源和发展

概率论的起源与发展一、 概率的起源:三四百年前在欧洲许多国家,贵族之间盛行赌博之风。

掷骰子是他们常用的一种赌博方式。

因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。

有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大?17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。

这是什么原因呢?后人称此为著名的德·梅耳问题。

二、 数学家们参与赌博:又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得5局便算赢家。

如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。

参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。

他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。

后来,这些问题被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。

帕斯卡和费尔马两人一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”—— 正确的答案是:赢了4局的拿这个钱的43,赢了3局的拿这个钱的41。

为什么呢?假定他们俩再赌一局,或者 A 赢,或者 B 赢。

若是 A 赢满了5局,钱应该全归他;A 如果输了,即 A 、B 各赢4局,这个钱应该对半分。

现在,A 赢、输的可能性都是21,所以,他拿的钱应该是21×1+21×21=43;当然,B 就应该得41。

他们将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。

概率论发展简史

概率论发展简史

概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。

16世纪意大利的一些学者开始研究掷骰子等赌博中的一些简单问题,例如比较掷二个骰子出现总点数为9或10的可能性大小。

17世纪中叶,法国数学家B.帕斯卡,P.de.费马及荷兰数学家惠更斯基于排列组合的方法研究了一些比较复杂的赌博问题,解决了“合理分配赌注问题”(即历史上有名的“得分问题”)“输光问题”等等,其方法不是直接计算赌徒赢局的概率,而是计算期望的赢值,从而导致了现今成为数学期望的概念(由惠更斯明确提出)。

概率论成为数学的一个分支的真正奠基人则是瑞士数学家雅各布第一·伯努利。

他建立了概率论中第一个极限定理,即伯努利大数定律,这个结果发表于他死后八年(1713)出版的遗著《推测术》。

1716年前后,A.棣莫弗用他导出的斯特林公式(即:)进一步证明了渐进地服从正态分布(德国数学家C.F.高斯于1809年研究测量误差理论时重新导出正态分布,故亦称为高斯分布),这里,后来法国数学家P.S.拉普拉斯将棣莫弗的这一结果推广到一般的的情形,后世称为棣莫弗—拉普拉斯极限定理,这是概率论中第二个基本极限定理的原始形式。

拉普拉斯对概率论的发展贡献很大,他在系统总结前人工作的基础上写出了《概率的分析理论》(1812年出版后又再版6次),在这一著作中,他首次明确规定了概率的古典定义,并在概率论中引入了更有力的分析工具,如差分方程、母函数,从而实现了概率论由单纯的组合计算到分析方法的过渡,将概率论推向一个新的发展阶段。

拉普拉斯非常重视概率论的实际应用,对人口统计学尤感兴趣。

继拉普拉斯之后,概率论的中心研究课题是推广和改进伯努利大数定律及棣莫弗—拉普拉斯极限定理,在这方面俄国数学家切比雪夫迈出了决定性的一步,1866年他用自己创立的切比雪夫不等式建立了有关独立随机变量序列的大数定律,次年又建立了有关各阶绝对矩一致有界的独立随机序列的中心极限定理。

1901年,A.M.李亚普诺夫利用特征函数方法,对一类相当广泛的独立随机变量序列,证明了中心极限定理,他利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。

概率论的起源

概率论的起源

概率论的起源及公理化概率论起源于博奕问题。

15至16世纪意大利数学家帕乔利、塔塔利亚和卡尔丹的著作中曾讨论过“如果两人赌博提前结束,该如何分配赌金”等概率问题。

1654年左右,费马与帕斯卡在一系列通信中讨论类似的合理分配赌金的问题,并用组合的方法给出了正确的解答。

他们的通信引起了荷兰数学家惠更斯(,1629―1695)的兴趣。

惠更斯在1657年发表了《论赌博中的计算》,这本书成为了最早的概率论著作。

这些数学家的著述中所出现的第一批概率论概念(如数学期望)与定理(如概率加法、乘法定理),标志着概率论的诞生。

一般认为,概率论作为一门独立的数学分支,其真正的奠基人是雅各布?伯努利.他在遗著《猜测术》中首次提出了后来以“伯努利定理”著称的极限定理:若在一系列独立试验中,事件A 发生的概率为常数且等于p ,那么对任意ε>0以及充分大的试验次数n,有P {|nm - p |<ε}>1-η(η为任意小的正数), 其中m 为n 次试验中事件A 出现的次数。

伯努利定理刻画了大量经验观测中频率呈现的稳定性,作为大数定律的最早形式而在概率论发展史上占有重要地位。

伯努利之后,棣莫弗(,1667―1754)、蒲丰(,1707―1788)、拉普拉斯、高斯和泊松等对概率论做出了进一步的奠基性的贡献。

其中棣莫弗和高斯各自独立地引进了正态分布,蒲丰提出了投针问题和几何概率,泊松陈述了泊松大数定律。

特别是拉普拉斯1812年出版的《概率的分析理论》,以强有力的分析工具处理概率论的基本内容,使以往零散的结果系统化,实现了从组合技巧向分析方法的过渡,开辟了概率论发展的新时期。

正是在这部书里,拉普拉斯给出了概率的古典定义:事件A 的概率P(A)等于一次试验中有利于事件A 的可能的结果数与该试验中所有可能的结果数之比。

19世纪后期,极限理论的发展成为概率论研究的中心课题,俄国数学家切比雪夫在这方面做出了重要贡献,他在1866年建立了关于随机变量序列的大数定律,使伯努利定理和泊松大数定律成为其特例。

概率论的发展史

概率论的发展史

概率论的发展史概率论的发展史数学,作为人类发展史上光辉的一页,伴随着人类社会的进步,一直闪烁着耀眼的光辉。

十七世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论。

早在16世纪,赌博中的偶然现象就开始引起人们的注意。

数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性,卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数。

据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验。

促使概率论产生的强大动力来自社会实践,首先是保险事业。

文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务。

16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件。

为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论。

于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了。

18世纪是概率论的正式形成和发展时期。

1713年,贝努利(Bernoulli)的名著《推想的艺术》发表。

在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括。

继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础。

19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展。

其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档