初三数学反比例函数易错题训练共13页word资料
(易错题精选)初中数学反比例函数知识点训练及答案

(易错题精选)初中数学反比例函数知识点训练及答案一、选择题1.已知1122(,),,)A x y Bx y (均在反比例函数2y x =的图像上,若120x x <<,则12,y y 的大小关系是( )A .120y y <<B .210y y <<C .120y y <<D .210y y << 【答案】D【解析】【分析】先根据反比例函数的性质判断出函数图象所在的象限,再根据反比例函数的性质即可作出判断.【详解】解:∵反比例函数2y x=中k=2>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小,∵0<x l <x 2,∴点A (x 1,y 1),B (x 2,y 2)均在第一象限,∴0<y 2<y l .故选:D .【点睛】此题考查反比例函数图象上点的坐标特点,熟知反比例函数图象的增减性是解题的关键.2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【分析】根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A、B的坐标,表示出k1、k2,进而得出k2与k1的比值.【详解】如图,设AB交x轴于点C,又设AC=a.∵AB⊥x轴∴∠ACO=90°在Rt△AOC中,OC=AC·tan∠OAB=a·tan60°=3a∴点A的坐标是(3a,a)同理可得点B的坐标是(3a,-3a)∴k1=3a×a=3a2, k2=3a×(-3a)=-33a∴213333k ak a-==-.故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k,是解决问题的方法.3.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.32【答案】D【分析】【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x =, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.5.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x=的图象上,∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.6.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】 【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k的几何意义,作出辅助线,构建矩形是解题的关键.7.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴反比例函数y=a b x - 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【分析】过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x =的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4 B .011<x <43 C .011<x <32 D .01<x <12 【答案】C【解析】【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围.【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方;当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C 【解析】 【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】 由题意得:S 1=S 2=12|k|=12. 故选:C . 【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3, ∴S △ABC = S △AOC +S △COB =6. 故答案选C. 【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.13.已知反比例函数ky x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )A .0B .1C .2D .3【答案】D 【解析】 【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数ky x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上,∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k=-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.14.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14-【答案】B 【解析】 【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫- ⎪⎝⎭,然后由点的坐标即可求得答案. 【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x=上∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x= ∵90AOB ∠=︒∴90AOD BOD ∠+∠=︒ ∴90BOE AOF ∠+∠=︒ ∵BE x ⊥,AF x ⊥ ∴90BEO OFA ∠=∠=︒ ∴90OAF AOF ∠+∠=︒ ∴BOE OAF ∠=∠ ∴BOE OAF V V ∽ ∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫-⎪⎝⎭∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B 【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.15.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C 【解析】 【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解. 【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<, 故选C . 【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.16.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D 【解析】 【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论. 【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形 ∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同 由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a )∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D . 【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.17.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=kx在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D 【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=kx的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点, ∴△=4﹣4(k+1)>0, 解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限, 反比例函数y=kx的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.18.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x=-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2【答案】C【解析】 【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论. 【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x=-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2, 故选C. 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.19.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0 【答案】B 【解析】 【分析】根据反比例函数的性质,逐一进行判断即可得答案. 【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4); ②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B . 【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.20.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x=<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个C .1个D .没有【答案】D 【解析】 【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择. 【详解】 ∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D. 【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.。
中考数学复习反比例函数专项易错题附详细答案

中考数学复习反比例函数专项易错题附详细答案一、反比例函数1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.3.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.4.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。
中考数学反比例函数易错试卷练习(含答案)及答案

备战中考数学反比例函数培优易错试卷练习(含答案)及答案一、反比例函数1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=(k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(∴DO=AD=3,∴A点坐标为:(∴k=5;,5),,2),(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y=(x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2=,解得x=﹣,=,,∴FF′=OF′﹣OF=∴菱形ABCD平移的距离为同理,将菱形ABCD向右平移,使点B落在反比例函数y=(x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.如图,平行于y轴的直尺(一部分)与双曲线y=(k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y=得3=,解得:k=6(2)解:OD=2+2=4,在y=中令x=4,解得y=.则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB=OB•AB= ×2×3=3;直角△ODC中,OD=4,CD=,则S△OCD=OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD=,则S.则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.=(AB+DC)•BD=(3+)×2=梯形ABDC3.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴∴,,∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.4.如图,点P( +1,﹣1)在双曲线y=(x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y=(x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(将x=k=2;,y=,)在双曲线上,代入解析式可得:(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.5.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO=∴CE=BE•tan∠ABO=6×=3,,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y=∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣的图象上,(2)解:∵点D在反比例函数y=﹣)(n>0).,第四象限的图象上,∴设点D的坐标为(n,﹣在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=∴OA=OB•tan ∠ABO=4×∵S △BAF =AF•OB==2.(2+)×4=4+.(OA+OF )•OB=∵点D 在反比例函数y=﹣∴S△DFO=×|﹣6|=3.第四象限的图象上,∵S △BAF =4S △DFO ,∴4+=4×3,,=4×3的解,解得:n=经验证,n=是分式方程4+∴点D 的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C 的坐标,再根据点C 的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m ,由此即可得出结论;(2)由点D 在反比例函数在第四象限的图象上,设出点D 的坐标为(n ,﹣)(n >0).通过解直角三角形求出线段OA 的长度,再利用三角形的面积公式利用含n 的代数式表示出S △BAF ,根据点D 在反比例函数图形上利用反比例函数系数k 的几何意义即可得出S △DFO 的值,结合题意给出的两三角形的面积间的关系即可得出关于n 的分式方程,解方程,即可得出n 值,从而得出点D 的坐标.6.如图,过原点O 的直线与双曲线交于上A (m ,n )、B ,过点A 的直线交x 轴正于点P .半轴于点D ,交y 轴负半轴于点E ,交双曲线(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE = BE×|yE﹣yP|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE(点A的横纵坐标,所以舍去)或的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B(﹣m,﹣n),再根据S△PBE = BE×|yE﹣yP|= ×m×|﹣n﹣(﹣2n)|求出等于3.7.在平面直角坐标系xOy中,对于双曲线y=(m>0)和双曲线y=(n>0),如果m=2n,则称双曲线y=(m>0)和双曲线y=(n>0)为“倍半双曲线”,双曲线y=(m>0)是双曲线y=(n>0)的“倍双曲线”,双曲线y=(n>0)是双曲线y=(m>0)的“半双曲线”,(1)请你写出双曲线y=的“倍双曲线”是________;双曲线y=的“半双曲线”是________;(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y=在第一象限内任意一点,过点A与y轴平行的直线交双曲线y=的“半双曲线”于点B,求△AOB的面积;(3)如图2,已知点M是双曲线y=(k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y=的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y=的“半双曲线”于点P,若△MNP的面积记为S△MNP ,且1≤S△MNP≤2,求k的取值范围.【答案】(1)y=;y=(2)解:如图1,∵双曲线y=的“半双曲线”是y=,∴△AOD的面积为2,△BOD的面积为1,∴△AOB的面积为1(3)解:解法一:如图2,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM=,CN=.∴MN=﹣ =.同理PM=m﹣ =.∴S=MN•PM=△PMN∵1≤S≤2,△PMN∴1≤≤2.∴4≤k≤8,解法二:如图3,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴点N为MC的中点,同理点P为MD的中点.连接OM,∵,∴△PMN∽△OCM..∴∵S=k,△OCM∴S=.△PMN∵1≤S≤2,△PMN∴1≤≤2.∴4≤k≤8.【解析】【解答】解:(1)由“倍双曲线”的定义∴双曲线y=,的“倍双曲线”是y=;双曲线y=的“半双曲线”是y=.故答案为y=,y=;【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.8.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2). Array(1)直接写求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.【答案】(1)解:∵A(−2,0),B(0,∴OA=2,OB=,,),在Rt△AOB中,tan∠BAO=∴∠BAO=60°(2)解:S1=S2;理由:∵∠BAO=60°,∠AOB=90°,∴∠ABO=30°,∴OA'=OA= AB,△AOA'是等边三角形,∴OA'=AA'=AO=A'B,∵∠B'A'O=60°,∠A'OA=60°,∴B'A'∥AO,根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中BA′边上的高相等,∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2(3)证明:S1=S2不发生变化;理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,∵△A'B'O是由△ABO绕点O旋转得到,∴BO=OB',AO=OA',∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,∴∠AON=∠A'OM,,在△AON和△A'OM中,∴△AON ≌△A'OM (AAS ),∴AN =A'M ,∴△BOA'的面积和△AB'O 的面积相等(等底等高的三角形的面积相等),即S 1=S 2.【解析】【分析】(1)先求出OA ,OB ,再用锐角三角函数即可得出结论;(2)根据旋转的性质和直角三角形的性质可证得OA'=AA'=AO =A'B ,然后根据等边△AOA'的边AO 、AA'上的高相等,即可得到S 1=S 2;(3)根据旋转的性质可得BO =OB',AA'=OA',再求出∠AON =∠A'OM ,然后利用“角角边”证明△AON 和△A'OM 全等,根据全等三角形对应边相等可得AN =A'M ,然后利用等底等高的三角形的面积相等证明.9.已知如图,二次函数的图象经过A (3,3),与x 轴正半轴交于B 点,与y 轴交于C 点,△ABC 的外接圆恰好经过原点O.(1)求B 点的坐标及二次函数的解析式;(2)抛物线上一点Q (m ,m+3),(m 为整数),点M 为△ABC 的外接圆上一动点,求线段QM 长度的范围;(3)将△AOC 绕平面内一点P 旋转180°至△A'O'C'(点O'与O 为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P 的坐标.【答案】(1)解:如图,过点A 作AD ⊥y 轴于点D ,AE ⊥x 轴于点E ,∴∠ADC=∠AEB=90°∵二次函数与y 轴交于点C ,点C 坐标为(0,2)∵点A 坐标(3,3)∴DA=AE=3∵∠DAC+∠CAE=90°∠EAB+∠CAE=90°∴∠DAC=∠EAB∴△ACD ≌△ABE∴EB=CD=3-2=1OB=3+1=4∴点B 的坐标为(4,0)将A (3,3)B (4,0)代入二次函数中得:解得:二次函数的解析式为:(2)解:将点Q (m ,m+3)代入二次函数解析式得:m 1=1;m 2=(舍)∴m=1∴点Q 坐标为(1,4)由勾股定理得:BC=2设圆的圆心为N∵圆经过点O ,且∠COB=90°∴BC 是圆N 的直径,∴圆N的半径为,N的坐标为(2,1)≤QM≤由勾股定理得,QN=半径r=,则(3)解:当点A的对称点,点O的对称点在抛物线上时,如图设点的横坐标为m,则点得:解得:)的横坐标为m-3∴的坐标为(∴旋转中心P的坐标为当点A的对称点,点C的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:)或∴的坐标为(∴旋转中心P的坐标为综上所述,旋转中心P的坐标为【解析】【分析】(1)过点A作AD⊥y轴于点D,AE⊥x轴于点E,求证△ACD≌△ABE,进而求得点B坐标,再将A、B两点坐标代入二次函数解析式,即可解答;(2)将点Q (m,m+3)代入二次函数解析式,求得m的值,进而且得点Q坐标,根据圆的性质得到BC是圆N的直径,利用勾股定理即可求得BC,进而求得N的坐标,再利用勾股定理求得QN的长,确定取值范围即可;(3)分两种情况:当点A的对称点,点O的对称点在抛物线上时,利用旋转180°可知,标为m-3,利用∥,设点的横坐标为m,则点的横坐列出式子,即可求得m的值,利用旋转中心和线段中点的特点,即可求得旋转中心P的坐标;当点A的对称点,点C的对称点在抛物线上时,设点的横坐标为m,则点的横坐标为m-3,同理可求得m的值以及旋转中心P 的坐标.10.如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB 边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.【答案】(1)解:当t=2时,AP=t=2,BQ=2t=4,∴BP=AB-AP=4,∴△PBQ的面积= ×4×4=8;(2)解:当t=时,AP=1.5,PB=4.5,BQ=3,CQ=9,∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,∵PQ2+DQ2=DP2,∴∠DQP=90°,∴△DPQ是直角三角形.(3)解:设存在点Q在BC上,延长DQ与AB延长线交于点O.设QB的长度为x,则QC的长度为(12-x),∵DC∥BO,∴∠C=∠QBO,∠CDQ=∠O,∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12-x,∴,即,,解得:BO=∴AO=AB+BO=6+∵∠ADP=∠ODP,∴12:DO=AP:PO,代入解得x=0.75,∴DP能平分∠ADQ,∵点Q的速度为2cm/s,∴P停止后Q往B走的路程为(6-0.75)=5.25cm.∴时间为2.625s,加上刚开始的3s,Q点的运动时间为5.625s.,【解析】【分析】(1)根据路程等于速度乘以时间得出AP=t=2,BQ=2t=4,所以BP=4,进而根据三角形的面积计算方法即可算出答案;(2)当t=时,根据路程等于速度乘以时间得出AP=1.5,BQ=3,故PB=4.5,CQ=9,根据勾股定理表示出DP2,PQ2,DQ2,从而根据勾股定理的逆定理判断出∠DQP=90°,△DPQ是直角三角形;(3)设存在点Q在BC上,延长DQ与AB延长线交于点O,设QB的长度为x,则QC 的长度为(12-x),判断出△CDQ∽△BOQ,根据全等三角形的对应边成比例得出,根据比例式可以用含x的式子表示出BO的长,根据角平分线的性质定理得出12:DO=AP:PO,根据比例式求出x的值,从而即可解决问题.11.如图,抛物线.与轴交于、两点,与轴交于点,且(1)求抛物线的解析式和顶点的坐标;(2)判断(3)点的形状,证明你的结论;是轴上的一个动点,当的周长最小时,求的值.【答案】(1)解:∵点在抛物线上,∴,解得,,,;为直角三角形,证明如下:中,令,且为,,,,,可得,,解得或,∴抛物线解析式为∵∴点坐标为(2)解:在∴为∴由勾股定理可求得又∴∴,,为直角三角形;(3)解:∵,,∴点关于轴的对称点为如图,连接,交轴于点,则即为满足条件的点,设直线解析式为,把、坐标代入可得∴直线解析式为∴.,解得,令,可得,,【解析】【分析】(1)把A点坐标代入可求得b的值,可求得抛物线的解析式,再求D 点坐标即可;(2)由解析式可求得A、B、C的坐标,可求得AB、BC、AC的长,由勾股定理的逆定理可判定△ABC为直角三角形;(3)先求得C点关于x轴的对称点E,连接DE,与轴交于点M,则M即为所求,可求得DE的解析式,令其y=0,可求得M点的坐标,可求得m.12.如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接 .(1)求证:(2)求证:(3)若∴∵,,求,.的值.是正方形,【答案】(1)解:∵是等腰三角形,∴∴∴∴,,,,(2)解:∵∴∵∴∵∵∴∴∴∴∴,,,,,,,,是正方形,,是等腰三角形,,(3)解:由(1)得∴由(2)∴∵∴在中,,∴,,,,,,,,,【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;(2)根据正方形的性质和全等三角形的性质得到∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到∠CBQ=∠CPQ即可求解.,由(2)可得,等量代换可得。
初三数学 反比例函数的专项 培优易错试卷练习题含答案解析

初三数学反比例函数的专项培优易错试卷练习题含答案解析一、反比例函数1.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当 x+b<时,请直接写出x的取值范围.【答案】(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.∵反比例函数y= (x<0)的图象过点A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣(x<0);∵一次函数y= x+b的图象过点A(﹣1,2),∴2=﹣ +b,解得:b= ,∴一次函数解析式为y= x+ .联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y= x+ .令y= x+ 中x=0,则y= ,∴点C的坐标为(0,)(2)解:观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当 x+ <﹣时,x的取值范围为x<﹣4或﹣1<x<0【解析】【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.3.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).(1)求反比例函数y= 的解析式;(2)求点P2和点P3的坐标;(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(﹣1,1),∴P1(1,1).则k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、P3B3,分别交y轴于点E、F,又点P1的坐标为(1,1),∴OA1=2,设点P2的坐标为(a,a+2),代入y=得a=-1,故点P2的坐标为(-1,+1),则A1E=A2E=2-2,OA2=OA1+A1A2=2,设点P3的坐标为(b,b+2),代入y=(>0)可得b=-,故点P3的坐标为(-,+)(3)1;(-,+)【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…∴△P n B n O的面积为1,由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),故答案为:1、(﹣, +).【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.4.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
初三数学反比例函数的专项培优易错试卷练习题及答案

初三数学反比例函数的专项培优易错试卷练习题及答案一、反比例函数1.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.2.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,∴CE=BE•tan∠ABO=6× =3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y= 的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,∴OA=OB•tan∠ABO=4× =2.∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO= ×|﹣6|=3.∵S△BAF=4S△DFO,∴4+ =4×3,解得:n= ,经验证,n= 是分式方程4+ =4×3的解,∴点D的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.3.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.4.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30º时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,∠BAC=30°,∴BC= AB=5,∴AC= ,∴S△ABC= AC⋅BC=(2)解:连接AD,∵∠ACB=90°,CD=BC,∴AD=AB=10,∵DE⊥AB,∴AE= =6,∴BE=AB−AE=4,∴DE=2BE,∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,∴∠AFE=∠DBE,∵∠AEF=∠DEB=90°,∴△AEF∽△DEB,∴ =2,∴EF= AE= ×6=3(3)解:连接EC,设E(x,0),当的度数为60°时,点E恰好与原点O重合;①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,∴,∵EC是Rt△BDE斜边的中线,∴CE=CB,∴∠CEB=∠CBE,∴∠EOF=∠CEB,∴OF∥CE,∴△AOF∽△AEC∴,∴,即,解得x= ,因为x>0,∴x= ;②60°< 的度数<90°时,点E在O点的左侧,若∠EOF=∠B,则OF∥BD,∴OF= BC= BD,∴即解得x= ,若∠EOF=∠BAC,则x=− ,综上点E的坐标为( ,0) ;(,0);(−,0).【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.5.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点(1)求、两点的坐标;(2)求直线的解析式;(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,∴x1=-2,x2=4,∴A(-2,2),C(4,8)(2)解:①设直线l的解析式为y=kx+b(k≠0),∵A(-2,2)在直线l上,∴2=-2k+b,∴b=2k+2,∴直线l的解析式为y=kx+2k+2①,∵抛物线y= x2②,联立①②化简得,x2-2kx-4k-4=0,∵直线l与抛物线只有一个公共点,∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,∴k=-2,∴b=2k+2=-2,∴直线l的解析式为y=-2x-2;②平行于y轴的直线和抛物线y= x2只有一个交点,∵直线l过点A(-2,2),∴直线l:x=-2(3)解:由(1)知,A(-2,2),C(4,8),∴直线AC的解析式为y=x+4,设点B(m,m+4),∵C(4.8),∴BC= |m-4|= (4-m)∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,∴D(m, m2),E(m,-2m-2),∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,∵DC∥EF,∴△BDC∽△BEF,∴,∴,∴BF=6 .【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.6.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标7.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.【答案】(1)解:将B(4,0),C(0,4)代入y=x2+bx+c得,,解得,所以抛物线的解析式为,令y=0,得,解得,,∴A点的坐标为(1,0)(2)解:设D点横坐标为,则纵坐标为,①当∠BCD=90°时,如下图所示,连接BC,过C点作CD⊥BC与抛物线交于点D,过D作DE⊥y轴与点E,由B、C坐标可知,OB=OC=4,∴△OBC为等腰直角三角形,∴∠OCB=∠OBC=45°,又∵∠BCD=90°,∴∠ECD+∠OCB=90°∴∠ECD=45°,∴△CDE为等腰直角三角形,∴DE=CE=a∴OE=OC+CE=a+4由D、E纵坐标相等,可得,解得,,当时,D点坐标为(0,4),与C重合,不符合题意,舍去.当时,D点坐标为(6,10);②当∠CBD=90°时,如下图所示,连接BC,过B点作BD⊥BC与抛物线交于点D,过B作FG⊥x轴,再过C作CF⊥FG于F,过D作DG⊥FG于G,∵∠COB=∠OBF=∠BFC=90°,∴四边形OBFC为矩形,又∵OC=OB,∴四边形OBFC为正方形,∴∠CBF=45°∵∠CBD=90°,∴∠CBF+∠DBG=90°,∴∠DBG=45°,∴△DBG为等腰直角三角形,∴DG=BG∵D点横坐标为a,∴DG=4-a,而BG=∴解得,,当时,D点坐标为(4,0),与B重合,不符合题意,舍去.当时,D点坐标为(2,-2);综上所述,D点坐标为(6,10)或(2,-2).(3)3+ <m <6或 3- <m <2【解析】【解答】解:(3)当BC为斜边构成Rt△BCD时,如下图所示,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',∵BC为圆O'的直径,∴∠BDC=∠BD'C=90°,∵,∴D到O'的距离为圆O'的半径,∵D点横坐标为m,纵坐标为,O'点坐标为(2,2),∴即化简得:由图像易得m=0或4为方程的解,则方程左边必有因式,∴采用因式分解法进行降次解方程或或,解得,,,当时,D点坐标为(0,4),与C点重合,舍去;当时,D点坐标为(4,0),与B点重合,舍去;当时,D点横坐标;当时,D点横坐标为;结合(2)中△BCD形成直角三角形的情况,可得△BCD为锐角三角形时,D点横坐标m的取值范围为3+ <m <6或 3- <m <2.【分析】(1)利用待定系数法求抛物线的解析式,再令y=0,求A的坐标;(2)设D点横坐标为a,代入函数解析式可得纵坐标,分别讨论∠BCD=90°和∠CBD=90°的情况,作出图形进行求解;(3)当BC为斜边构成Rt△BCD时,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',此时△BCD和△BCD'就是以BC为斜边的直角三角形,利用两点间距离公式列出方程求解,然后结合(2)找到m的取值范围.8.如图,抛物线与轴交于两点( 在的左侧),与轴交于点,点与点关于抛物线的对称轴对称.(1)求抛物线的解析式及点的坐标:(2)点是抛物线对称轴上的一动点,当的周长最小时,求出点的坐标;(3)点在轴上,且,请直接写出点的坐标.【答案】(1)解:根据题意得,解得抛物线的解析式为抛物线的对称轴为直线点与点关于抛物线的对称轴对称点的坐标为(2)解:连接点与点关于抛物线的对称轴对称.为定值,当的值最小即三点在同一直线上时的周长最小由解得,在的左侧,由两点坐标可求得直线的解析式为当时,当的周长最小时,点的坐标为(3)解:点坐标为或【解析】【分析】(1)利用待定系数法即可求出n,利用对称性C、D关于对称轴对称即可求出点D坐标.(2)A,P,D三点在同一直线上时△PAC的周长最小,求出直线AD的解析式即可解决问题.(3)分两种情形①作DQ∥AC交x轴于点Q,此时∠DQA=∠DAC,满足条件.②设线段AD的垂直平分线交AC于E,直线DE与x的交点为Q′,此时∠Q′DA=′CAD,满足条件,分别求解即可.9.在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).(1)填空:正方形的面积为________;当双曲线(k≠0)与正方形ABCD有四个交点时,k的取值范围是________.(2)已知抛物线L: (a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线(k≠0)与边DC交于点N.①点Q(m,-m2-2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q在最高位置和最低位置时的坐标.②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值.③求证:抛物线L与直线的交点M始终位于轴下方.【答案】(1)36;0<k<4或-8<k<0(2)解:①由题意可知,,当m=-1,最大=4,在运动过程中点Q在最高位置时的坐标为(-1,4)当m<-1时,随m的增大而增大,当m=-2时,最小=3,当m>-1时,随m的增大而减小,当m=4时,最小=-21,3>-21,∴最小=-21,点Q在最低位置时的坐标(4,-21)∴在运动过程中点Q在最高位置时的坐标为(-1,4),最低位置时的坐标为(4,-21)②将点B(-2,-2)代入双曲线得,∴k=4,∴反比例函数解析式为N点横坐标x=4,代入得,∴N(4,1)由顶点P(m,n)在边BC上,∴,BP= ,CP=E点横坐标x=-2,F点横坐标x=4,分别代入抛物线可得E ,F ,∴BE= ,CF= ,∴,又∵AE=NF,点F在点N下方,∴化简得,∴③由题意得,M ,,∵二次函数对称轴为m=1,,∴当m=1时,取得最小值为,当或4时,最大为,当m=4时,抛物线L为,E点横坐标为-2,代入抛物线得,∴EF点横坐标为x=4,代入抛物线得,∴∵E点在AB边上,且此时不与B重合,∴,解得∴,∴当时,抛物线L为同理可得E ,F∵F在CD边上,且此时不与C重合∴,解得,∴,∴综上,抛物线L与直线x=1的交点始终位于x轴的下方.【解析】【解答】(1)解:由点A(-2,4),B(-2,-2)可知正方形的边长为6,∴正方形面积为36;当反比例函数在一、三象限时,若经过B(-2,-2)则,若经过D(4,4),则,根据图像特征,要有4个交点,则0<k<4;当反比例函数在二、四象限时,若经过A(-2,4)则,若经过C(4,-2)则,根据图像特征,要有4个交点,则-8<k<0,综上,k的取值范围是0<k<4或-8<k<0.【分析】(1)由坐标求出正方形的边长,即可求出面积,讨论反比例函数在一、三象限和二、四象限时,利用数形结合求出k的范围;(2)①由题意可知,,分,和分别讨论Q点符合条件的坐标;②将点B(-2,-2)代入双曲线,可求k=4和N(4,1),再表示出点 E 和 F ,可推出BE= ,CF= ,,再根据AE=NF可推出,进而可求的值;③由题意得,M ,,当m=1时,最小为,当或4时,最大为,再分别讨论当m=4时,根据E点不与B点重合,列出不等式可得,当时, F点不与C点重合列出不等式可得,即可得证.10.如图,在平面直角坐标系中抛物线交x轴于点A、B,交y轴于点C, A、B两点横坐标为-1和3,C点纵坐标为-4.(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求D点坐标,并求△BCD 面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,求出点Q的坐标,不存在说明理由.【答案】(1)解:由图像可知:A,B,C,三点的坐标分别是(-1,0),(3,0),(0,-4),将A,B,C三点坐标代入抛物线得:,解之得:∴抛物线的解析式为:;(2)解:如图,作DH垂直AB于H,设D点坐标为(x,y),则有:OC=4,OB=3,OH=x,HD=-y,HB=3-x,∴梯形CDHO为直角梯形,∴即:又∵D点在抛物线上,∴∴当时,△BCD面积有最大值,是,∴所以D点坐标为:(,-5)(3)解:由函数关系式:化简得:,∴对称轴为:,如图示:作出对称轴,交x轴于F点,连接CB,交对称轴于E点,∴由B,C,的坐标分别是(3,0),(0,-4),设BC的函数解析式为:则:,解之得:∴BC的函数解析式为:,当时,,∴E点坐标为:(1,),∴BF=2,FE= ,∴,即:∴存在一点Q,使得∠QBC=45°,并且点Q在FE之间,设Q点坐标为:(1,)∴,,∵直线BQ和BC的交角为,∴即:化简得:,∴Q点坐标为:(1,)【解析】【分析】(1)将A,B,C三点坐标代入抛物线,即可求出;(2)作DH垂直AB于H,设D点坐标为(x,y),则有OC=4,OB=3,OH=x,HD=-y,由,,化简即可出;(3)由函数关系式:化简得对称轴为,作出对称轴,交x轴于F点,连接CB,交对称轴于E点,求出BC的函数解析式,则可以知道E点坐标为:(1,),所以存在一点Q,使得∠QBC=45°,并且点Q在FE之间,设Q点坐标为:(1,),求出线段的斜率,线段的斜率,利用两直线相交交角为,得到,化简即可。
初三教学数学反比例函数易错题训练

..初三数学反比率函数易错题训练一.填空题(共9小题)1.(2016?呼和浩特)已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y 的取值.2.(2016?淮安模拟)如图,已知双曲线y= (k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB订交于点D,若OD=1,则BD= .3.(2014秋?宣汉县期中)如图,A,B为双曲线 y= (k>0)上两点,AC⊥x轴于C,BD⊥y轴于D交AC于E,若矩形OCED面积为2且AD∥OE,则k= .4.(2012?连云港)如图,直线y=k1x+b与双曲线y= 交于A、B两点,其横坐标分别为 1 和5,则不等式k1x<+b的解集是.5.(2013秋?青羊区校级月考)假如函数y=(n﹣4)是反比率函数,那么n的值为.;....6.(2012?瑞安市模)如,在反比率函数(x>0)的象上,有点P1,P2,P3,P4,⋯,n,它的横坐挨次1,2,3,4,⋯,n.分些点作x与y的垂,中所P构成的暗影部分的面分S1,S2,S3,⋯,S n,S1+S2+S3+⋯+S10的.7.(2012春?通州区期中)如,B双曲y=(x>0)上一点,直AB平行于y交22.直y=x于点A,若OBAB=12,k=8.(2011春?靖江市期末)两个反比率函数和在第一象限内的象如所示,点P在的象上,PC⊥x于点C,交的象于点A,PD⊥y于点D,交的象于点B,当点P在的象上运,以下:①△ODB与△OCA的面相等;②四形PAOB的面不会生化;③PA与PB始相等;④当点A是PC的中点,点B必定是PD的中点.此中必定正确的选项是.9.如,双曲与直y=mx订交于A、B两点,M此双曲在第一象限内的任一点(M在A点左),直AM、BM分与y订交于P、Q两点,且,,p q的.;..二.解答题(共8小题)10.(2016?静安区一模)如图,直线y= x与反比率函数的图象交于点A(3,a),第一象限内的点B在这个反比率函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.11.(2016?卧龙区二模)如图,向来线与反比率函数y=(k>0)交于A、B两点,直线(与x轴、y轴分别交于C、D两点,过A、B两点分别向x轴、y轴作垂线,H、E、F、I为垂足,连接EF,延长AE、BF订交于点G.(1)矩形OFBI与矩形OHAE的面积之和为;(用含k的代数式表示);2)说明线段AC与BD的数目关系;3)若直线AB的分析式为y=2x+2,且AB=2CD,求反比率函数的分析式.;..12.(2016?邯郸一模)已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=,S△AOB=;(2)假如线段MN被反比率函数的图象分成两部分,而且这两部分长度的比为1:3,求k的值;(3)如图2,若反比率函数图象经过点N,此时反比率函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.13.(2013?牡丹江模拟)如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比率函数y=(k>0)的图象与矩形AOBC的边AC、BC分别订交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.1)求证:△AOE与△BOF的面积相等;2)求反比率函数的分析式;(3)如图2,P点坐标为(2,﹣3),在反比率函数y=的图象上能否存在点M、N(M在N的左边),使得以O、P、M、N为极点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明原由.14.(2012?河北区一模)如图,一次函数y=kx+b的图象与反比率函数的图象交于A(﹣2,1),B(1,n)两点.(Ⅰ)试确立上述反比率函数和一次函数的表达式;(Ⅱ)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积;;....(Ⅲ)直接写出一次函数值大于反比率函数值的自变量x的取值范围.15.(2011?白下区二模)如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k≠0)的图象与反比率函数y=(n 是常数,n≠0,x>0)的图象订交于A(1,4)、B(a,b)两点,此中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.1)求n的值;2)若△ABD的面积为6,求一次函数y=kx+m的关系式.16.(2011秋?城关区校级期中)如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比率函数y=的图象的一个分支位于第一象限.(1)求点A的坐标;(2)若矩形ABDC从图(1)的地点开始沿x轴的正方向挪动,每秒挪动1个单位,1秒后点A恰好落在反比率函数y=的图象的图象上,求k的值;3)矩形ABCD连续向x图(2),设挪动的总时间为的函数关系式;(4)在(3)的状况下,当轴的正方向挪动,AB、AC与反比率函数图象分别交于P、Q如t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t为什么值时,S2=S1?;..(..17.如图,在Rt△AOB中∠ABO=90°,点B在x轴上,点C(1,m)为OA的中点,一反比率函数的图象经过点C,交AB于点D.1)求点D的坐标(用含m的式子表示);2)连接OD,若OD均分∠AOB,求反比率函数的分析式.;....初三数学反比率函数易错题训练参照答案与试题分析一.填空题(共9小题)1.(2016?呼和浩特)已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值y>1或﹣≤y<0.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,依据图象写出y的取值.2.(2016?淮安模拟)如图,已知双曲线y=(k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB订交于点D,若OD=1,则BD=﹣1.【分析】先设D的坐标为(a,b),BD=x,过D作DE⊥AO,再判断△OED∽△OAB,依据相似三角形的对应边成比率,求得B(a+ax,b+bx),再依据点C为AB的中点求得C(a+ax,b+bx),最后点C、D都在反比率函数y=的图象上,获得关于x的方程,求得x的值即可.3.(2014秋?宣汉县期中)如图,A,B为双曲线y=(k>0)上两点,AC⊥x轴于C,BD⊥y轴于D交AC于E,若矩形OCED面积为2且AD∥OE,则k=4.;....【分析】依据意:有S矩形OCED=S△OAC;依据反比率函数中k的几何意,象上的点与原点所的段、坐、向坐作垂所成的直角三角形面S的关系即S= |k|,列出方程,而求出k的.4.(2012?云港)如,直y=k1x+b与双曲 y=交于A、B两点,其横坐分1和5,不等式k1x<+b的解集是5<x<1或x>0.【分析】依据不等式与直和双误分析式的关系,相当于把直向下平移2b个位,然后依据函数的称性可得交点坐与原直的交点坐关于原点称,再找出直在双曲下方的自量x的取范即可.5.(2013秋?青羊区校月考)假如函数y=(n 4)是反比率函数,那么n的1.【分析】依据反比率函数的一般形式,即可获得n 25n+3= 1且n 4≠0,即可求得n的.6.(2012?瑞安市模)如,在反比率函数1,P2,P3,P4,⋯,(x>0)的象上,有点PP n,它的横坐挨次1,2,3,4,⋯,n.分些点作x与y的垂,中所构成的暗影部分的面分S1,S2,S3,⋯,S n,S1+S2+S3+⋯+S10的5.【分析】分把x=1、x=2、⋯代入反比率函数的分析式,求出y的,依据矩形的面公式代入,即可求出果.7.(2012春?通州区期中)如,B双曲y=(x>0)上一点,直AB平行于y交22,k=6.直y=x于点A,若OBAB=12;....【分析】延长AB 交x 轴于点C ,设点C 的横坐标为 a ,再依据AB ∥y 轴表示出 BC 与AB 的长度,在 Rt △BOC 中,利用勾股定理表示出 OB 2,再代入已知条件整理即可消掉 a 并求 出k 值.8.(2011春?靖江市期末)两个反比率函数和 在第一象限内的图象以下列图, 点P 在 的图象上,PC ⊥x 轴于点C ,交 的图象于点A ,PD ⊥y 轴于点D ,交的图象于点B ,当点P 在 的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 一直相等;④当点A 是PC 的中点时, 点B 必定是PD 的中点.此中必定正确的选项是 ①②④ .【分析】设A (x 1,y 1),B (x 2,y 2),而A 、B 两点都在 的图象上,故有x 1y 1=x 2y 2=1,而S △ODB =×BD ×OD=x 2y 2=,S △OCA =×OC ×AC=x 1y 1=,故①正确;由A 、B 两点坐标可知P (x 1,y 2),P 点在的图象上,故S 矩形OCPD =OC ×PD=x 1y 2=k , 依据S 四边形PAOB =S 矩形OCPD ﹣S △ODB ﹣S △OCA ,计算结果,故 ②正确;由已知得x 1y 2=k ,即x 1?=k ,即x 1=kx 2,由A 、B 、P 三点坐标可知PA=y 2﹣y 1=﹣,PB=x 1﹣x 2,=(k ﹣1)x 2,故③错误;当点A 是PC 的中点时,y 2=2y 1,代入x 1y 2=k 中,得2x 1y 1=k ,故k=2,代入x 1=kx 2中,得x 1=2x 2,可知④正确.9.如图,双曲线与直线y=mx 订交于A 、B 两点,M 为此双曲线在第一象限内的任一点(M 在A 点左边),设直线 AM 、BM 分别与y 轴订交于P 、Q 两点,且 , ,则p ﹣q 的值为2 .;....【分析】设A(m,n)则B(﹣m,﹣n),过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,依据平行线分线段成比率定理得出=,=,求出p=1+,q=﹣1,代入p﹣q求出即可.二.解答题(共8小题)10.(2016?静安区一模)如图,直线y= x与反比率函数的图象交于点A(3,a),第一象限内的点B在这个反比率函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【分析】(1)用直线求出点A坐标为(3,4),反比率函数分析式y=,设点B坐标为(x,),tanα=,得出=,x=6,得出B点坐标(6,2);(2)过A点做AC⊥x轴,交OB于点C,将三角形OAB分为两个三角形,分别求解即可.(11.(2016?卧龙区二模)如图,向来线与反比率函数y=(k>0)交于A、B两点,直线与x轴、y轴分别交于C、D两点,过A、B两点分别向x轴、y轴作垂线,H、E、F、I为垂足,连接EF,延长AE、BF订交于点G.(1)矩形OFBI与矩形OHAE的面积之和为2k;(用含k的代数式表示);2)说明线段AC与BD的数目关系;3)若直线AB的分析式为y=2x+2,且AB=2CD,求反比率函数的分析式.;....【分析】(1)依据反比率函数的面积不变性进行计算;(2)先依据条件判断△EGF∽△AGB,得出∠GAB=∠GEF,从而判断四边形AEFC和四边形BDEF都是平行四边形,最后依据平行四边形的对边相等得出结论;(3)将B的坐标设为(a,2a+2),依据直角三角形BDI的勾股定理列出方程,求得a的值即可获得B的坐标,从而代入反比率函数求解.12.(2016?邯郸一模)已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN 交y轴于点C.1)m=2,S△AOB=8;(2)假如线段MN被反比率函数的图象分成两部分,而且这两部分长度的比为1:3,求k的值;(3)如图2,若反比率函数图象经过点N,此时反比率函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.【分析】(1)利用点在函数图象上的特色求出m,以及平面直角坐标系中三角形的面积的计算方法(利用坐标轴或平行于坐标轴的直线上的边作为底).(2)利用点的对称点的坐标特色求出N点的坐标,线段MN被反比率函数的图象分成两部分,而且这两部分长度的比为1:3,且交点为D,分两种状况或计算即可.;....3)利用点到平行于坐标轴的直线的距离的计算方法以及和(2)近似的方法分两种状况办理,取绝对值时,也要分状况计算.13.(2013?牡丹江模拟)如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比率函数y=(k>0)的图象与矩形AOBC的边AC、BC分别订交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.1)求证:△AOE与△BOF的面积相等;2)求反比率函数的分析式;(3)如图2,P点坐标为(2,﹣3),在反比率函数y=的图象上能否存在点M、N(M在N的左边),使得以O、P、M、N为极点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明原由.【分析】(1)直接依据反比率函数系数k的几何意义进行证明即可;(2)作出折叠后的草图,依据反比率函数分析式表示出点EF的坐标,过点E作EH⊥OB,可得△EGH∽△GFB,依据相似三角形的对应边成比率列式整理,而后在△GFB中利用勾股定理计算即可求出k值;(3)利用反比率函数分析式设出点M的坐标,而后把平行四边形OPMN看作是边PN沿PO方向平移至OM处获得的,依据点P与点O对应关系,由点M的坐标表示出点N的坐标,而后再代入函数分析式,计算即可求解.14.(2012?河北区一模)如图,一次函数y=kx+b的图象与反比率函数的图象交于A(﹣2,1),B(1,n)两点.(Ⅰ)试确立上述反比率函数和一次函数的表达式;(Ⅱ)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积;(Ⅲ)直接写出一次函数值大于反比率函数值的自变量x的取值范围.;....【分析】(I)把A的坐标代入反比率函数的分析式,求出m,得出反比率函数的分析式,把B的坐标代入求出n,把A、B的坐标代入一次函数的分析式,得出方程组,求出方程组的解,即可得出一次函数的分析式;(II)过B作BD⊥OC于D,求出OD,依据等腰三角形性质求出C O,依据三角形的面积公式求出即可;(III)依据一次函数与反比率函数的图象,即可得出答案.15.(2011?白下区二模)如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k≠0)的图象与反比率函数y=(n是常数,n≠0,x>0)的图象订交于A(1,4)、B(a,b)两点,此中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.1)求n的值;2)若△ABD的面积为6,求一次函数y=kx+m的关系式.【分析】(1)依据函数图象上的点吻合函数分析式,将A(1,4)代入y=即可求出n的值;(2)先依据A、B两点在反比率函数的图象上可求出ab的值,再依据三角形的面积公式可求出a的值,从而可得出B点坐标,由A、B两点的坐标即可求出一次函数y=kx+m的分析式.16.(2011秋?城关区校级期中)如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比率函数y=的图象的一个分支位于第一象限.(1)求点A的坐标;;....(2)若矩形ABDC从图(1)的地点开始沿x轴的正方向挪动,每秒挪动1个单位,1秒后点A恰好落在反比率函数y=的图象的图象上,求k的值;3)矩形ABCD连续向x图(2),设挪动的总时间为的函数关系式;(4)在(3)的状况下,当轴的正方向挪动,AB、AC与反比率函数图象分别交于P、Q如t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t为什么值时,S2=S1?【分析】(1)连接OA,依据勾股定理求出OC,即可得出答案;(2)求出A的坐标,把A的坐标代入反比率函数的分析式,求出k即可;(3)求出BP,依据三角形的面积公式求出S1即可;求出t秒后A的坐标,得出Q的横坐标,代入分析式求出Q的纵坐标,求出CQ,依据三角形的面积公式求出S2即可;(4)把S1、S2代入已知,得出关于t的方程,求出t的值即可.17.如图,在Rt△AOB中∠ABO=90°,点B在x轴上,点C(1,m)为OA的中点,一反比率函数的图象经过点C,交AB于点D.1)求点D的坐标(用含m的式子表示);2)连接OD,若OD均分∠AOB,求反比率函数的分析式.【分析】(1)过点C作CE⊥OB于点E,依据∠ABO=90°获得CE∥AB,由于点C(1,m)为OA的中点,因此点E为OB的中点,因此OB=2OE=2,获得点D的横坐标为2,设反比率函数的分析式为y=,把点C(1,m)代入得:k=m,获得y=,x=2时,y=,因此点D的坐标为(2,).;....(2)过点D作DF⊥AO于点F,先求出点 D的坐标为(2,),依据角均分线的性质获得DF=DB= ,依据点C(1,m)求出OC,获得OA=2OC=,依据S△ABO=S△OBD+S△AOD,即可解答.;..。
中考数学复习反比例函数专项易错题附答案.doc

中考数学复习反比例函数专项易错题附答案一、反比例函数1.如图,一次函数y1=k1 x+b 与反比例函数y2=的图象交于点A(4, m)和 B(﹣ 8,﹣2),与 y 轴交于点C.(1) m=________, k1=________;(2)当 x 的取值是 ________时, k1 x+b>;(3)过点 A 作 AD⊥ x 轴于点 D,点 P 是反比例函数在第一象限的图象上一点.设直线OP 与线段 AD 交于点 E,当 S四边形ODAC: S△ODE=3: 1 时,求点 P 的坐标.【答案】(1) 4;(2)﹣ 8< x< 0 或 x>4(3)解:由( 1)知, y1= x+2 与反比例函数 y2= ,∴点 C 的坐标是( 0,2),点 A的坐标是( 4, 4).∴CO=2, AD=OD=4.∴S 梯形ODAC= ?OD= × 4=12,∵S 四边形ODAC: S△ODE=3: 1,∴S△ODE= S 梯形ODAC= × 12=4,即OD?DE=4,∴D E=2.∴点 E 的坐标为( 4,2).又点 E 在直线 OP 上,∴直线 OP 的解析式是y=x,∴直线 OP 与 y2=的图象在第一象限内的交点P 的坐标为( 4,2).【解析】【解答】解:(1)∵反比例函数y2=的图象过点B(﹣ 8,﹣ 2),∴ k2=(﹣8)×(﹣ 2) =16,即反比例函数解析式为y2=,将点 A( 4, m)代入 y2= ,得: m=4,即点 A( 4,4),将点 A( 4, 4)、 B(﹣ 8,﹣ 2)代入 y1=k1 x+b,得:,解得:,∴一次函数解析式为y1=x+2,故答案为:4,;( 2 )∵ 一次函数 y1=k1x+2 与反比例函数y2= 的图象交于点A( 4,4)和 B(﹣ 8,﹣ 2),∴当 y > y 时, x 的取值范围是﹣ 8< x<0 或 x> 4,1 2故答案为:﹣ 8< x< 0 或 x> 4;【分析】( 1)由 A 与 B 为一次函数与反比例函数的交点,将 B 坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将 A 的坐标代入反比例解析式中求出m 的值,确定出 A 的坐标,将 B 坐标代入一次函数解析式中即可求出k1的值;( 2)由 A 与 B 横坐标分别为4、﹣ 8,加上0,将 x 轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x 的范围即可;( 3 )先求出四边形ODAC 的面积,由S 四边形ODAC:S△ODE=3: 1 得到△ ODE 的面积,继而求得点 E 的坐标,从而得出直线 OP 的解析式,结合反比例函数解析式即可得.2.如图,平行于y 轴的直尺(一部分)与双曲线y=(k≠0)(x>0)相交于点A、 C,与x 轴相交于点 B、 D,连接 AC.已知点 A、 B 的刻度分别为 5, 2(单位: cm),直尺的宽度为2cm, OB=2cm.(1)求 k 的值;(2)求经过 A、 C 两点的直线的解析式;(3)连接 OA、 OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣ 2=3cm, OB=2cm,∴A 的坐标是( 2, 3),代入 y=得3=,解得: k=6(2)解: OD=2+2=4,在y= 中令 x=4,解得 y= .则C 的坐标是( 4,).设AC 的解析式是 y=mx+n,根据题意得:,解得:,则直线 AC 的解析式是y=﹣x+(3)解:直角△ AOB 中, OB=2, AB=3,则 S△AOB× 2×;3=3= OB?AB=直角△ ODC中, OD=4,CD= ,则 S△OCD× 4×=3.= OD?CD=在直角梯形ABDC 中, BD=2, AB=3,CD=,则S梯形ABDC=(AB+DC)?BD=(3+)×2= .则 S△OAC =S AOB+S ABDC﹣S OCD=3+ ﹣ 3= △梯形△【解析】【分析】( 1 )首先求得 A 的坐标,然后利用待定系数法求得函数的解析式;( 2 )首先求得 C 的坐标,然后利用待定系数法求得直线的解析式;( 3 )根据△OAC=S△AOB+S梯形ABDC﹣S△OCD 利用直角三角形和梯形的面积公式求解.S3.如图,已知一次函数y= x+b 的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点 B,点 C在 y 轴上.(1)当△ ABC 的周长最小时,求点 C 的坐标;(2)当x+b<时,请直接写出x 的取值范围.【答案】(1)解:作点 A 关于 y 轴的对称点 A′,连接 A′B交 y 轴于点 C,此时点 C 即是所求,如图所示.∵反比例函数y=(x<0)的图象过点A(﹣ 1, 2),∴k=﹣ 1 × 2=﹣2 ,∴反比例函数解析式为y=﹣(x<0);∵一次函数y= x+b 的图象过点A(﹣ 1,2),∴2=﹣ +b,解得: b= ,∴一次函数解析式为 y= x+ .联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点 A 的坐标为(﹣1, 2)、点 B 的坐标为(﹣4,).∵点 A′与点 A 关于 y 轴对称,∴点 A′的坐标为( 1, 2),设直线 A′B的解析式为y=mx+n,则有,解得:,∴直线 A′B的解析式为y=x+.令y= x+ 中 x=0,则 y= ,∴点 C 的坐标为( 0,)(2)解:观察函数图象,发现:当 x<﹣ 4 或﹣ 1< x<0 时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣ 4 或﹣ 1< x< 0【解析】【分析】( 1)作点 A 关于 y 轴的对称点 A′,连接 A′B交 y 轴于点 C,此时点 C 即是所求.由点 A 为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、 B 的坐标,再根据点A′与点 A 关于 y 轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线 A′B解析式中 x 为 0,求出 y 的值,即可得出结论;( 2)根据两函数图象的上下关系结合点A、 B 的坐标,即可得出不等式的解集.4.给出如下规定:两个图形 G 和 G ,点 P 为 G 上任一点,点 Q 为 G 上任一点,如果1 2 1 2线段 PQ 的长度存在最小值,就称该最小值为两个图形G1 2和 G之间的距离.在平面直角坐标系 xOy 中, O 为坐标原点.(1)点 A 的坐标为A( 1, 0),则点B( 2, 3)和射线OA 之间的距离为 ________,点 C (﹣ 2, 3)和射线OA 之间的距离为________;(2)如果直线y=x+1 和双曲线y=之间的距离为,那么k=________;(可在图 1 中进行研究)(3)点 E 的坐标为( 1,),将射线OE 绕原点 O 顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE, OF 之间的距离相等的点所组成的图形记为图形M .①请在图 2 中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线 OE, OF 组成的图形记为图形W,直线 y=﹣ 2x﹣ 4 与图形 M 的公共部分记为图形N,请求出图形W 和图形 N 之间的距离.【答案】(1) 3;(2)﹣ 4(3)解:①如图, x 轴正半轴,∠GOH 的边及其内部的所有点(OH、 OG 分别与OE、 OF 垂直),;②由① 知 OH 所在直线解析式为y=﹣x, OG 所在直线解析式为y=x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,x,﹣ 2x﹣ 4),图形 N(即线段 MN )上点的坐标可设为(即图形 W 与图形 N 之间的距离为d,d===∴当 x=﹣时,d的最小值为=,即图形 W 和图形 N 之间的距离.【解析】【解答】解:(1)点( 2, 3)和射线OA 之间的距离为3,点(﹣2, 3)和射线OA 之间的距离为= ,故答案分别为:3,;(2)直线 y=x+1 和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1 和双曲线y=相交,它们之间的距离为0).过点 O 作直线 y=x+1 的垂线 y=﹣ x,与双曲线 y= 交于点 E、 F,过点 E 作 EG⊥ x 轴,如图1,由得,即点F(﹣,),则 OF==,∴O E=OF+EF=2 ,在 Rt△ OEG中,∠ EOG=∠OEG=45°, OE=2,则有 OG=EG=OE=2,∴点 E 的坐标为(﹣ 2, 2),∴k=﹣ 2 × 2=﹣4 ,故答案为:﹣ 4;【分析】( 1)由题意可得出点B( 2, 3)到射线 OA 之间的距离为 B 点纵坐标,根据新定义得点 C(﹣ 2,3)和射线 OA 之间的距离;(2)根据题意即可得 k< 0(否则直线y=x+1 和双曲线 y= k x 相交,它们之间的距离为0).过点 O 作直线 y=x+1 的垂线 y=﹣ x,与双曲线 y= k x 交于点 E、 F,过点 E 作 EG⊥ x轴,如图 1,将其联立即可得点 F 坐标,根据两点间距离公式可得OF 长,再由 OE=OF+EF 求出 OE 长,在 Rt△ OEG 中,根据等腰直角三角形的性质可得点 E 的坐标为(﹣ 2,2),将 E 点代入反比例函数解析式即可得出k 值.(3)①如图, x 轴正半轴,∠ GOH 的边及其内部的所有点(OH、OG 分别与 OE、OF 垂直);②由① 知 OH 所在直线解析式为y=﹣x, OG 所在直线解析式为y=x,分别联立即可得出点M 、N 坐标,从而得出x 取值范围,根据题意图形N(即线段MN )上点的坐标可设为( x,﹣ 2x﹣4 ),从而求出图形W 与图形 N 之间的距离为d,由二次函数性质知 d最小值 .5.如图 1,已知一次函数 y=ax+2 与 x 轴、 y 轴分别交于点A, B,反比例函数y=经过点M.(1)若 M 是线段 AB 上的一个动点(不与点 A、 B 重合).当 a=﹣ 3 时,设点 M 的横坐标为m,求 k 与 m 之间的函数关系式.(2)当一次函数y=ax+2 的图象与反比例函数y= 的图象有唯一公共点M,且 OM= ,求a 的值.( 3)当 a= ﹣ 2 时,将 Rt△AOB 在第一象限内沿直线y=x 平移个单位长度得到Rt△ A′ O′,B如′图2, M 是 Rt△ A′ O′斜B边′上的一个动点,求k 的取值范围.【答案】(1)解:当 a=﹣3 时, y=﹣ 3x+2,当y=0 时,﹣ 3x+2=0,x=,∵点 M 的横坐标为m,且 M 是线段 AB 上的一个动点(不与点A、B 重合),∴0< m<,, DANG则,﹣3x+2= ,当x=m 时,﹣ 3m+2= ,∴k=﹣ 3m2+2m(0< m<)(2)解:由题意得:,ax+2=,ax2+2x﹣k=0,∵直线 y=ax+2( a ≠0)与双曲线 y=有唯一公共点M 时,∴△ =4+4ak=0,ak=﹣ 1,∴k=﹣,则,解得:,∵OM=,∴12+(﹣)2=()2,a=±(3)解:当 a=﹣2 时, y=﹣ 2x+2,∴点 A 的坐标为( 1, 0),点 B 的坐标为( 0 ,2),∵将 Rt△ AOB 在第一象限内沿直线y=x 平移个单位得到Rt△ A′ O′, B′∴A′( 2,1), B′( 1, 3),点 M 是 Rt△ A′O′斜B′上一动点,边当点 M′与 A′重合时, k=2,当点 M′与 B′重合时, k=3,∴k 的取值范围是 2 ≤ k ≤ 3【解析】【分析】( 1)当 a=﹣3 时,直线解析式为y=﹣3x+2,求出 A 点的横坐标,由于点 M 的横坐标为m,且 M 是线段 AB 上的一个动点(不与点A、 B 重合)从而得到m 的取值范围,由﹣ 3x+2= ,由 X=m 得 k=﹣ 3m 2+2m( 0< m<);(2)由ax+2= 得 ax2+2x﹣k=0,直线 y=ax+2( a≠0)与双曲线 y= 有唯一公共点 M 时,△ =4+4ak=0, ak=﹣ 1,由勾股定理即可;( 3 )当 a=﹣ 2 时, y=﹣2x+2,从而求出 A、 B 两点的坐标,由平移的知识知A′, B′点的坐标,从而得到k 的取值范围。
初三数学反比例函数的专项培优易错试卷练习题含答案

初三数学反比例函数的专项培优易错试卷练习题含答案一、反比例函数1.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【答案】(1)解:当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y= 中,3= ,解得:k=﹣3,∴反比例函数的表达式为y=﹣(2)解:当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0)(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.5.如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.【答案】(1)解:∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y= (m≠0),∴﹣1= ,∴m=2,∴反比例函数的解析式为:y= ,∵点A(1,a)在反比例函数上,∴把A代入y= ,得到a= =2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b (k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1(2)解:如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值(3)解:过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q= ,∴S△ABC= BC•EN= ×(4﹣)×(3﹣1)= .【解析】【分析】由反比例函数经过点D(-2,-1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y=(m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.【答案】(1)y=;y=(2)解:如图1,∵双曲线y= 的“半双曲线”是y= ,∴△AOD的面积为2,△BOD的面积为1,∴△AOB的面积为1(3)解:解法一:如图2,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM= ,CN= .∴MN= ﹣ = .同理PM=m﹣ = .∴S△PMN= MN•PM=∵1≤S△PMN≤2,∴1≤ ≤2.∴4≤k≤8,解法二:如图3,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴点N为MC的中点,同理点P为MD的中点.连接OM,∵,∴△PMN∽△OCM.∴.∵S△OCM=k,∴S△PMN= .∵1≤S△PMN≤2,∴1≤ ≤2.∴4≤k≤8.【解析】【解答】解:(1)由“倍双曲线”的定义∴双曲线y= ,的“倍双曲线”是y= ;双曲线y= 的“半双曲线”是y= .故答案为y= ,y= ;【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.8.如图,已知直线l:y=kx+b(k<0,b>0,且k、b为常数)与y轴、x轴分别交于A 点、B点,双曲线C:y= (x>0).(1)当k=﹣1,b=2 时,求直线l与双曲线C公共点的坐标;(2)当b=2 时,求证:不论k为任何小于零的实数,直线l与双曲线C只有一个公共点(设为P),并求公共点P的坐标(用k的式子表示).(3)①在(2)的条件下,试猜想线段PA、PB是否相等.若相等,请加以证明;若不相等,请说明理由;②若直线l与双曲线C相交于两点P1、P2,猜想并证明P1A与P2B之间的数量关系.【答案】(1)解:联立l与C得,①﹣②,得﹣x+2 ﹣ =0化简,得x2﹣2 x+3=0解得x1=x2= ,y1=y2= ,直线l与双曲线C公共点的坐标为(,)(2)解:证明:联立l与C得,①﹣②,得kx+2 ﹣ =0,化简,得kx2+2 x﹣3=0,a=k,b=2 ,c=﹣3,△=b2﹣4ac=(2 )2﹣4k×(﹣3)=12k﹣12k=0,∴kx2+2 x﹣3=0只有相等两实根,即不论k为任何小于零的实数,直线l与双曲线C只有一个公共点;x=﹣,y= ,即P(﹣,)(3)解:①PA=PB,理由如下:y=kx+b当x=0时,y=b,即A(0,b);当y=0时,x=﹣,即B(﹣,0),P(﹣,),PA= ,PB= ,∴PA=PB.②P1A=P2B,理由如下:y=kx+b当x=0时,y=b,即A(0,b);当y=0时,x=﹣,即B(﹣,0),联立l与C得,①﹣②,得kx+b﹣ =0,化简,得kx2+bx﹣3=0,解得P1(,)P2(,)P1A2=()2+()2,P2B2=()2+()2,∴P1A2=P2B2,∴P1A=P2B【解析】【分析】(1)根据联立函数解析式,可得方程组,根据代入消元法,可得方程组的解,可得交点的坐标;(2)根据联立函数解析式,可得方程组,根据代入消元法,可的一元二次方程,根据判别式,可得答案;(3)①根据函数与自变量的关系,可得A、B点坐标,根据两点间距离公式,可得答案;②根据函数与自变量的关系,可得A、B点坐标,根据联立函数解析式,可得方程组,根据代入消元法,可得方程组的解,可得交点的坐标,根据两点间距离公式,可得答案.9.如图1,抛物线y=ax2﹣4ax+b经过点A(1,0),与x轴交于点B,与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)将△OAC沿AC翻折得到△ACE,直线AE交抛物线于点P,求点P的坐标;(3)如图2,点M为直线BC上一点(不与B、C重合),连OM,将OM绕O点旋转90°,得到线段ON,是否存在这样的点N,使点N恰好在抛物线上?若存在,求出点N 的坐标;若不存在,说明理由.【答案】(1)解:由题意知:抛物线的对称轴为:x=2,则B(3,0);已知OB=OC=3,则C(0,-3);设抛物线的解析式为:y=a(x-1)(x-3),依题意有:a(0-1)(0-3)=-3,a=-1;故抛物线的解析式为:y=-x2+4x-3.(2)解:设AE交y轴于点F;易证得△FOA∽△FEC,有,设OF=x,则EF=3x,所以FA=3x﹣1;在Rt△FOA中,由勾股定理得:(3x﹣1)2=x2+1,解得x=;即OF=,F(0,);求得直线AE为y=﹣x+ ,联立抛物线的解析式得:,解得,;故点P(,).(3)解:∵B(3,0),C(0,﹣3),∴直线BC:y=x﹣3;设点M(a,a﹣3),则:①当点M在第一象限时,OG=a,MG=a﹣3;过M作MG⊥x轴于G,过N作NH⊥x轴于H;根据旋转的性质知:∠MON=90°,OM=ON,则可证得△MOG≌△NOH,得:OG=NH=a,OH=MG=a﹣3,故N(a﹣3,﹣a),将其代入抛物线的解析式中,得:﹣(a﹣3)2+4(a﹣3)﹣3=﹣a,整理得:a2﹣11a+24=0,a=3(舍去),a=8;故M(8,5),N(5,﹣8).②当点M在第三象限时,OG=﹣a,MG=3﹣a;同①可得:MG=OH=3﹣a,OG=NH=﹣a,则N(3﹣a,a),代入抛物线的解析式可得:﹣(3﹣a)2+4(3﹣a)﹣3=a,整理得:a2﹣a=0,故a=0,a=1;由于点M在第三象限,所以a<0,故a=0、a=1均不合题意,此种情况不成立;③当点M在第四象限时,OG=a,MG=3﹣a;同①得:N(3﹣a,a),在②中已经求得此时a=0(舍去),a=1;故M(1,﹣2),N(2,1);综上可知:存在符合条件的N点,且坐标为N(2,1)或(5,﹣8).【解析】【分析】(1)根据抛物线的解析式,可得抛物线的对称轴方程,进而可根据点A 的坐标表示出点B的坐标,已知OB=OC,即可得到点C的坐标,从而利用待定系数法求得抛物线的解析式.(2)点P为直线AE和抛物线的交点,欲求点P,必须先求出直线AE的解析式;设直线AE与y轴的交点为F,易得△FOA∽△FEC,由于OA=1,EC=3,根据相似三角形的对应边成比例即可得到FE=3OF,设OF=x,则EF=3x,AF=3x-1,进而可在Rt△FOA 中求出x的值,也就能求出F点的坐标,然后利用待定系数法求出直线AE的解析式,联立抛物线的解析式即可得到点P的坐标.(3)此题应分三种情况讨论:①当点M在第一象限时,可设M(a,a-3),由于ON是由OM旋转90°而得,因此△OMN是等腰直角三角形,分别过M、N作MG、NH垂直于x轴,即可证得△OMG≌△NOH,得MG=OH,NH=OG,由此可表示出N点的坐标,然后将其代入抛物线的解析式中,即可求得点M、N 的坐标;②当点M在第三象限,④点M在第四象限时,解法同①.10.如图1,抛物线与轴交于、两点,与轴交于点,顶点为点.(1)求这条抛物线的解析式及直线的解析式;(2)段上一动点(点不与点、重合),过点向轴引垂线,垂足为,设的长为,四边形的面积为.求与之间的函数关系式及自变量的取值范围;(3)在线段上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】(1)解:∵抛物线与轴交于、两点,∴,解得:,∴二次函数的解析式为,∵,∴设直线的解析式为,则有,解得:,∴直线的解析式为(2)解:∵轴,,∴点的坐标为,∴,,,∵为线段上一动点(点不与点、重合),∴的取值范围是.(3)解:线段上存在点,,使为等腰三角形;,,,①当时,,解得,(舍去),此时,②当时,,解得,(舍去),此时,③当时,解得,此时.(1),;(2),的取值范围是;(3)或或【解析】【分析】(1)将A、B俩点代入抛物线解析式即可求出M的坐标,再设直线的解析式为,代入M的值计算即可.(2)由已知轴,,可得点的坐标为,再根据即可求得t的值.(3)存在,根据等腰三角形的性质,分情况进行解答即可.11.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.【答案】(1)解:当x=0时,y=4,∴A(0,4),∴OA=4,当y=0时,- x+4=0,x=3,∴B(3,0),∴OB=3,由勾股定理得:AB=5(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,tan∠OAB= ,∴设EM=3x,AE=4x,则AM=5x,∴M(3x,-4x+4),由旋转得:AM=AN,∠MAN=90°,∴∠EAM+∠HAN=90°,∵∠EAM+∠AME=90°,∴∠HAN=∠AME,∵∠AHN=∠AEM=90°,∴△AHN≌△MEA,∴AH=EM=3x,∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,∴NG=OH,则5x=3x+4,2x=4,x=2,∴M(6,-4);②如图2,由①知N(8,10),∵AN=DN,A(0,4),∴D(16,16),设直线DM:y=kx+b,把D(16,16)和M(6,-4)代入得:,解得:,∴直线DM的解析式为:y=2x-16,∵直线DM交x轴于E,∴当y=0时,2x-16=0,x=8,∴E(8,0),由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,∵∠QAP=∠OAB=∠DCE,∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,∵∠QNA=∠DNF,∴∠NFD=∠QAN=90°,∵AO∥NE,∴△ACO∽△NCE,∴,∴,∴CO= ,连接BN,∴AB=BE=5,∵∠BAN=∠BEN=90°,∴∠ANB=∠ENB,∵EN=ND,∴∠NDE=∠NED,∵∠CNE=∠NDE+∠NED,∴∠ANB=∠NDE,∴BN∥DE,Rt△ABN中,BN= ,sin∠ANB=∠NDE= ,∴,∴NF=2 ,∴DF=4 ,∵∠QNA=∠DNF,∴tan∠QNA=tan∠DNF= ,∴,∴AQ=20,∵tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,∴5x=20,x=4,∴QH=3x=12,AH=16,∴Q(-12,20),同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);ii)当△DCE∽△PAQ时,如图3,∴∠APN=∠CDE,∵∠ANB=∠CDE,∵AP∥NG,∴∠APN=∠PNE,∴∠APN=∠PNE=∠ANB,∴B与Q重合,∴AN=AP=10,∴OP=AP-OA=10-4=6,∴P(0,-6);综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).12.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学反比例函数易错题训练一.填空题(共9小题)1.(2016•呼和浩特)已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.2.(2016•淮安模拟)如图,已知双曲线y=(k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD= .3.(2014秋•宣汉县期中)如图,A,B为双曲线y=(k>0)上两点,AC⊥x 轴于C,BD⊥y轴于D交AC于E,若矩形OCED面积为2且AD∥OE,则k= .4.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是.5.(2013秋•青羊区校级月考)如果函数y=(n﹣4)是反比例函数,那么n的值为.6.(2012•瑞安市模拟)如图,在反比例函数(x>0)的图象上,有点P 1,P2,P3,P4,…,Pn,它们的横坐标依次为1,2,3,4,…,n.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积分别为S1,S 2,S3,…,Sn,则S1+S2+S3+…+S10的值为.7.(2012春•通州区期中)如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k= .8.(2011春•靖江市期末)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是.9.如图,双曲线与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q 两点,且,,则p﹣q的值为.二.解答题(共8小题)10.(2016•静安区一模)如图,直线y=x与反比例函数的图象交于点A (3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.11.(2016•卧龙区二模)如图,一直线与反比例函数y=(k>0)交于A、B两点,直线与x轴、y轴分别交于C、D两点,过A、B两点分别向x轴、y轴作垂线,H、E、F、I为垂足,连接EF,延长AE、BF相交于点G.(1)矩形OFBI与矩形OHAE的面积之和为;(用含k的代数式表示);(2)说明线段AC与BD的数量关系;(3)若直线AB的解析式为y=2x+2,且AB=2CD,求反比例函数的解析式.12.(2016•邯郸一模)已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m= ,S△AOB= ;(2)如果线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,求k的值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.13.(2013•牡丹江模拟)如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC 的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB 上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.14.(2012•河北区一模)如图,一次函数 y=kx+b 的图象与反比例函数的图象交于 A(﹣2,1),B(1,n)两点.(Ⅰ)试确定上述反比例函数和一次函数的表达式;(Ⅱ)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积;(Ⅲ)直接写出一次函数值大于反比例函数值的自变量x的取值范围.15.(2011•白下区二模)如图,在平面直角坐标系内,一次函数y=kx+m (k,m是常数,k≠0)的图象与反比例函数y=(n是常数,n≠0,x>0)的图象相交于A (1,4)、B (a ,b )两点,其中a >1.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连接AD 、DC 、CB .(1)求n 的值;(2)若△ABD 的面积为6,求一次函数y=kx+m 的关系式.16.(2011秋•城关区校级期中)如图(1)已知,矩形ABDC 的边AC=3,对角线长为5,将矩形ABDC 置于直角坐系内,点D 与原点O 重合.且反比例函数y=的图象的一个分支位于第一象限.(1)求点A 的坐标;(2)若矩形ABDC 从图(1)的位置开始沿x 轴的正方向移动,每秒移动1个单位,1秒后点A 刚好落在反比例函数y=的图象的图象上,求k 的值;(3)矩形ABCD 继续向x 轴的正方向移动,AB 、AC 与反比例函数图象分别交于P 、Q 如图(2),设移动的总时间为t (1<t <5),分别写出△BPD 的面积S 1、△DCQ 的面积S 2与t 的函数关系式;(4)在(3)的情况下,当t 为何值时,S 2=S 1?17.如图,在Rt△AOB 中∠ABO=90°,点B 在x 轴上,点C (1,m )为OA 的中点,一反比例函数的图象经过点C ,交AB 于点D .(1)求点D 的坐标(用含m 的式子表示);(2)连接OD ,若OD 平分∠AOB,求反比例函数的解析式.初三数学反比例函数易错题训练参考答案与试题解析一.填空题(共9小题)1.(2016•呼和浩特)已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值y>1或﹣≤y<0 .【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y的取值.2.(2016•淮安模拟)如图,已知双曲线y=(k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD= ﹣1 .【分析】先设D的坐标为(a,b),BD=x,过D作DE⊥AO,再判定△OED∽△OAB,根据相似三角形的对应边成比例,求得B(a+ax,b+bx),再根据点C为AB的中点求得C(a+ax,b+bx),最后点C、D都在反比例函数y=的图象上,得到关于x的方程,求得x的值即可.3.(2014秋•宣汉县期中)如图,A,B为双曲线y=(k>0)上两点,AC⊥x 轴于C,BD⊥y轴于D交AC于E,若矩形OCED面积为2且AD∥OE,则k= 4 .【分析】根据题意:有S矩形OCED =S△OAC;根据反比例函数中k的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,列出方程,进而求出k的值.4.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是﹣5<x<﹣1或x >0 .【分析】根据不等式与直线和双曲线解析式的关系,相当于把直线向下平移2b个单位,然后根据函数的对称性可得交点坐标与原直线的交点坐标关于原点对称,再找出直线在双曲线下方的自变量x的取值范围即可.5.(2013秋•青羊区校级月考)如果函数y=(n﹣4)是反比例函数,那么n的值为 1 .【分析】根据反比例函数的一般形式,即可得到n2﹣5n+3=﹣1且n﹣4≠0,即可求得n的值.6.(2012•瑞安市模拟)如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,Pn,它们的横坐标依次为1,2,3,4,…,n.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积分别为S1,S2,S3,…,Sn,则S1+S2+S3+…+S10的值为5.【分析】分别把x=1、x=2、…代入反比例函数的解析式,求出y的值,根据矩形的面积公式代入,即可求出结果.7.(2012春•通州区期中)如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k= 6 .【分析】延长AB交x轴于点C,设点C的横坐标为a,再根据AB∥y轴表示出BC与AB的长度,在Rt△BOC中,利用勾股定理表示出OB2,再代入已知条件整理即可消掉a并求出k值.8.(2011春•靖江市期末)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是①②④.【分析】设A (x 1,y 1),B (x 2,y 2),而A 、B 两点都在的图象上,故有x 1y 1=x 2y 2=1,而S △ODB =×BD×OD=x 2y 2=,S △OCA =×OC×AC=x 1y 1=,故①正确;由A 、B 两点坐标可知P (x 1,y 2),P 点在的图象上,故S 矩形OCPD =OC×PD=x 1y 2=k ,根据S 四边形PAOB =S 矩形OCPD ﹣S △ODB ﹣S △OCA ,计算结果,故②正确;由已知得x 1y 2=k ,即x 1•=k ,即x 1=kx 2,由A 、B 、P 三点坐标可知PA=y 2﹣y 1=﹣=,PB=x 1﹣x 2,=(k ﹣1)x 2,故③错误;当点A 是PC 的中点时,y 2=2y 1,代入x 1y 2=k 中,得2x 1y 1=k ,故k=2,代入x 1=kx 2中,得x 1=2x 2,可知④正确.9.如图,双曲线与直线y=mx 相交于A 、B 两点,M 为此双曲线在第一象限内的任一点(M 在A 点左侧),设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且,,则p ﹣q 的值为 2 .【分析】设A (m ,n )则B (﹣m ,﹣n ),过A 作AN⊥y 轴于N ,过M 作MH⊥y 轴于H ,过B 作BG⊥y 轴于G ,根据平行线分线段成比例定理得出=,=,求出p=1+,q=﹣1,代入p ﹣q 求出即可. 二.解答题(共8小题)10.(2016•静安区一模)如图,直线y=x 与反比例函数的图象交于点A (3,a ),第一象限内的点B 在这个反比例函数图象上,OB 与x 轴正半轴的夹角为α,且tanα=.(1)求点B 的坐标;(2)求△OAB 的面积.【分析】(1)用直线求出点A坐标为(3,4),反比例函数解析式y=,设点B坐标为(x,),tanα=,得出=,x=6,得出B点坐标(6,2);(2)过A点做AC⊥x轴,交OB于点C,将三角形OAB分为两个三角形,分别求解即可.11.(2016•卧龙区二模)如图,一直线与反比例函数y=(k>0)交于A、B两点,直线与x轴、y轴分别交于C、D两点,过A、B两点分别向x轴、y轴作垂线,H、E、F、I为垂足,连接EF,延长AE、BF相交于点G.(用含k的代数式表示);(1)矩形OFBI与矩形OHAE的面积之和为2k ;(2)说明线段AC与BD的数量关系;(3)若直线AB的解析式为y=2x+2,且AB=2CD,求反比例函数的解析式.【分析】(1)根据反比例函数的面积不变性进行计算;(2)先根据条件判定△EGF∽△AGB,得出∠GAB=∠GEF,进而判定四边形AEFC和四边形BDEF 都是平行四边形,最后根据平行四边形的对边相等得出结论;(3)将B的坐标设为(a,2a+2),根据直角三角形BDI的勾股定理列出方程,求得a 的值即可得到B的坐标,进而代入反比例函数求解.12.(2016•邯郸一模)已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m= 2 ,S= 8 ;△AOB(2)如果线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,求k的值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.【分析】(1)利用点在函数图象上的特点求出m,以及平面直角坐标系中三角形的面积的计算方法(利用坐标轴或平行于坐标轴的直线上的边作为底).(2)利用点的对称点的坐标特点求出N点的坐标,线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,分两种情况或计算即可.(3)利用点到平行于坐标轴的直线的距离的计算方法以及和(2)类似的方法分两种情况处理,取绝对值时,也要分情况计算.13.(2013•牡丹江模拟)如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC 的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB 上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【分析】(1)直接根据反比例函数系数k的几何意义进行证明即可;(2)作出折叠后的草图,根据反比例函数解析式表示出点EF的坐标,过点E作EH⊥OB,可得△EGH∽△GFB,根据相似三角形的对应边成比例列式整理,然后在△GFB中利用勾股定理计算即可求出k值;(3)利用反比例函数解析式设出点M的坐标,然后把平行四边形OPMN看作是边PN沿PO方向平移至OM处得到的,根据点P与点O对应关系,由点M的坐标表示出点N的坐标,然后再代入函数解析式,计算即可求解.14.(2012•河北区一模)如图,一次函数 y=kx+b 的图象与反比例函数的图象交于 A(﹣2,1),B(1,n)两点.(Ⅰ)试确定上述反比例函数和一次函数的表达式;(Ⅱ)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积;(Ⅲ)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(I)把A的坐标代入反比例函数的解析式,求出m,得出反比例函数的解析式,把B的坐标代入求出n,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;(II)过B作BD⊥OC于D,求出OD,根据等腰三角形性质求出CO,根据三角形的面积公式求出即可;(III)根据一次函数与反比例函数的图象,即可得出答案.15.(2011•白下区二模)如图,在平面直角坐标系内,一次函数y=kx+m (k,m是常数,k≠0)的图象与反比例函数y=(n是常数,n≠0,x>0)的图象相交于A(1,4)、B(a,b)两点,其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.(1)求n的值;(2)若△ABD 的面积为6,求一次函数y=kx+m 的关系式.【分析】(1)根据函数图象上的点符合函数解析式,将A (1,4)代入y=即可求出n 的值;(2)先根据A 、B 两点在反比例函数的图象上可求出ab 的值,再根据三角形的面积公式可求出a 的值,进而可得出B 点坐标,由A 、B 两点的坐标即可求出一次函数y=kx+m 的解析式.16.(2011秋•城关区校级期中)如图(1)已知,矩形ABDC 的边AC=3,对角线长为5,将矩形ABDC 置于直角坐系内,点D 与原点O 重合.且反比例函数y=的图象的一个分支位于第一象限.(1)求点A 的坐标;(2)若矩形ABDC 从图(1)的位置开始沿x 轴的正方向移动,每秒移动1个单位,1秒后点A 刚好落在反比例函数y=的图象的图象上,求k 的值;(3)矩形ABCD 继续向x 轴的正方向移动,AB 、AC 与反比例函数图象分别交于P 、Q 如图(2),设移动的总时间为t (1<t <5),分别写出△BPD 的面积S 1、△DCQ 的面积S 2与t 的函数关系式;(4)在(3)的情况下,当t 为何值时,S 2=S 1?【分析】(1)连接OA ,根据勾股定理求出OC ,即可得出答案;(2)求出A 的坐标,把A 的坐标代入反比例函数的解析式,求出k 即可;(3)求出BP ,根据三角形的面积公式求出S 1即可;求出t 秒后A 的坐标,得出Q 的横坐标,代入解析式求出Q 的纵坐标,求出CQ ,根据三角形的面积公式求出S 2即可;(4)把S 1、S 2代入已知,得出关于t 的方程,求出t 的值即可.17.如图,在Rt△AOB中∠ABO=90°,点B在x轴上,点C(1,m)为OA 的中点,一反比例函数的图象经过点C,交AB于点D.(1)求点D的坐标(用含m的式子表示);(2)连接OD,若OD平分∠AOB,求反比例函数的解析式.【分析】(1)过点C作CE⊥OB于点E,根据∠ABO=90°得到CE∥AB,因为点C(1,m)为OA的中点,所以点E为OB的中点,所以OB=2OE=2,得到点D的横坐标为2,设反比例函数的解析式为y=,把点C(1,m)代入得:k=m,得到y=,x=2时,y=,所以点D的坐标为(2,).(2)过点D作DF⊥AO于点F,先求出点D的坐标为(2,),根据角平分线的性质得到DF=DB=,根据点C(1,m)求出OC,得到OA=2OC=,根据S△ABO =S△OB D+S△AOD,即可解答.希望以上资料对你有所帮助,附励志名言3条:1、要接受自己行动所带来的责任而非自己成就所带来的荣耀。