湘教版数学八年级下册直角三角形单元测试 .docx

合集下载

八年级数学下册第一章直角三角形单元综合测试(新版)湘教版

八年级数学下册第一章直角三角形单元综合测试(新版)湘教版

第一章直角三角形单元测试一.单选题(共10题;共30分)1.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=10,则PD等于()A. 10B. 8C. 5D. 2.52.到△ABC的三条边距离相等的点是△ABC的是()A. 三条中线的交点,B. 三条角平分线的交点C. 三条高线的交点D. 三条边的垂直平分线的交点3.下列可使两个直角三角形全等的条件是()A. 一条边对应相等B. 斜边和一直角边对应相等C. 一个锐角对应相等D. 两个锐角对应相等4.△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A. 点O一定在△ABC的内部B. ∠C的平分线一定经过点OC. 点O到△ABC的三边距离一定相等D. 点O到△ABC三顶点的距离一定相等5.如图折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处,已知CD=1,∠B=30°,则BD的长是()A. 1B. 2C. D. 26.下列可以判定两个直角三角形全等的条件是()A. 斜边相等B. 面积相等C. 两对锐角对应相等D. 两对直角边对应相等7.如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是()A. 6cmB. 1.5cmC. 3cmD. 4.5cm8.下列条件不可以判定两个直角三角形全等的是()A. 两条直角边对应相等B. 有两条边对应相等C. 一条边和一锐角对应相等D.一条边和一个角对应相等9.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°,则下列结论中正确的是()A. AD=2CDB. CD=2BDC. AC=2BCD. AB=4BD10.不能使两个直角三角形全等的条件()A. 一条直角边及其对角对应相等B. 斜边和一条直角边对应相等C. 斜边和一锐角对应相等D. 两个锐角对应相等二.填空题(共8题;共27分)11.某市在旧城改造中,计划在市内一块如图所示三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要________ 元12.如图所示,∠B=∠D=90°,要使△ABC≌△ADC,还需添加一个条件,这个条件可以是________(只需填一个即可)13.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.14.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为________.15.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)16.已知Rt△ABC中,∠C=90゜,AB=2BC,则∠A=________.17.一个直角三角形房梁如图所示,其中BC⊥AC,∠BAC=30°,AB=10 cm,CB1⊥AB,B1C1⊥AC1,垂足分别是B1、C1,那么BC的长是________ cm,B1C1=________cm.18.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.三.解答题(共6题;共42分)19.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.20.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?为什么?23.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.。

(完整版)湘教版八年级数学下册第一单元《直角三角形》测试

(完整版)湘教版八年级数学下册第一单元《直角三角形》测试

八年级下册第一单元测试时量:90分钟 满分:120分姓名 班级一、选择题(每小题3分,且每题只有一个正确答案,共36分)1. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ) A .270° B .135° C .90° D .315°2. 在Rt △ABC 中,∠C =90°,∠B =30°,斜边AB 的长为2 cm ,则AC 长为( )A .4 cmB .2 cmC .1 cm D. 12cm3. 边长为2的等边三角形的内有一点O ,那么O 到三角形各边的距离之和为( )A .3B .23C .2D .43 4. 如图,在△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离是( ) A .3 B .4C .5D .65. 如图,EA ⊥AB ,BC ⊥AB ,EA =AB =2BC ,D 为AB 中点,有以下结论:①DE =AC ;②DE ⊥AC ;③∠CAB =30°;④∠EAF =∠ADE . 其中正确的结论个数为( )A .1B .2C .3D .46. 如图,已知AD 是△ABC 的BC 边上的高,能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .∠BAC =90°C .BD =ACD .∠B =45°7. 在直角三角形ABC 中,斜边72=AB ,则222AC BC AB ++的值是( )A. 7B. 14C. 21D. 498. 小东想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m 后,发现下端刚好接触地面,则旗杆的高为( )AB9. 如右图,长方形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,OB 的长为半径画弧,交正半轴于一点,则 这个点表示的实数是( ) A.2.5B.22C.3D.510. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A.90° B.60° C.45°D.30°11. 到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点 12. 如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,AD 是∠BAC 的平分线,则CD 的长为( )A.310 B. 38C.311D. 3 二、填空题(每小题4分,共24分)13. 如图,在△ABC 中,∠B =∠C ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为________.14. 腰长为5,一条高为415. 如右图,直线l 为5和11,则b 16. 如图,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°,有以下结论:①AF ⊥BC ;②△ADG ≌△ACF ;③O 为BC 的中点. 其中正确的序号是 . 17. 如右图,△ABC 中,有一点P 在AC 上移动.若AB =AC =5,BC =6,则AP+BP+CP 的最小值为 . 18. 顶角为150°,腰长为20的等腰三角形面积为 . C B三、解答题(共60分)19.(本小题8分)按要求用尺规作图:如图所示,在△ABC 内部,求作一点D ,使得D 点到AB 边和BC 边的距离相等,并且到B 点和C 点距离也相等.(不要求写作法,但必须保留作图痕迹)20.(本小题8分)如右图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,求BD 的长.21.(本小题8分)如图,上午8时,一条轮船从海岛A 出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A 、B 望灯塔C ,测得∠NAC =30°,∠NBC =60°,问以同样的速度继续前行,则上午何时轮船与灯塔C 距离最近.22.(本小题8分)如图,AC ⊥CB ,DB ⊥CB ,AB =DC .求证:∠ABD =∠ACD .B23.(本小题8分)如图所示,AD ∥BC ,AB=BD=BC =2,CD =1,求AC 的长.24.(本小题10分)已知:如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 是BC 边的中点,BF ∥AC ,EF ∥AB ,EF =4 cm . (1)求∠F 的度数; (2)求AB 的长.25.(本小题10分)已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),则当t 为何值时,△PBQ 是直角三角形?A。

湘教版数学八年级下册直角三角形单元测试

湘教版数学八年级下册直角三角形单元测试

初中数学试卷直角三角形单元测试基础部分:1、完全平方公式及平方差公式 (4分)2、三角形的性质:①有一个角是 ②两个锐角③ ④3、直角三角形的判定:①② (4分)4、Rt △ABC 中,CD 是斜边上AB 的中线: ①三条相等的线段为②∠1与∠2的关系为 (4分) 5、勾股定理及逆定理(4分) 6、300直角三角形性质定理及逆定理(4分)7、据勾股定理填空: (4分)32+ =52 (122+162 = ) 52+ =132 ( +242 = ) 82+152 = (162+30= ) 12 + =22 (a 2+(3 a) 2 = )8、在Rt △ABC 中,∠A=300 , ∠ACB=900 ,AD 是AB 边上的中线,则该图中相等的线段有 ; 等边三角形是 。

(2分)9、在Rt △ABC 中,BC=3 ,AC=4,∠ACB=900 ,AD 是AB 边上的中线, (5分) ①S △ADC = S △BDC = 。

②用两种方法求斜边AB 上的高CH 的长。

10、HL 定理(2分)11、角平分线性质定理及逆定理(4分)A DBC 1 2 AC B12、一直角三角形两直角边为3、4,则第三边长为 。

(2分)13、一直角三角形两边长为3、4,则第三边长为 。

(2分)14、请证明:全等三角形中对应边上的高相等. (4分)15、一架木梯长25米,斜靠在墙上,底端离墙角7米。

(5分)(1)这个梯子的顶端距地面有多高?(2)若梯子顶端沿墙面下滑416、将下题完成: (5分)在△ABC 中,AD ⊥BC 于D,AD 与BE 交于H ,且BH=AC ,DH=DC 求∠ABC 。

解:∵AD ⊥BC∴ = =90° 在Rt △BHD 与Rt △ADC 中,= (两直角边相等) = (两斜边相等) Rt △BHD ≌Rt △ADC ( )∴ = (全等三角形对应边相等)即Rt △ABD 是等腰直角三角形。

湘教版初二数学下册《直角三角形》单元试卷检测练习及答案解析

湘教版初二数学下册《直角三角形》单元试卷检测练习及答案解析

湘教版初二数学下册《直角三角形》单元试卷检测练习及答案解析一、选择题1、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm2、如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M、C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km(第2题图)(第3题图)3、如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,求AB的长()A.4 B.6 C.8 D.104、在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是( )A.如果∠C-∠B=∠A,则△ABC是直角三角形B.如果a2+c2=b2,则△ABC不是直角三角形C.如果(c-a)(c+a)=b2,则△ABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形5、如图,△ABC中,∠C=90°,AD是角平分线,∠B=30°,若BD=4,则BC=()A.5 B.6 C.7 D.8(第5题图)(第6题图)(第8题图)6、如图,△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于点E,且AC=7cm,则DE+BD等于()A.7cm B.6cm C.5cm D.4cm7、到△ABC的三条边距离相等的点是△ABC的().A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点8、如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是( )A.8 B.6 C.5 D.4二、填空题9、如图,Rt△ABC中∠ABC=90°,D为斜边AC的中点,AC=20cm,则BD= cm.(第9题图)(第11题图)(第12题图)10、在Rt△ABC中,已知∠C=90°,∠B=60°,BC=3,那么∠A= ,AB= .11、如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于______.12、如图△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为________.13、如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB= cm.(第13题图)(第14题图)(第15题图)(第16题图)14、如图,在Rt△ABC中,各边的长度如图所示,∠C=90°,AD平分∠CAB交BC于点D,则点D到AB的距离是__.15、如图在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC="3" cm,那么=_________。

八年级数学下册1直角三角形检测题(新版)湘教版【含答案】

八年级数学下册1直角三角形检测题(新版)湘教版【含答案】

第一章直角三角形单元检测试题一、选择题 ( 本大题共10 小题 )1. 若是三角形中一边上的中线等于这边的一半,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形2.如图,在单位正方形组成的网格图中标有AB, CD, EF, GH四条线段,其中能组成一个直角三角形三边的一组线段是 (), EF,GH B.AB , EF,, CF, EF D.GH , AB, CD3. 若一个三角形的三边长为6,8, x,则此三角形是直角三角形时,x 的值是()A. 8 B. 10 C. 2 D. 10 或 24. 满足以下条件的△ABC,不是直角三角形的是 ( )(A)b 2=c2-a 2(B)a ∶ b∶ c=3∶ 4∶ 5(C)∠ C=∠ A-∠ B(D)∠ A∶∠ B∶∠ C=12∶ 13∶155. 以下长度的三条线段能组成直角三角形的是()A. 4, 5, 6 B. 2,3, 4 C. 1, 1,D. 1,2, 26. 以下说法中正确的选项是()A.已知 a, b, c 是三角形的三边长,则a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在 Rt△ABC中,若∠ C=90°,则三角形对应的三边满足a2+b2=c2 D.在 Rt△ABC中,若∠ A=90°,则三角形对应的三边满足a2+b2=c27. 如图,在△ ABC中,AD是△ ABC中∠ BAC的均分线,且 BD> DC,则以下说法中正确的选项是 ( )A.点 D到 AB边的距离大于点 D 到 AC边的距离B.点 D到 AB边的距离等于点 D 到 AC边的距离C.点 D到 AB边的距离小于点 D 到 AC边的距离D.点 D到 AB边的距离与点 D到 AC边的距离大小关系不确定8.如图,已知在△ ABC 中, CD是 AB 边上的高线, BE 均分∠ ABC,交 CD于点 E, BC=5, DE = 2,则△ BCE的面积等于()A. 10B. 7C.5 D . 49.在△ ABC中,∠ BAC=90°,AB=3,AC=4,AD均分∠ BAC交BC于D,则BD的长为()A.B.C.D.10.如图,已知点 P 到 AE, AD,BC的距离相等,以下说法:①点 P 在∠ BAC的均分线上;②点P 在∠ CBE的均分线上;③点 P 在∠ BCD的均分线上;④点 P 在∠ BAC,∠ CBE,∠ BCD的平分线的交点上.其中正确的选项是()A.①②③④B.①②③C.④D.②③二、填空题 ( 本大题共8 小题 )11.如图,AC⊥ CE,AD=BE=13,BC=5,DE=7,则AC=.12. 已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为cm.13.如图,一棵树在一次强台风中于离地面 4 米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.14.如图,在Rt△ABC中,∠ ACB=90°, D是 AB的中点, CD=5cm,则 AB=cm.15. 生活经验表示:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子牢固摆放时,它的顶端能到达8.5 m 高的墙头吗?________( 填“能”或“不能够” ) .16.已知:如图, GB= FC, D、E 是 BC上两点,且 BD= CE,作 GE⊥BC, FD⊥BC,分别与 BA、CA的延长线交于点G, F,则 GE和 FD. 的数量关系式。

湘教版八年级数学下册《第一章 直角三角形》测试卷-带参考答案

湘教版八年级数学下册《第一章 直角三角形》测试卷-带参考答案

湘教版八年级数学下册《第一章直角三角形》测试卷-带参考答案一、选择题(每题3分,共30分)1.下列各组数中,以它们为边长能构成直角三角形的是()A.1,3,4B.2,3,4C.1,1,√3D.5,12,132.如图,已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()(第2题)A.40°B.45°C.50°D.60°3.如图,在4×3的正方形网格中,标记格点A,B,C,D,且每个小正方形的边长都是1,下列选项中的线段长度为√13的是()(第3题)A.线段ABB.线段BCC.线段CDD.线段AD4.(母题:教材P16习题T2)在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边.下列条件中,不能得出△ABC是直角三角形的是()A.b2=a2-c2B.∠A∶∠B∶∠C=3∶4∶5C.∠C=∠A-∠BD.a∶b∶c=1∶√3∶√25.如图,在Rt△ABC中,∠A=30°,DE垂直平分AC,交AB于点D,E是垂足,连接CD.若BD=1,则AC的长是()(第5题)A.2√3B.2C.4√3D.46.如图,在四边形ABCD中,∠ABC=60°,BD平分∠ABC,∠BCD>∠CBD,BC=24,P,Q分别是BD,BC上的动点,当CP+PQ取得最小值时,BQ的长是()(第6题)A.8B.10C.12D.167.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.无法确定8.如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=√3,则△AOB 与△BOC的面积之和为()(第8题)A.√34B.√32C.3√34D.√39.如图,边长为6的正方形ABCD中,M为对角线BD上的一点,连接AM并延长交CD于点P.若PM=PC,则AM的长为()(第9题)A.3(√3-1)B.3(3√3-2)C.6(√3-1)D.6(3√3-2)10.“春节”是我国最重要的传统节日,在春节期间有很多习俗,贴对联、剪窗花、挂彩灯、吃饺子、守岁、放鞭炮等,为了增添节日的气氛,某同学家买了一串长52 cm的彩灯,按如图方式(从A绕到B)缠绕在圆柱体的柱子上,且柱子的底面周长为10 cm,则柱子高()(第10题)A.2√651 cmB.√69 cmC.12 cmD.48 cm二、填空题(每题3分,共24分)11.如图,在△ABC中,BP,CP分别是∠ABC,∠ACB的平分线,若∠BPC=130°,则∠A=.(第11题)12.如图,在△ABC中,AB=AC,AD是BC边上的中线,若AB=5,BC=6,则AD的长度为.(第12题)13.如图,OC为∠AOB的平分线,CM⊥OB于点M,OC=5,OM=4,则点C到射线OA的距离为.(第13题)14.已知直角三角形的两边长分别为3和4,则此三角形的周长为.15.如图所示的象棋棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.(第15题)16.七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形、1个正方形和1个平行四边形组成,则图中阴影部分的面积为dm2.(第16题)17.如图,边长为2的等边三角形ABC的两个顶点A,B分别在两条射线OM,ON 上滑动,若OM⊥ON,则OC的最大值是.(第17题)18.如图,在Rt△ABC中,∠ACB=90°,以△ABC的三边为边向外作正方形ACDE,正方形CBGF,正方形AHIB,P是HI上一点,记正方形ACDE和正方形AHIB的面积分别为S1,S2,若S1=16,S2=25,则四边形ACBP的面积等于.(第18题)三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.20.(母题:教材P16习题T2)如图,在边长为1的小正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.21.海绵城市是新一代城市雨洪管理概念,下雨时吸水、蓄水、渗水、净水,需要时将蓄存的水释放并加以利用.某市是全国首批16个海绵城市建设试点城市之一,其中位于梦溪路与滨水路交界处的海绵主题公园,既是周边汇水区雨洪管理的一个有机模块,也是立体化展示海绵技术的科普公园,园区内有一块下沉式绿地(四边形ABCD,如图),经测量,AB∥CD,AB=BC=20米,∠B=60°,∠D=45°,求该绿地的周长(结果保留根号).22.如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC交AB 于点E.(1)求证:BE=DE;(2)若∠A=80°,∠C=40°,求∠BDE的度数.23.如图,学习了勾股定理后,数学兴趣小组的小红和小明对离教室不远的一个直角三角形空地斜边上的高进行了探究:两人在直角边AB上距离直角顶点B为9米远的点D处同时开始测量,点C为终点,小明沿D→B→C的路径测得所经过的路程为18米,小红沿D→A→C的路径测得所经过的路程为18米,这时小明说:“我能求出这个直角三角形空地斜边上的高了.”小红说:“我也知道怎么求出这个直角三角形空地斜边上的高了.”你能求出这个直角三角形空地斜边上的高吗?若能,请你求出来;若不能,请说明理由.24.如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系;(2)延长BC到点E,使CE=BC,延长DC到点F,使CF=DC,连接EF,求证:EF⊥AB;(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.答案一、1.D 2.C3.B 【点拨】由题意得AB=√12+22=√5,BC=√22+32=√13,CD=√12+12=√2,AD=√12+32=√10,故选B.4.B 【点拨】根据三角形内角和等于180°判断B,C;根据勾股定理的逆定理判断A,D,即可得出答案.5.A6.C 【点拨】作点Q关于BD的对称点H,易知点H在直线AB上,连接PH,则PQ=PH,BH=BQ,∴CP+PQ=CP+PH,∴当C,H,P三点在同一直线BC 上,且CH⊥AB时,CP+PQ=CH为最短.易得此时∠BCH=30°,∴BH=12×24=12,∴BQ=12.故选C.=127.C8.C9.C 【点拨】∵四边形ABCD是边长为6的正方形∴AD=CD=6,∠ADC=90°,∠ADM=∠CDM=45°.又∵DM=DM∴△ADM≌△CDM(SAS)∴∠DAM=∠DCM.∵PM=PC,∴∠CMP=∠DCM∴∠APD=∠CMP+∠DCM=2∠DCM=2∠DAM.又∵∠APD+∠DAM=180°-∠ADC=90°∴∠DAM=30°.设PD=x,则AP=2PD=2x,PM=PC=CD-PD=6-x∴AD=√AP2-PD2=√3x=6,解得x=2√3∴PM=6-x=6-2√3,AP=2x=4√3∴AM=AP-PM=4√3-(6-2√3)=6(√3-1).10.D二、11.80°【点拨】∵∠BPC=130°∴∠CBP+∠BCP=180°-∠BPC=50°.∵BP,CP分别是∠ABC,∠ACB的平分线∴∠ABC=2∠CBP,∠ACB=2∠BCP∴∠ABC+∠ACB=2(∠CBP+∠BCP)=100°∴∠A=180°-(∠ABC+∠ACB)=80°.12.4 【点拨】∵AB=AC,AD是BC边上的中线∴AD⊥BC,BD=CD,∴∠ADB=90°.∵BC=6,∴BD=CD=3.在Rt△ABD中,根据勾股定理得AD=√AB2-BD2=√52-32=4.13.314.12或7+√715.√2【点拨】如图,第一步到①,第二步到②.故走两步后的落点与出发点间的最短距离为√12+12=√2.16.2 【点拨】如图所示AD=2√2 dm依题意,得OD=√22OD=√2 dm.OE=12∴阴影部分的面积为OE2=(√2)2=2(dm2).17.1+√3【点拨】取AB中点D,连接OD,DC∴OC≤OD+DC,当O,D,C三点共线时,OC有最大值,最大值是OD+CD.∵△ABC为边长为2的等边三角形,点D为AB中点∴AB=BC=2,BD=1,CD⊥AB∴CD=√BC2-BD2=√3.∵△AOB 为直角三角形,点D 为斜边AB 的中点 ∴OD =12AB =1,∴OD +CD =1+√3 即OC 的最大值为1+√3.18.18.5 【点拨】∵正方形ACDE 和正方形AHIB 的面积分别为S 1,S 2,且S 1=16,S 2=25∴AC =4,AB =5.易得正方形CBGF 的面积=CB 2=AB 2-AC 2=25-16=9,∴BC =3.∴四边形ACBP 的面积=S △ABC +S △ABP =12×3×4+12×5×5=18.5.三、19.【解】(1)∵在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于点E ,∴DE =CD .∵CD =3,∴DE =CD =3.(2)∵在Rt △ABC 中,∠C =90°,AC =6,BC =8 ∴AB =√62+82=10. ∵由(1)知,DE =CD =3∴S △ABD =12AB ·DE =12×10×3=15.20.【解】(1)∵AB =√22+12=√5,AC =√22+42=2√5,BC =√32+42=5,∴AB +AC +BC =√5+2√5+5=3√5+5,即△ABC 的周长为3√5+5. (2)∵AB 2+AC 2=(√5)2+(2√5)2=25,BC 2=52=25,∴AB 2+AC 2=BC 2. ∴△ABC 是直角三角形.21.【解】连接AC ,过点A 作AE ⊥CD ,垂足为点E ,如图.∵AB =BC =20米,∠B =60° ∴△ABC 是等边三角形. ∴AC =AB =20米,∠BAC =60°. ∵AB ∥CD∴∠ACE =∠BAC =60°.又∵∠AEC =90°,∴∠CAE =30°.∴CE =12AC =10米.∴AE =√AC 2-CE 2=10√3米.∵∠AED =90°,∠D =45°,∴∠EAD =45°. ∴DE =AE =10√3米.由勾股定理得AD =√AE 2+DE 2=10√6米. ∴该绿地的周长=AB +BC +CD +DA =20+20+10+10√3+10√6 =50+10√3+10√6(米).22.(1)【证明】∵∠ABC 的平分线交AC 于点D ∴∠ABD =∠CBD .∵DE ∥BC ,∴∠EDB =∠CBD . ∴∠EBD =∠EDB .∴BE =DE .(2)【解】∵∠A =80°,∠C =40°,∴∠ABC =60°. ∵∠ABC 的平分线交AC 于点D ∴∠ABD =∠CBD =12∠ABC =30°. 由(1)知∠BDE =∠EBD ,∴∠BDE =30°. 23.【解】能.设BC =a 米,AC =b 米,AD =x 米,斜边AC 上的高为h 米,则9+a =x +b =18,∴a =9,b =18-x .在Rt △ABC 中,由勾股定理得(9+x )2+a 2=b 2 ∴(9+x )2+92=(18-x )2,解得x =3,即AD =3米. ∴AB =AD +DB =3+9=12(米),AC =15米. ∴12×9×12=12×15h ,解得h =365.答:这个直角三角形空地斜边上的高为365米. 24.(1)【解】∵∠A =90°,AB =AC ,∴BC =√2AB . ∵BC =AB +BD ,∴√2AB =AB +BD 即(√2-1)AB =BD .第 11 页 共 11 (2)【证明】如图①,∵CE =BC ,∠2=∠1,CF =DC ,∴△CEF ≌△CBD①∴∠E =∠DBC ,∴EF ∥BD ,∵BD ⊥AB ,∴EF ⊥AB .(3)【证明】如图②,延长BA ,EF 交于点M ,延长CH 交ME 于点G .②∵EF ⊥AB ,AC ⊥AB∴ME ∥AC ,∴∠CGE =∠ACG .∵CH 是∠ACE 的平分线∴∠ACG =∠ECG ,∴∠CGE =∠ECG∴EG =EC =BC =AB +BD .∵△CBD ≌△CEF∴EF =BD ,∴EG =AB +BD =AC +EF即FG +EF =AC +EF ,∴AC =FG .在△AHC 和△FHG 中{∠ACH =∠FGH∠AHC =∠FHG AC =FG∴△AHC ≌△FHG (AAS)∴AH =HF.。

湘教版八年级下册第一章直角三角形单元测试卷

湘教版八年级下册第一章直角三角形单元测试卷
A.8 B.6 C.4 D.2
二、填空题
11.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B=_____.
12.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC=______.
13.如图,∠BAC=30°,P是∠BAC平分线上一点,PM∥AC,PD⊥AC,PD=30,则AM=_____.
2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )
A.30°B.35°C.45°D.60°
3.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∠A=40°,则∠BOC的大小为()
A.110°B.120°C.130°D.140°
4.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()
A.1:1:1B.1:2:3C.2:3:4D.3:4:5
5.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△EDB的周长是( )
A.4B.6C.8D.10
6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
∠OBC+∠OCB=70°
∠BOC=180°-70°=110°
故选A.
【点睛】
此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.

湘教版八年级数学(下)第一章《直角三角形》基础卷(含答案).doc

湘教版八年级数学(下)第一章《直角三角形》基础卷(含答案).doc

湘教版八年级数学(下)笫一章《直角三角形》基础卷(含答案)一、选择题(30分) 1、在RtAABC中,ZC=90°, ZB 二30。

,斜边AB 的长为2cm,则AC 的长为()A. 4 cm ;B. 2cm ;C. 1 cm ; D ・—cm ; 2 2、 下列长度的三条线段能组成钝角三角形的是( )A. 3, 4, 4;B. 3, 4, 5;C. 3, 4, 6;D. 3, 4, 7;3、 如图,在矩形ABCD 中,AB 二3, AD=1, AB 在数轴上,若以点A 为圆心,对 角线AC 的长为半径作弧交数轴的正半轴于M,则点M 所表示的实数为()4、 如图,公路AC 、BC 互相垂宜,公路AB 的中点M 于点C 被湖隔开,若测 得AM 的长为1.2km,则M, C 两点间的距离为()A. 0.5km ;B. 0.6km ;C. 0.9km ;D. 1.2km ; 5、 已知一个直角三角形的两边长分别为3和4,则第三边的平方是()A. 25;B. 14;C. 7;D. 7 或 25;6、 下列条件:①ZA+ZB 二ZC ;②ZA : ZB : ZO1 : 2 : 3;③ZA=90° -ZB ; @ZA=ZB=-ZC,其中能确定是直角三角形的条件 2有( )A. 1 个;B.2 个;C. 3 个;D.4 个;7、 如图,若 BE 丄CD, BE=CD, BC=DA,则ZCFD ()A.大于90° ;B.等于90° ;C.小于90° ;D.不确定; 8、 等边三角形的边长为2,则该三角形的面积为( )9、 如图,己知△ABC中,AB 二 10, AC 二8, BC 二6, DE 是AC 的垂直平分线,DE 交AB 于点D,连接CD,则CD 二( A. 3;B. 4;C.4.8;D. 5; 10、 如图,分别以直角三角形的三边为边长向外作正方 形,然后分别以正方形的中心为圆心,正方形的边长 一半为半径作圆,记三个圆的面积分别为S| , S2, 则Si , S 2, S3之间的关系是() A. S]+S2>S3; B. Si+S2=S3;C.S1+S2VS3;D.无法确定;二、填空题(24分) B. V3; C. 2^3;D. 3; 第3题 A. 2; B. V5-1 ; D 第9题 A S3S3S Si 第10题11、如图,为测得池塘两岸点A和点B间的距离,一个观测者在C点设桩,使ZABC=90°,并测得AC长50m, BC长40m,则A、B两点间的距离是_______________ o12、将一根长为15cm的筷了置于底面直径为5cm, 高12cm的圆柱形水杯中,设筷子露在杯子外面的长度为/zcm,则h的取值范围是____________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 桑水出品
直角三角形单元测试
基础部分:1、完全平方公式及平方差公式
(4分)
2、三角形的性质:①有一个角是 ②两个锐角
③ ④
3、直角三角形的判定:①
② (4分)
4、Rt △ABC 中,CD 是斜边上AB 的中线: ①三条相等的线段为
②∠1与∠2的关系为 (4分) 5、勾股定理及逆定理(4分)
6、300直角三角形性质定理及逆定理(4分)
7、据勾股定理填空: (4分)
3
2+ =52 (122+162 = ) 52+ =132 ( +242 = )
82+152 = (162+30= ) 12 + =22 (a 2+(3 a) 2 = )
8、在Rt △ABC 中,∠A=300 , ∠ACB=900 ,AD 是AB 边上的中线,则该图中相等的线段有 ; 等边三角形是 。

(2分)
9、在Rt △ABC 中,BC=3 ,AC=4,∠ACB=900 ,AD 是AB 边上的中线, (5分)
①S △ADC = S △BDC = 。

②用两种方法求斜边AB 上的高CH 的长。

10、HL 定理(2分)
11、角平分线性质定理及逆定理(4分)
12、一直角三角形两直角边为3、4,则第三边长为 。

(2分)
13、一直角三角形两边长为3、4,则第三边长为 。

(2分)
14、请证明:全等三角形中对应边上的高相等. (4分)
A D
B
C 1 2 A
C B
15、一架木梯长25米,斜靠在墙上,底端离墙角7米。

(5分)
(1)这个梯子的顶端距地面有多高?
(2)若梯子顶端沿墙面下滑4
16、将下题完成: (5分)
在△ABC 中,AD ⊥BC 于D,AD 与BE 交于H ,且BH=AC ,DH=DC 求∠ABC 。

解:∵AD ⊥BC
∴ = =90° 在Rt △BHD 与Rt △ADC 中,
= (两直角边相等) = (两斜边相等) Rt △BHD ≌Rt △ADC ( )
∴ = (全等三角形对应边相等)
即Rt △ABD 是等腰直角三角形。

∴∠ABC= 。

17、在△ABC 中, ∠C=90°, AC=BC ,AD 平分∠CAB 交BC
于D ,DE ⊥AB 于E,若AB=6,(6分) ①求S △ABC ②求L △DEB
提高部分:一选择:(10×3分)
1.下列命题中,是假命题的是 ( )
A .直角三角形中两锐角互余
B .若三角形三边长之比为1∶3∶2,则这个三角形中的最大角的度数是90°
C. 在△ABC 中,若∠A ∶∠B ∶∠C =1∶1∶2,则其各角所对边长比为1∶1∶2
D .两边和其中一边的对角对应相等的两个三角形全等
D C
A B
D C A B B ′
2.“如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等”的依据是()。

A.SAS B.ASA C.HL
D.SSS
3.等边三角形的高为2,则它的边长和面积分别是()。

A.2 、3 B.
33
2

33
2
C.1、2 D.2、4
4.两个直角三角形中,如果有一条直角边对应相等,则:
(1)若斜边上的高对应相等,那么这两个直角三角形全等;
(2)若直角的平分线相等,那么这两个直角三角形全等;
(3)若斜边上的中线对应相等,那么这两个直角三角形全等;
(4)两个直角三角形都有一个锐角是30°,那么这两个直角三角形全等。

其中正确命题的个数有()A.1个B.2个 C.3个 D.4个
5.如右图,已知在△ABC中,∠ABC=90°,
∠A=30°,BD⊥AC,DE⊥BC,D,E为垂足,
下列结论正确的是( )
A.AC=2AB
B.AC=8EC
C.CE= BD
D.BC=2BD
6.有四个三角形,分别满足下列条件:(1)
(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有( )
A.1个B.2个C.3个D.4个
7.如图,以点A和点B为两个顶点作位置不同的等腰直角三角形,
一共可以作出( )
A.2个
B.4个
C.6个
D.8个
8.三角形中到三边的距离相等的点是( )
A.三条边的垂直平分线的交点
B.三条高的交点
C. .三条角平分线的交点D三条中线的交点
9. 如图,在Rt△ABC中,∠C=90°AD的平分∠BAC, ∠BAD=20°,则∠B的度数为( )
A. 40°
B. 30°
C. 60°
D. 50°
10.如图所示,四边形ABCD中,AD∥BC,
若∠DAB的角平分线AE交CD于E,连接BE,
且BE恰好平分∠ABC,则AB的长与AD+BC
的长的大小关系为()
A AB>AD+BC
B AB=AD+BC
C AB<AD+BC D无法确定A ..B
A
B
A
C D B
二填空:(10×2分)
11.“正方形是矩形”的逆命题是_____________,其逆命题是___ 命题(真或假)。

12.直角三角形两边长分别为6、8 ,那么第三边长为_________。

(两个答案)
13.在等腰三角形中,腰长是a ,一腰上的高与另一腰的夹角是30°,则此等腰三角形的底边上的高是 。

(两个答案)
14.若△ABC 中,AB=13 ,AC=15 ,高AD=12,则BC=_________。

(两个答案)
15.已知直角三角形的斜边长为75cm ,两条直角边的比是3︰4,则这两条直角边的边长分别为__________。

16.若△ABC 是直角三角形,两条直角边分别为5和12,在三角形内有一点D ,D 到△ABC 各边的距离都相等,则这个距离等于_________。

17.若△ABC 是直角三角形,两条直角边分别为5和12,在三角形内有一点D ,D 到△ABC 各顶点的距离都相等,则这个距离等于_________。

(18题图) (19题图) (20题图)
18.如图,在△ABC 中,AB=AC ,点D 在BC 边上,DE ⊥AB ,DF ⊥AC ,
垂足分别为E ,F ,添加一个条件,____________ ,使DE=DF.
19.如图,△ABC 是等边三角形,ABCD 是等腰直角三角形,其中∠BCD=90°,
则∠BAD= _______°.
20.如图所示,已知:在△ABC 中,∠A=80°,BD=BE ,CD=CF.则∠EDF=____°
三解答:
23.(5分)如图,已知在△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点分别在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,求AC 的长.
24.(5分)如图(1)所示,在△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E.说明:
A
B
B D
F E
(1)BD=DE+EC:
(2)若直线AE绕点A旋转到
图2位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何? 请证明;
(3)若直线AE绕点A旋转到
图(3)时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?
请直接写出结果.。

相关文档
最新文档