PI调节器控制的双闭环串级调速系统的设计要点

合集下载

PI调节器控制的双闭环串级调速系统的设计要点

PI调节器控制的双闭环串级调速系统的设计要点

目录第一章概述 (2)第二章、双闭环控制串级调速系统的设计 (3)1.1双闭环串级调速系统的组成 (3)1.2 转子整流电路工作状态的选择 (4)1.3系统的动态数学模型的建立 (6)1.4 异步电动机和转子直流回路参数传递函数计算 (9)1.5调节器参数的计算与设计 (10)第三章、串级调速系统的SIMULINK仿真与分析 (13)总结 (15)附录 (15)参考文献 (16)第一章概述现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。

在这一系统中可对生产机械进行自动控制。

随着近代电力电了技术和计算机技术的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进。

以达到高速、优质、高效率地生产。

在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。

另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。

特别对于小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可靠性与柔性,还有易于应用的优点。

自动化的电力拖动系统更是低成本自动化系统的重要组成部分。

串级调速源于英语“cascade control”,意为“级联控制”,系指当时异步机转子与外附的直流电动机两级联接所形成的调速,虽然后来改进,用静止的电力电子变流装置和变压器取代直流电动机,但串级调速的称谓被习惯地沿用下来。

绕线异步电动机在转子回路中串接一个与转子电动势同频率的附加电动通过改变值大小和相位可实现调速。

这样,电动机在低速运行时,转子中的转差率只有小部分被转子绕组本身电阻所消耗,而其余大部分被附加电动势所吸收,利用产生E 的装置可以把这部分转差功率回馈到电网,使电动机在低速运行时仍具有较高的效率。

这种在绕线转子异步电动机转子回路串接附加电动势的调速方法称为串级调速。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

双闭环pi参数调节技巧

双闭环pi参数调节技巧

双闭环pi参数调节技巧双闭环PI参数调节技巧引言:双闭环PI参数调节技巧是一种常用的控制策略,广泛应用于工业自动化系统中。

本文将深入探讨双闭环PI参数调节技巧的多个方面,从理论基础、调节方法、优化策略等方面进行介绍和讨论。

一、双闭环控制理论基础1.1 双闭环控制原理双闭环控制是指在主闭环的基础上再添加一个辅助闭环,将被控对象的输出作为辅助闭环的参考输入。

这样,主闭环通过调节控制器参数来控制辅助闭环。

这种控制策略可以更好地消除扰动和提高系统的鲁棒性。

1.2 双闭环PI参数调节的必要性双闭环控制相比单闭环控制,具有更好的控制性能和抗干扰能力。

然而,参数的选择对系统的控制效果至关重要。

通过对PI参数的合理选择和调节,可以实现系统的快速响应、稳定性和鲁棒性。

二、双闭环PI参数调节的方法2.1 经验法则法经验法则法是一种常用的参数调节方法,通过调整经验法则中的参数来得到合适的PI参数。

Ziegler-Nichols法则和Chien-Hrones-Reswick法则等都是常见的经验法则。

2.2 试控法试控法是指通过不断试控和观察系统响应,来调节PI参数。

具体操作可以采用逐步调整法、渐进调整法或分步调整法等。

这种方法需要经验丰富的调节员或现场试验。

2.3 自整定方法自整定方法是指利用系统的数学模型和自整定规律,通过计算机辅助设计软件来获取合适的PI参数。

常见的自整定方法有最小二乘法、优化算法和专家系统等。

三、双闭环PI参数调节的优化策略3.1 正交实验法正交实验法是一种常用的优化策略,通过设计一组正交实验矩阵来寻找最佳的PI参数组合。

这种方法可以最大程度地减少试验次数,提高调节效率。

3.2 遗传算法遗传算法是一种优化搜索算法,通过模拟生物进化过程,不断调整参数组合,使目标函数达到最优。

遗传算法可以克服传统方法在参数搜索空间大时的困难,具有较好的全局优化能力。

3.3 控制器参数整定软件控制器参数整定软件是运用计算机辅助设计工具,通过建立系统模型和优化算法,自动搜索最佳的PI参数组合。

双闭环直流调速系统的设计

双闭环直流调速系统的设计

双闭环直流调速系统的设计一、双闭环直流调速系统的结构速度闭环由速度检测器、速度控制器和执行器组成。

速度检测器通常采用编码器或霍尔效应传感器,用于实时测量电机的转速。

速度控制器根据检测器测量值与设定值的差异,计算出控制信号,并将其发送给执行器。

执行器根据控制信号调整电机的驱动电压或电流,以实现转速的控制。

电流闭环由电流检测器、电流控制器和执行器组成。

电流检测器用于测量电机的电流值,电流控制器根据检测值与设定值的差异计算出电流控制信号,并将其发送给执行器。

执行器根据电流控制信号调整电机的电压或电流,以保持电机电流稳定。

二、双闭环直流调速系统的设计步骤1.确定系统的要求和参数:包括转速范围、精度要求、响应时间等。

根据要求和参数,选择适当的检测器、控制器和执行器等元件。

2.设计速度闭环:选择适当的速度检测器,如编码器或霍尔传感器,用于测量电机的转速。

选择合适的速度控制器,如PID控制器,根据转速设定值和检测器测量值的误差计算出控制信号。

选择合适的执行器,如晶闸管或MOSFET,对电机的驱动电压或电流进行调节。

3.设计电流闭环:选择适当的电流检测器,如电流互感器或霍尔传感器,用于测量电机的电流值。

选择合适的电流控制器,如PID控制器,根据电流检测值和设定值的差异计算出电流控制信号。

选择合适的执行器,如晶闸管或MOSFET,对电机的驱动电压或电流进行调节。

4.设计输出滤波器:为了减小电机输出信号的电磁干扰和噪声,可以设计一个输出滤波器,将电机输出信号进行滤波处理。

5.进行系统参数的仿真和调试:使用仿真软件对双闭环直流调速系统进行仿真,并调试系统参数以满足设计要求。

可以采用MATLAB等软件进行仿真和参数优化。

6.确定系统结构和元件的选型:根据仿真和调试的结果,确定系统结构和元件的选型,并进行实际建设和测试。

总结:双闭环直流调速系统的设计是一项复杂的工程,需要综合考虑多个因素。

正确选择检测器、控制器和执行器等元件,并合理调整系统参数,可以实现对直流电机转速的精确控制。

双闭环直流调速系统的设计

双闭环直流调速系统的设计

双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。

二者之间实行嵌套(或称串级)联接如下图所示。

L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。

这就形成了转速、电流双闭环调速系统。

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。

图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。

2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。

如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。

2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。

(2)设计调节器的参数,以满足动态性能指标的要求。

一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。

根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

双闭环直流调速系统设计

双闭环直流调速系统设计

双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。

根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。

2.速度内环设计速度内环负责实现期望速度的跟踪控制。

常用的设计方法是采用比例-积分(PID)控制器。

PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。

PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。

3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。

一般采用PI调节器进行设计。

PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。

4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。

稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。

分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。

常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。

5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。

通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。

常用的鲁棒性设计方法包括H∞控制、μ合成控制等。

以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。

设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。

双闭环串级调速系统设计

双闭环串级调速系统设计

2.1串级调速系统设计全面比较单闭环和双闭环调速系统,把握系统要求实现的功能,选择最适合设计要求的虚拟控制电路。

根据系统实际,选择转速,电流双闭环调速系统。

对于交流异步电动机转差功率消耗型调速系统,当转速较低时转差功率消耗较大,从而限制了调速范围。

如果要设法回收转差功率,就需要在异步电动机的转子侧施加控制,此时可以采用绕线转子异步电动机。

常见的绕线转子异步电动机用转子回路串电阻调速,这种调速方法简单、操作方便且价格便宜,但在电阻上将消耗大量的能量,效率低,经济性差,同时由于转子回路附加电阻的容量大,可调的级数有限,不能实现平滑调速。

为了克服上述缺点,必须寻求一种效率较高、性能较好的绕线转子异步电动机转差功率同馈型调速方法,串级调速系统就是一个很好的解决方案。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的转差功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。

它能实现无级平滑调速,低速时机械特性也比较硬。

特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。

根据串级调速原理及资料查询,设计出串级调速系统主电路(如图2-1)图2-12.2双闭环系统设计说到双闭环系统的调速,我们得首先来简要认识一下单闭环系统调速,单闭环调速系统是指只有一个转速负反馈构成的闭环控制系统。

在电动机轴上装一台直流测速发电机TG,引出与转速成正比的电压U f,与给定电压U gd比较后,得偏差电压ΔU,经过放大器FD,产生触发装置CF的控制电压U k,用以控制电动机的转速。

因为这里只有一个环,所以成为单闭环系统。

采用PI调节器的单闭环调速系统,既保证了动态稳定性,又能做到无静差,很好地解决了系统中动、静态之间的矛盾。

然而系统中只靠电流截止环节来限制启动和升速的冲击电流,其性能仍然不能令人满意。

具有双闭环控制的串级调速系统设计

具有双闭环控制的串级调速系统设计

辽宁工业大学课程设计说明书(论文)辽宁工业大学交流调速课程设计(论文)题目:具有双闭环控制的串级调速系统设计院(系):电气工程学院专业班级:自动化051学号:050302009学生姓名:李丹指导教师:王立红教师职称:教授起止时间:2008.6.-6.辽宁工业大学课程设计(论文)任务书院(系):电气工程学院教研室:自动化说明:此表一式四份,学生、指导教师、教研室、系部各一份。

可加附页。

2008年 6月10日目录第1章方案论证 (4)1.1 概述 (4)1.2 课程设计目的 (4)1.3 课程设计要求 (4)1.4 串级调速原理 (5)第2章具有双闭环控制的串级调速系统设计 (7)2.1 双闭环控制串级调速系统的组成 (7)2.2异步电动机的选择及传递函数的实现 (7)2.3串级调速系统工作时的机械特性 (9)2.4建立串级调速系统的数学模型和动态结构图 (16)第3章参数设计与总结 (17)3.1选择调节器的参数; (17)3.2 设计总结与体会 (19)参考文献 (20)第1章方案论证1.1 概述由于串级调速系统机械特性的静差率较大,所以开环控制系统只能用于对调速精度要求不高的场合。

为了提高静态调速精度,并获得较好的动态特性,须采用闭环控制,和直流调速系统一样,通常采用具有电流反馈和转速反馈的双闭环控制方式。

由于串级条调速系统的转子整流器是不可控的,系统本身不能产生电气制动作用,所谓动态性能的改善只是指启动与加速过程性能的改善,减速过程只能靠负载作用自由降速。

1.2 课程设计目的本课程的课程设计实际是自动化专业学生学习完《交流调速系统控制》课程后,进行的一次全面的综合训练,其目的在于加深对交流调速系统控制理论和基本知识的理解,掌握运用交流调速系统控制方法设计具有双闭环控制的串级调速系统设计,以及系统的调试和运行的基本方法。

1.3课程设计的要求该1900千瓦串级调速系统应用于无缝钢管车间轧制无缝钢管的穿孔轧机拖动电动机中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章概述 (2)第二章、双闭环控制串级调速系统的设计 (3)1.1双闭环串级调速系统的组成 (3)1.2 转子整流电路工作状态的选择 (4)1.3系统的动态数学模型的建立 (6)1.4 异步电动机和转子直流回路参数传递函数计算 (9)1.5调节器参数的计算与设计 (10)第三章、串级调速系统的SIMULINK仿真与分析 (13)总结 (15)附录 (15)参考文献 (16)第一章概述现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。

在这一系统中可对生产机械进行自动控制。

随着近代电力电了技术和计算机技术的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进。

以达到高速、优质、高效率地生产。

在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。

另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。

特别对于小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可靠性与柔性,还有易于应用的优点。

自动化的电力拖动系统更是低成本自动化系统的重要组成部分。

串级调速源于英语“cascade control”,意为“级联控制”,系指当时异步机转子与外附的直流电动机两级联接所形成的调速,虽然后来改进,用静止的电力电子变流装置和变压器取代直流电动机,但串级调速的称谓被习惯地沿用下来。

绕线异步电动机在转子回路中串接一个与转子电动势同频率的附加电动通过改变值大小和相位可实现调速。

这样,电动机在低速运行时,转子中的转差率只有小部分被转子绕组本身电阻所消耗,而其余大部分被附加电动势所吸收,利用产生E 的装置可以把这部分转差功率回馈到电网,使电动机在低速运行时仍具有较高的效率。

这种在绕线转子异步电动机转子回路串接附加电动势的调速方法称为串级调速。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。

串级调速能实现无级平滑调速,低速时机械特性也比较硬,它完全克服了转子串电阻调速的缺点,具有高效率、无级平滑调速、较硬的低速机械特性等优点,是一种经济、高效的调速方法。

本次设计给定对象为某双闭环串级调速系统电机,设计时要对各环节参数计算和PI控制器的设计。

电流环按I型、转速环按Ⅱ进行整定,并对PI控制器控制的串级调速系统进行仿真。

串级调速就是在异步电机转子侧串入一个可变频、可变幅的电压。

首先,它应该是可平滑调节的,以满足对电动机转速平滑调节的要求;其次,从节能的角度看,希望产生附加直流电动势的装置能够吸收从异步电动机转子侧传递来的转差功率并加以利用。

根据以上两点要求,较好的方案是采用工作在有源逆变状态的晶闸管可控整流装置作为产生附加直流电动势的电源。

首先进行,串级调速系统的动态数学模型建立。

其次求出,转子直流回路的传递函数、异步电动机的传递函数。

最后,进行转速调节器和电流调节器的设计。

将异步电动机和转子直流回路都画成传递函数框图,再考虑转速调节器和电流调节器的给定滤波和反馈滤波环节就可直接画出双闭环串级调速系统的动态结构框图。

根据动态结构框图,在MATLAB软件中,将出双闭环串级调速系统的动态结构框图中的每一个模块用SIMULINK作出,根据求出的参数进行参数值的修改,START SIMULATION,双击示波器即可观察调速时波形的变化。

通过对转速变化的分析,可以对调速系统性能进行分析。

第二章、双闭环串级调速系统的设计2 .1双闭环控制串级调速系统的组成图2.1双闭环控制的串级调速系统结构图图2.1中,晶闸管异步电动机串级调速系统的主电路主要由晶闸管三相全控桥式有源逆变器UI、三相桥式二极管转子整流器UR、三相绕线式异步电动机M、逆变变压器TI、平波电抗器Ld等组成。

绕线转子异步电机,其转子相电动势经三相不可控整流器 UR 整流,输出直流电压dU。

三相有源逆变器 UI 除提供可调的直流电压Ui以作为所需的附加直流电动势外,还可将经 UR整流后输出的异步电机转差功率回馈到电网,从而实现高效、节能、无级的调速效果。

图2.2 串级调速系统原理图(a)主电路 ( b)等效电路2.2 串级调速时转子整流电路工作状态的选择1.转子整流电路:(如图2.3)从图2-1中可以看出,异步电动机相当 于转子整流器的供电电源。

如果把电动 机定子看成是整流变压器的一次侧,则 转子绕组相当于二次侧,与带整流变压 器的整流电路非常相似,因而可以引用 电力电子技术中分析整流电路的一些结 论来研究串级调速时的转子整流电路。

图2.3 转子整流电路但是,两者之间还存在着一些显著的差异,主要是:整流电路的不同点: (1)一般整流变压器输入输出的频率是一样的,而异步电动机转子绕组感应电动势的幅值与频率都是变化的,随电机转速的改变而变化;(2)异步电动机折算到转子侧的漏抗值也与转子频率或转差率有关;(3)由于异步电动机折算到转子侧的漏抗值较大,所以出现的换相重叠现象比一般整流电路严重,从而在负载较大时会引起整流器件的强迫延迟换相现象。

2. 电路分析: 假设条件:(1)整流器件具有理想的整流特性, 管压降及漏电流均可忽略;(2)转子直流回路中平波电抗器的 电感为无穷大,直流电流波形平直; (3)忽略电动机励磁阻抗的影响。

换相重叠现象:设电动机在某一转差率下稳定运行,转子三相的感应电动势为ra E 、rb E 、rc E 当各整流器件依次导通时,必有器件间的换相过程,这时处于换相中的两相电动势同时起作用,产生换相重叠压降,如图2.4所示。

u didωt O ωt O γi ci ai bi ci aI du au bu cα换相重叠压降换相重叠角图2.4换相重叠波形根据《电力电子技术》中介绍的理论,换相重叠角为:000022arccos 1arccos 166D d D d sX I X I sE E γ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦ (2-1)其中:0D X :1s =时折算到转子侧的电动机定子和转子每相漏抗。

由式2.1可知,换相重叠角随着整流电流d I 的增大而增加。

当d I 较小,γ在00060之间时,整流电路中各整流器件都在对应相电压波形的自然换相点处换流,整流波形正常。

当电流d I 增大到γ角大于060时,器件在自然换相点处未能结束换流,从而迫使本该在自然换相点换流的器件推迟换流,出现了强迫延迟换相现象,所延迟的角度称作强迫延时换相角p α。

由此可见,串级调速时的异步电动机转子整流电路有两种正常工作状态。

转子整流电路的工作状态(1)第一种工作状态的特征是:00060γ≤≤,0p α= (2-2) 此时,转子整流电路处于正常的不可控整流工作状态,可称之为第一工作区。

(2)第二种工作状态的特征是:060γ=,00030p α<< (2-3)这时,由于强迫延迟换相的作用,使得整流电路好似处于可控的整流工作状态,p α角相当于整流器件的控制角,这一状态称作第二工作区。

由于整流电路的不可控整流状态是可控整流状态当控制角为零时的特殊情况,所以可以直接引用可控整流电路的有关分析式来表示串级调速时转子整流电路的电流和电压。

整流电流:整流电压:[]4)-(2 )6πsin(26)cos(cos 26p 0D 0r p p D0r0d +=+-=αγααX E X E I d D p p 0r d 22)cos(cos 34.2I R sE U -++=γαα5)-(2 23cos 34.2d D d 0D p 0r I R I X sE --=αγ在0°~ 60°之间时,整流电路中各整流器件都在对应相电压波形的自然换相点处换流,整流波形正常。

本次设计采用二极管整流,为不可控整流。

所以,转子整流电路处于正常的不可控整流工作状态,即转子整流电路工作在第一工作区p α= 0,γ= 0 ~ 60 °。

2.3串级调速系统的动态数学模型在图2.1所示的系统中,可控整流装置、调节器以及反馈环节的动态结构框图均与直流调速系统中相同。

在异步电动机转子直流回路中,不少物理量都与转差率有关,所以要单独处理。

(1)转子直流回路的传递函数根据图2.2的等效电路图可以列出串级调速系统转子直流回路的动态 电压平衡方程式:00dd i d dI sU U LRI dt-=+ (2-6) 式中:0d U :当1s =时转子整流器输出的空载电压, p r d E U αcos 34.200=0i U :逆变器直流侧的空载电压,0i U = 2.342T U cos βD L :折算到转子侧的异步电动机每相漏感,112D D D X X L f ωπ==T L :折算到二次侧的逆变变压器每相漏感, 112TTT X X L f ωπ==L L :平波电抗器电感,L :转子直流回路总电感,L=2D L +2T L +L LR :转差率为s 时转子直流回路等效电阻:3322D TD T L X X R S R R R ππ=++++于是式(2.6)可改写成:0000d D d i d dI nU U U L RI n dt--=+ (2-7) 将式(2.7)两边取拉氏变换,可求得转子直流回路的传递函数: 000()1()0d Lr d Ls d i I s KUT U n s U n =+-- (2-8)式中:T Lr :转子直流回路的时间常数:T Lr =RL Lr K :转子直流回路的放大系数:1Lr K R=转子直流回路的动态结构框图如图2.4所示。

需要指出,串级调速系统转子直流回路传递函数中的时间常数Ls T 和放大系数Lr K 都是转速n 的函数,它们是非定常数。

图2.4转子直流回路动态结构框图(2) 异步电动机的传递函数异步电动机的电磁转矩为: 00031()D e d d dM d X T U I I C I π=-=Ω (2-9) 电力拖动系统的运动方程式为:2375e L GD dnT T dt-= (2-10)或写成:()2375M d L GD dnC I I dt-=(2.11) 式中:L T :负载转矩,L I :所对应的等效直流电流,由此可得异步电动机在串级调速时的传递函数为:2/()()()375E d L E M E MR C n s R GD R I s I s C T ssC C ==- (2.12)其中2375M E M GD RT C C =为机电时间常数,M T 与R 、E C 、M C 都有关系,所以也不是常数,而是d I 和n 的函数。

相关文档
最新文档