高中数列的通项公式的几种常用求法

合集下载

数列求通项的十种方法

数列求通项的十种方法

数列求通项的十种方法
数列是数学中的一个重要概念,对于求数列通项的问题,有许多不
同的解法。

下面将介绍十种求解数列通项的方法。

1. 暴力求解法:将数列中的前几项写出来,然后根据已知项之间的规
律来推出通项公式。

2. 公式推导法:利用一些已知的数列通项公式,结合这个数列的特点,在此基础上推导出此数列的通项公式。

3. 通项公式分解法:将数列的通项公式分解为元素之和的形式,从而
得到每一项的通项公式。

4. 递推公式求解法:根据数列中一些指定的通项公式,推导出递推公式,并使用递推公式依次求出数列中每一项的通项公式。

5. 差分法:通过对数列求差(即相邻项之差),得到一个新数列,然
后对新数列再次求差,直到差分后的数列为常数列,最后通过累加得
到原数列的通项公式。

6. 微积分法:对数列进行微积分操作,得到导数,然后再对导数积分,通过积分得到原数列的通项公式。

7. 特征方程法:将递推公式转化为特征方程,并求解特征根,然后根
据特征根求得通项公式。

8. 奇怪公式法:有些数列的通项公式看起来十分奇怪,但通过反复验证,发现确实有效。

9. 递归法:通过一个递归的函数,根据某一项的值递归计算其他项的值,最终得到整个数列的通项公式。

10. 牛顿插值法:利用牛顿插值法,通过已知的数列中一部分数值,反
推出整个数列的通项公式。

以上是十种求解数列通项的方法,每种方法都有其适用范围和局限性。

对于不同的数列,选择不同的方法求解,可以得到更加准确和简便的
结果。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列通项公式常用的八种方法

求数列通项公式常用的八种方法

求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

高中数列的通项公式的几种常用求法

高中数列的通项公式的几种常用求法

高中数列的通项公式的几种常用求法数列是高考的必考内容,也是同学们比较怕的一个知识点。

其实归结起来数列常考的就三个知识点:等差等比数列性质的应用、求数列的通项公式、求数列的前n 项和。

而数列的通项公式往往又决定着前n 项和的求法,所以求出数列的通项公式至关重要。

下面我将对数列通项公式的几种常用求法进行总结。

一. 观察法1 适用类型:已知数列前若干项,求该数列的通项时。

2 具体方法:一般对所给的项观察分析,找出项数n 与项n a 之间的关系,从而根据规律写出此数列的一个通项.3 例题示范例1:根据数列的前4项,写出它的一个通项公式:(1)4,44,444,4444,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21--4 方法总结:(1)有分式又有整式的统一表示成假分式,再分子分母分别观察规律。

(2)正负相间的先把负号去了观察规律,再用1)1()1(+--n n 或来调节符号.二. 公式法1 适用类型:当已知数列为等差或等比数列时。

2 具体方法:可直接利用等差或等比数列的通项公式,只需求得首项及公差公比.等差数列:d n a a n )1(1-+=等比数列:)0(11≠=-q q a a n n三. 已知n s 求n a1适用类型:已知数列的前n 项和求通项时。

2具体发方法:通常用公式⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 。

3例题示范例1、已知数列{}n a 的前n 项和为:① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。

四. 由递推式求数列通项1 适用类型:已知数列的递推公式求通项公式时.2 具体方法:(1)形如d a a n n +=-1或q a a n n 1-=——-—利用等差等比来求例1 n n n a a a a 求已知2,111=-=+的通项公式(2)形如q pa a n n +=+1--——---构造等比数列例2 已知数列}{n a 满足11=a ,321+=+n n a a ,求n a【解析】123n n a a +=+,∴1326n n a a ++=+,即)3(231+=++n n a a ,1323n n a a ++∴=+. ∴{3}n a +是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⨯=,即321-=+n n a .(3)形如--——--——累加法例3 已知数列}{n a 满足12a = ,121,(2)n n a a n n -=+-≥,求n a【解析】∵当2n ≥时,121n n a a n -=+-,∴121n n a a n --=-,∴11221()()()n n n n n a a a a a a a ---=-+-++-1a +[(21)(23)3]2n n =-+-+++2[(21)3](1)212n n n -+=⋅-+=+, ∵21211a ==+,∴21n a n =+(4)形如——-—--——-累乘法例4 已知数列}{n a 满足11a =,12n n n a a +=⋅,求n a .【解析】∵12n n n a a +=⋅,∴12n n na a +=, ∴3241231n n a a a a a a a a -⋅⋅⋅⋅⋅⋅⋅121222n -=⨯⨯⋅⋅⋅⋅⨯, ∴(1)12(1)2122n n n n a a -++⋅⋅⋅+-==, 又11a =,∴(1)22n n n a -=.(5)形如1n n n a pa q +=+方法:①将原递推公式两边同除以1n q +,②得111n n n n a a p q q q q ++=⋅+,③n n n a b q =,得11n n p b b q q+=+, ④再利用“递推关系形如1n n a pa q +=+”方法来求. 例5 已知数列}{n a 满足11a =,123n n n a a +=+,求n a【解析】在123n n n a a +=+两边除以13n +,得11213333n n n n a a ++=⋅+, 令3n n n a b =,则12133n n b b +=+,∴121(1)3n n b b +-=-, ∴11221(1)()()33n n n b b --=-⋅=-, ∴21()3n n b =-.∴332n n n n n a b =⋅=-. 总之,数列的通项公式的求法有很多,着需要我们多做题,多总结.做到从题目中来到题目中去.。

数列通项公式常见9种求法

数列通项公式常见9种求法

解:令
,得
,则 是函数
的不动点。
因为
,所以

评注:本题解题的关键是通过将 形式,从而可知数列
最后再求出数列 的通项公式。
的换元为 ,使得所给递推关系式转化
为等比数列,进而求出数列
的通项公式,
,求数列 的通项公式。
解:令
,得
的两个不动点。因为
,则
是函数
。所以数列
是以
为首项,以 为公比的等比数列,故



评注:本题解题的关键是先求出函数
的不动点,即方程
的两
个根
,进而可推出
,从而可知数列
为等比数
列,再求出数列
的通项公式,最后求出数列 的通项公式。
例 15 已知数列 满足
,求数列 的通项公式。
并整理,得

,求数列 的通项公式。
,所以 ⑩
。在
式两边取
11
,则
,两边消去
,故
代入 11 式,得 由 得 则 所以数列 比数列,则
, ,
是以
12 及 12 式,
为首项,以 5 为公比的等 ,因此


评注:本题解题的关键是通过对数变换把递推关系式
转化为 ,从而可知数列
是等比数列,进而求出数列 公式,最后再求出数列 的通项公式。
解:设


代入⑥式,得
整理得


,则
,代入⑥式得


及⑦式,

,则

故数列 因此
是以 ,则
为首项,以 3 为公比的等比数列, 。
评注:本题解题的关键是把递推关系式

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。

解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。

二、累加法例2 已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例4已知数列满足,求数列的通项公式。

解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。

三、累乘法例5 已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。

例6 已知数列满足,求的通项公式。

解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。

所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。

四、待定系数法例7已知数列满足,求数列的通项公式。

解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

例8 已知数列满足,求数列的通项公式。

解:设⑥将代入⑥式,得整理得。

令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数列的通项公式的几种常用求法
数列是高考的必考内容,也是同学们比较怕的一个知识点。

其实归结起来数列常考的就三个知识点:等差等比数列性质的应用、求数列的通项公式、求数列的前n 项和。

而数列的通项公式往往又决定着前n 项和的求法,所以求出数列的通项公式至关重要。

下面我将对数列通项公式的几种常用求法进行总结。

一. 观察法
1 适用类型:已知数列前若干项,求该数列的通项时。

2 具体方法:一般对所给的项观察分析,找出项数n 与项n a 之间的关系,从而根据规律写出此数列的一个通项。

3 例题示范
例1:根据数列的前4项,写出它的一个通项公式:
(1)4,44,444,4444,…
(2) ,17
164,1093
,5
42,211 (3) ,5
2,21,32,1 (4) ,54,43,32,21-- 4 方法总结:(1)有分式又有整式的统一表示成假分式,再分子分母分别观察规律。

(2)正负相间的先把负号去了观察规律,再用1
)1()1(+--n n 或来调节符号。

二. 公式法
1 适用类型:当已知数列为等差或等比数列时。

2 具体方法:可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

等差数列:d n a a n )1(1-+=
等比数列:)0(11≠=-q q a a n n
三. 已知n s 求n a
1适用类型:已知数列的前n 项和求通项时。

2具体发方法:通常用公式⎩⎨
⎧≥-==-)2()1(11n S S n S a n n
n 。

3例题示范
例1、已知数列{}n a 的前n 项和为:①n n S n -=22②12++=n n S n 求数列{}n a 的通项公式。

四. 由递推式求数列通项
1 适用类型:已知数列的递推公式求通项公式时。

2 具体方法:
(1)形如d a a n n +=-1或q a a n n 1-=————利用等差等比来求
例1n n n a a a a 求已知2,111=-=+的通项公式
(2)形如q pa a n n +=+1-------构造等比数列
例2已知数列}{n a 满足11=a ,321+=+n n a a ,求n a
【解析】123n n a a +=+,∴1326n n a a ++=+,
即)3(231+=++n n a a ,1323n n a a ++∴
=+. ∴{3}n a +是以134a +=为首项,2为公比的等比数列,
∴113422n n n a -++=⨯=,即321-=+n n a .
(3)形如--------累加法
例3已知数列}{n a 满足12a =,121,(2)n n a a n n -=+-≥,求n a
【解析】∵当2n ≥时,121n n a a n -=+-,∴121n n a a n --=-,
∴11221()()()n n n n n a a a a a a a ---=-+-++-1a +
[(21)(23)3]2n n =-+-+++
2[(21)3](1)212
n n n -+=⋅-+=+, ∵21211a ==+,∴21n a n =+
(4)形如---------累乘法
例4已知数列}{n a 满足11a =,12n n n a a +=⋅,求n a .
【解析】∵12n n n a a +=⋅,∴12n n n
a a +=, ∴3241231
n n a a a a a a a a -⋅⋅⋅⋅⋅⋅⋅121222n -=⨯⨯⋅⋅⋅⋅⨯, ∴(1)12(1)21
22n n n n a a -++⋅⋅⋅+-==,
又11a =,∴(1)
22n n n a -=.
(5)形如1n n n a pa q +=+
方法:①将原递推公式两边同除以1n q +,②得111n n n n a a p q q q q ++=⋅+,③n n n a b q =,得11n n p b b q q
+=+, ④再利用“递推关系形如1n n a pa q +=+”方法来求. 例5 已知数列}{n a 满足11a =,123n n n a a +=+,求n a
【解析】在123n n n a a +=+两边除以13n +,得11213333
n n n n a a ++=⋅+, 令3n n n a b =,则12133n n b b +=+,∴121(1)3
n n b b +-=-, ∴11221(1)()()33
n n n b b --=-⋅=-, ∴21()3
n n b =-.∴332n n n n n a b =⋅=-. 总之,数列的通项公式的求法有很多,着需要我们多做题,多总结。

做到从题目中来到题目中去。

相关文档
最新文档