绝缘子污闪的发生及发展

合集下载

绝缘子污闪的发生及发展

绝缘子污闪的发生及发展

绝缘子污闪的发生及发展在线运行的绝缘子,在大气环境中,受到工业排放物以及自然扬尘等环境因素的影响,表面逐渐沉积了一层污秽物。

当遇到潮湿天气时,污层中的可溶性物质溶于水中,形成导电水膜,这样就有泄露电流沿绝缘子的表面流过,其大小主要取决于脏污程度和受潮程度。

由于绝缘子的形状、结构尺寸等因素的影响,绝缘子表面各部位的电流密度不同,电流密度比较大的部位会先形成干区,干区的形成使得绝缘子表面电压的分布更加不均匀,干区承担较高的电压。

当电场强度足够大时,将产生跨越干区的沿面放电,依脏污和受潮程度的不同,放电的类型可能是辉光放电、火花放电或产生局部电弧。

局部电弧是一个间歇的放电过程,这种间歇的放电状态可能持续相当长时间,当脏污和潮湿状态严重时,局部电弧会逐步发展;当达到和超过临界状态时,电弧会贯穿两极,完成闪络。

3.1 污闪的发生污闪放电是一个涉及到电、热、和化学现象的错综复杂的变化过程,宏观上可将污闪过程分为以下4个阶段:1) 绝缘子表面的积污2) 绝缘子表面的湿润3) 局部放电的产生4) 局部电弧发展,完成闪络1) 绝缘子表面的积污绝缘子表面沉积的污秽物,来源于该地域大气环境的污染,也受大气条件的自清洗(例如,风吹和雨淋),还与绝缘子本身的结构形状、表面光洁度等因素有着密切的关系。

长期的运行经验表明,在城市工业区及大气污染较严重的地区绝缘子表面的积污也较多,工业规模愈大,对周围影响的范围也愈大。

一般来说,距工业污染源愈愿,影响愈弱,绝缘子表面积污程度的表征量——等值附盐密度也减少。

据重点工业城市对44条输电线路上绝缘子表面沉积污秽的盐度值统计,其值可用式(5-3)表示-BLESDD=Ae (5-3) 2式中,ESDD为绝缘子表面污秽物等值附盐密度,mg/cm;L 为距污源的距离,A,B为常数。

大气污染比较严重地区的浓雾,对绝缘子表面的污染也是明显的。

研究表明,城市工业区的浓雾的雾水电导率可达200uS/cm左右,一次大雾可稳定地维持数小时。

户外绝缘子的污闪及其防护范本

户外绝缘子的污闪及其防护范本

户外绝缘子的污闪及其防护范本一、引言户外绝缘子是电网输电线路和变电设备中的重要组成部分,起到了传导电力的作用。

然而,在长期使用中,户外绝缘子经受各种自然环境的侵蚀,其中最常见的问题就是污闪现象。

污闪会引起绝缘子的局部击穿,导致电气设备的故障,进而影响电网的正常运行。

因此,研究户外绝缘子的污闪现象及其防护对于电力系统的安全运行至关重要。

二、户外绝缘子的污闪现象1. 污闪的定义污闪是指绝缘子表面被污染物覆盖后,在电压的作用下发生放电现象。

污闪的主要特征是产生间歇性的放电声和紫外线辐射,伴随着典型的放电波形和电晕发光。

2. 污闪的形成原因(1)气候条件:高温多湿的气候条件容易促进导电污物的形成,从而导致绝缘子表面的污染。

(2)环境气体:绝缘子表面污染物中的硫化物、硝酸盐等与环境气体发生反应,生成导电性化合物,降低了绝缘子的绝缘能力。

(3)绝缘子结构:绝缘子表面的几何形状和质地会影响污染物的积聚程度和分布情况。

3. 污闪的危害(1)电气设备故障:污闪破坏了绝缘子的绝缘能力,使得绝缘子失去对电压的支持,导致电气设备发生故障。

(2)生灵破坏:污闪造成的火花和放电会引起周围环境的爆炸和火灾等危险情况。

(3)电网运行不稳定:因为绝缘子失效导致的故障会导致电网的短路和停电等问题,进而影响整个电网的稳定运行。

三、户外绝缘子的污闪防护范本为了防止污闪现象的发生,提高绝缘子的绝缘能力和使用寿命,需要采取一系列的防护措施。

以下是户外绝缘子的污闪防护范本:1. 绝缘子材料的选择选用具有良好绝缘性能的绝缘材料,例如有机玻璃、陶瓷和复合绝缘子等,以提高绝缘子的绝缘能力。

2. 绝缘子表面处理绝缘子表面应进行适当的处理,以增强其防污闪能力。

常见的处理方法包括:光滑处理、去尖处理和防污涂层等。

3. 污闪检测和清洗定期对绝缘子进行污闪检测,一旦发现有污染物,及时进行清洗。

清洗时应采用专业的清洗剂和设备,确保清洗效果。

4. 绝缘子串防风盖板对于一些易受污染的绝缘子,可以采用串防风盖板进行防护。

浅析绝缘子污闪的成因及对策

浅析绝缘子污闪的成因及对策

的 水 分 形 成 了 水 滴 ,污 层 难 于 湿 润 ,不 易 形 成 连 续 的 导 电层 , 从 而 改 善 了组 合 绝 缘 介 质 的 表 面 状 况 ,使 绝 缘 子 表 面 泄漏 电流 甚 小 , 改善 了污 闪特 性 。 ( )电压分布均 匀 二
由 硅橡胶和R V T 涂料 部具有很强的憎水 性,难 以形成 连续 的 导 电层 , 因此 不 会 出现 电 压 分 布 不 均 ,形 成 伞 裙 跳 弧 形 象 。 ( )污 闪 电压 高 三
浅 析 绝 缘 子 污 闪 的成 因及 对 策
山西 省 大 同县 供 电 支公 司 昊 美 英
摘 要:绝缘 子污闪往往会造成大面积、长时间停 电,给电路 带来 巨大危害。本文在绝缘子污闪成 因 分析 的基础上 ,重点介 绍 了一种 利用硅橡胶 增爬伞裙 ( 以下 简称伞裙 )并涂刷R V( T 室温硫化硅橡 胶 )防污 闪涂料 的先进方法来预 防绝缘子污闪事故的发生。 关键词 :绝缘 子 污闪 成 因及对 策
绝 缘 子 是 电 力 线 路 上 最 常 用 的 一 种 绝 缘 固 件 。在 工 业 区 、 盐 碱 区运 行 的绝 缘 子 , 易受 工 业 污 染 或 自然 界 盐 碱 、灰 尘 等 污 染 。这 些 附 着 在 绝 缘 子 上 的 污 秽 物 电 阻 很 大 , 在 干 燥 的天 气 情 况 下 , 不 会 造 成 危 险 。 但 在 微 雨 、粘 雪 等 潮 湿 天 气 下 ,绝 缘 子 表面导 电率会剧 增,使绝缘 子在工频 和操作冲击 电压下 的闪络 电 压 显 著 降 低 ,甚 至 可 以使 绝 缘 子 在 工频 电压 下 发 生 闪络 。 这 类 闪络通 常 被称 为 污 闪。 山西 省大 同 县地 区工 业厂 矿 较 多 , 而 且 铁 路 、 制 药 企业 较 集 中 , 其 排 放 的 水 、气 、 灰 等 污 秽 物 较 多 , 在 大 雾 天 气 , 常 常 可 以 听 到 绝 缘 子 污 闪 时 发 出 的 “ 吱 吱 声 ” , 晚 上 还 可 以 看 到 明 显 的 闪 光 。污 闪 往 往 造 成 大 面 积 停 电 ,而 且 停 电 时 间 长 。为 此 , 分 析 和 了 解 污 闪 的 成 因 , 寻 求 防 止 污 闪 发 生 的管 理 和 技 术 措 施 ,最 大 限 度 的减 少 污 闪 事 故 的 发 生 具 有 十 分 重 要 的意 义 。 污 闪 的 成 因 绝缘子 污闪 实质 上是 一种热击 穿过程 ,系绝缘 子表面 存 留

污秽闪络的形成及危害,防止污秽闪络事故的措施

污秽闪络的形成及危害,防止污秽闪络事故的措施

污秽闪络的形成及危害,防止污秽闪络事故的措施1.所谓污秽闪络,就是积聚在线路绝缘子表面上的具备导电性能的污秽物质,在潮湿天气受潮后,使绝缘子的绝缘水平大大降低,在正常运转情况下发生的闪络事故。

绝缘子表面的污秽物质,一般分为两大类:(1)自然污秽空气中飘浮的微尘,海风带来的盐雾(在绝缘子表面形成盐霜)和鸟粪等。

(2)工业污秽火力发电厂、化工厂、玻璃厂、水泥厂、冶金厂和蒸汽机车等排出的烟尘和废气。

绝缘子表面的自然污秽物质易被雨清水冲洗掉,而工业污秽物质则附着在绝缘子表面构成薄膜,不易被雨清水冲洗掉。

当空气湿度很高时,就能导电而使泄漏电流大大增加。

如果是木杆,泄漏电流可使木杆和木横担发生燃烧;如果是铁塔,可使绝缘了发生严重闪络而损坏,造成停电事故。

此外,有些污秽区的线路绝缘子表面,在恶劣天气还会发生局部放电,对无线电广播和通讯产生干扰作用。

2.为了防止架空线路绝缘子的污秽闪络事故,一般应采取以下措施:(1)定期清扫绝缘子。

每年在污闪事故多发季节到来之前,必须对绝缘子进行1次普遍清扫;在污秽严重地区,应适当增加清扫次数。

(2)增加爬电距离,提高绝缘水平。

如增加污秽地区的绝缘子片数,或采用防尘绝缘子。

运转经验表明,在严重污秽地段,采用防尘绝缘子,防污效果较好。

(3)采用防尘涂料,即将地蜡、石蜡、有机硅等材料涂在绝缘子表面上,以提高绝缘子的抗污能力。

如果绝缘子上涂有这种防尘涂料,则雨水落在其上,会形成水珠顺着绝缘子表面滚下,不会使绝缘子表面湿润,不会降低绝缘了的绝缘水平而造成闪络。

此外,防尘涂料还有包围污秽微粒的作用,使其与雨水隔离,保持绝缘子的绝缘性能。

(4)加强巡检,定期对绝缘子进行测试,及时不良的绝缘子。

2023年户外绝缘子的污闪及其防护

2023年户外绝缘子的污闪及其防护

2023年户外绝缘子的污闪及其防护绝缘子是电力系统中的关键部件,具有隔离电线与电杆或支架之间的电力导体的作用。

然而,在户外环境下,绝缘子容易受到污染,进而导致绝缘子上的污闪现象,降低了电力系统的安全性和可靠性。

因此,绝缘子污闪及其防护技术成为了电力系统运行和维护的重要课题。

一、绝缘子污闪的原因绝缘子上的污闪主要由以下几个方面因素引起:1. 污染物:绝缘子表面积累的灰尘、盐分、湿度等环境污染物会随着时间的推移逐渐堆积,形成污染层。

这些污染物具有导电性能或吸湿性能,会使得绝缘子表面绝缘能力下降,导致绝缘子污闪。

2. 降雨:雨水中的盐分、灰尘等污染物会在绝缘子表面形成导电的细水膜,加剧了绝缘子的污闪风险。

3. 高温:高温会加速污染物的积累和湿度的蒸发,从而增加了绝缘子的污闪概率。

二、绝缘子污闪的影响绝缘子污闪会给电力系统带来严重的影响,主要包括以下几个方面:1. 电气性能下降:绝缘子表面的污染物导致绝缘子结构上的绝缘能力下降,使得绝缘子电气性能下降,增加了带电元件与接地或接触物之间的电击风险。

2. 污闪电弧:当绝缘子电气性能降低到一定程度时,绝缘子表面的污染物会形成导电路径,导致电弧闪络现象,引起电力系统的故障。

3. 能耗增加:绝缘子污闪导致电力系统中电器设备损耗增加,能耗提高,给电网带来额外负担。

三、绝缘子污闪的防护技术为了减少绝缘子污闪的发生,提高电力系统的安全性和可靠性,需要采取一系列的防护措施,包括:1. 清洗绝缘子:定期清洗绝缘子表面的污染物,保持绝缘子表面的清洁。

2. 使用防污染涂层:在绝缘子表面涂覆一层防污染涂层,能够减少污染物的附着,降低绝缘子污染风险。

3. 加装绝缘子盖板:为绝缘子增加盖板,能够避免降雨时水分对绝缘子表面的污染,减少绝缘子污闪的概率。

4. 使用自清洁绝缘子:自清洁绝缘子表面具有特殊的处理结构,可以在风雨天气中通过风力和雨水自动清洁绝缘子表面,减少污染物的附着。

5. 提高绝缘子的污闪抗力:通过改变绝缘子的结构和材料,提高绝缘子本身的污闪抗力,减少污闪的发生。

绝缘子污闪事故发生的原因及防止措施

绝缘子污闪事故发生的原因及防止措施

绝缘子污闪事故发生的原因及防止措施摘要:配网线路在运行过程中,空气中的尘土、工业废气、工业烟尘等各种微粒或鸟粪都会堆积在绝缘子外表面形成污秽层,严重时就会导致绝缘子发生污闪事故,污闪事故会严重影响配网线路供电的安全性、可靠性。

为有效预防配网线路绝缘子污闪现象,基于配网线路污闪的形成机理,分析了绝缘子污闪形成原因,并结合实际工作经验,提出了预防污闪的措施。

关键词:线路;绝缘子;污闪;对策引言:据相关调查显示,配网线路因污闪造成的绝缘子闪络事故,在当前的电网事故中发生概率的排行已经上升到第二位,而因污闪酿成的损失是仅次于第一位雷害事故损失的十倍左右。

配网线路绝缘子不论是在大气过电压,或是在内部过电压、长期运行电压下都可以正常的运行,然而,沉积在配网线路绝缘子表面上的固态、液态或是气态污渍颗粒物,容易与天气或气候条件下的雾、冰、雪等发生作用,极大地降低了配网线路绝缘子的电气强度,导致配网线路发生闪络,甚至可能会引发停电事故。

1配网线路污闪形成机理据有关部门统计,每年在电力系统总事故数中,污闪事故次数仅次于雷击损害,位居第二,已严重威胁到电网安全稳定运行。

而要想更好地防治配网电路污闪现象,我们必须从污闪形成机理分析,针对其发生的原因采取相应的措施,这样才能从根本上治理配网线路污闪现象。

配网线路长期处于露天运行,绝缘子在外加电压后对周围的污染源具有一定的吸附性,其表面会粘附周围空气中的各种污秽物质。

这些污秽物质在天气干燥时其导电性能并不强,不会影响配网线路的安全运行,但一旦遇上大雾、晨露、毛毛雨、雨夹雪等潮湿天气,污秽层中的电解质湿润后,绝缘子表面的电导率将急剧上升,这时,绝缘子表面会有泄漏电流流过,配网线路的绝缘性能也随之大大降低。

在电流热效应的作用下,污秽层表面被烘干并沿着干带产生沿面放电,最终导致整个绝缘子串闪络。

绝缘子污秽闪络发生的原因及机理非常复杂,并不是简单的空气间隙的电击穿过程,而是一种与电能、热能、化学及时间等因素有关的热击穿过程。

浅谈绝缘子污闪现象及其防治措施

浅谈绝缘子污闪现象及其防治措施

浅谈绝缘子污闪现象及其防治措施摘要:所谓的污闪,就是在输电线路正常的运行过程中,绝缘子的表面上存在着杂质,在潮湿的情况下,就会将杂质中可溶物质进行溶解,使绝缘子的表面出现一层导电膜,大大地减弱了其绝缘性,在电场力的影响下,绝缘子处就会产生剧烈的放电现象。

因此,加强对线路绝缘子污闪事故原因分析及预防措施具有重要的意义。

关键词:绝缘子;防污闪;保护措施1 绝缘子污闪的原因分析1.1 本身存在缺陷绝缘子在生产过程中,由于生产工艺问题使绝缘子内部瓷质结构不均匀,绝缘子的机械强度严重下降,由于机械负荷和高电压长期联合作用,使绝缘子的击穿电压不断下降,就会形成低值绝缘子或零值绝缘子。

此外绝缘子在搬运、安装施工过程中,可能会因碰撞留下裂纹伤痕,裂纹中进入气体后会使电场分布发生畸变,由于气体的介电常数比固体的介电常数小,因此气体中发生局部放电,不断地劣化绝缘子。

当绝缘子的裂纹中进入水分,在寒冷天气水就会凝结成冰而膨胀,使裂纹进一步加大,如此循环往复从而形成低值绝缘子。

当绝缘子串中存在低值或零值绝缘子时,相当于减小了导体对地电位之间的电气距离,提高了绝缘子单位长度分布电压,因此在过电压甚至工作电压下就会发生闪络事故。

1.2 环境因素的影响电网中绝大多数的电气设备是在户外设备,工业废气、飞灰污秽和自然界盐碱、鸟粪等污染源不同程度地对绝缘子进行污染,这些污染物主要成份含有氧化硅、氧化硫、氧化铝、氧化钙、磷酸盐、钾盐等物质,特别是沿海地区的盐雾含有大量的氧化钠,这些污秽在干燥的条件下电阻很大,对绝缘子的绝缘状况没有什么危害,但一旦受潮其导电性能显著提高,降低了设备的绝缘电阻,很容易引发绝缘子的闪络故障。

1.3 与气候条件有关干燥天气,污垢表面电阻较大不易形成闪络。

大雨天气,污垢被雨水冲掉,闪络几率也小。

而大雾、细雨等天气,空气湿度大,绝缘表面污垢吸潮,这些污秽物质溶解在水分中,形成电解质的覆盖膜,使瓷件和绝缘子的绝缘性能大大降低,致使表面泄漏电流增加,当泄漏电流达到一定数值时,导致闪络事故发生。

浅谈升压站污闪的形成及防护措施

浅谈升压站污闪的形成及防护措施

浅谈污闪的形成和基本预防措施2015年1月14日的大雾天气就造成我厂220KV、110KV升压站出现了绝缘子严重污闪现象,相关部门及时启动了应急预案,当天就对污闪问题做了防污闪事故预演及防污闪处理措施,可见污闪对电厂乃至用电单位的影响非常严重。

众所周知,在外绝缘线路中,由于绝缘子常年处于外界自然环境中,因此,各种自然条件变化、各种气候变化都会对绝缘子产生很大的影响。

比如在雨雪天气容易受潮,浓雾冰霜气候下会覆盖霜雪,雷电以及系统操作过电压也会有一定影响,皆容易导致闪络的发生。

不过最容易对升压站造成很大危害的是污闪,对系统电能损失最大。

形成绝缘子污秽的主要原因就是因为其常年处于户外,各种工业浮尘,自然界中的飞尘和盐碱颗粒等物质很容易附着在绝缘子上形成一层污垢。

正常情况下,干燥的表面污层电阻很大,对绝缘子的闪络电压几乎没有什么影响,一旦大气湿度提高,污层吸湿受潮,则污层电阻下降,电导率升高,导致绝缘子泄漏电流增加。

这样即便在工作电压下,也会可能发生污闪。

1、污闪的发展过程:由于绝缘子处于外界环境,不可避免的就容易受到自然界中各种灰尘的污染,也就如上所述当天气潮湿污层受潮导电,便会有污闪。

污闪的发展过程有以下阶段:(1)污层的形成在自然环境中,各种大气中的飘尘颗粒很容易在经过绝缘子时受电场力的的吸引或重力的作用沉积在绝缘子表面,也易受刮风时灰尘积聚。

污层所含的物质根据地域的不同而不同,一般有可溶性导电物质和不可溶的惰性物质等。

(2)污层的受潮前面提到过,处于干燥状态下的污秽层对于绝缘子的沿面闪络电压影响不大,危害主要是污层受潮以后。

当大气由于雨雪雾霜等原因变得潮湿的时候,污层中的可溶性导电物质会溶于水形成导电的水膜,从而在绝缘子表面出现泄漏电流。

(3)干燥带形成与局部电弧产生在污层刚刚受潮时,介质表面有明显的泄漏电流流过,不过此时电压分布还比较均匀。

但污层分布不均匀,受潮情况也有差别,故污层表面电阻也不均匀分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝缘子污闪的发生及发展在线运行的绝缘子,在大气环境中,受到工业排放物以及自然扬尘等环境因素的影响,表面逐渐沉积了一层污秽物。

当遇到潮湿天气时,污层中的可溶性物质溶于水中,形成导电水膜,这样就有泄露电流沿绝缘子的表面流过,其大小主要取决于脏污程度和受潮程度。

由于绝缘子的形状、结构尺寸等因素的影响,绝缘子表面各部位的电流密度不同,电流密度比较大的部位会先形成干区,干区的形成使得绝缘子表面电压的分布更加不均匀,干区承担较高的电压。

当电场强度足够大时,将产生跨越干区的沿面放电,依脏污和受潮程度的不同,放电的类型可能是辉光放电、火花放电或产生局部电弧。

局部电弧是一个间歇的放电过程,这种间歇的放电状态可能持续相当长时间,当脏污和潮湿状态严重时,局部电弧会逐步发展;当达到和超过临界状态时,电弧会贯穿两极,完成闪络。

3.1 污闪的发生污闪放电是一个涉及到电、热、和化学现象的错综复杂的变化过程,宏观上可将污闪过程分为以下4个阶段:1)绝缘子表面的积污2)绝缘子表面的湿润3)局部放电的产生4)局部电弧发展,完成闪络1)绝缘子表面的积污绝缘子表面沉积的污秽物,来源于该地域大气环境的污染,也受大气条件的自清洗(例如,风吹和雨淋),还与绝缘子本身的结构形状、表面光洁度等因素有着密切的关系。

长期的运行经验表明,在城市工业区及大气污染较严重的地区绝缘子表面的积污也较多,工业规模愈大,对周围影响的范围也愈大。

一般来说,距工业污染源愈愿,影响愈弱,绝缘子表面积污程度的表征量——等值附盐密度也减少。

据重点工业城市对44条输电线路上绝缘子表面沉积污秽的盐度值统计,其值可用式(5-3)表示ESDD=Ae-BL(5-3)式中,ESDD为绝缘子表面污秽物等值附盐密度,mg/cm2;L为距污源的距离,A,B为常数。

大气污染比较严重地区的浓雾,对绝缘子表面的污染也是明显的。

研究表明,城市工业区的浓雾的雾水电导率可达200uS/cm左右,一次大雾可稳定地维持数小时。

城市工业区的边缘及邻近农村的浓雾的雾水电导率也可达数百至1000Us/cm以上。

大气环境中充满了各种气态、液态污染物和固体微粒。

绝缘子表面污秽物的积聚,一方面取决于促使微粒接近绝缘子表面的力,另一方面也取决于微粒和表面接触时保持微粒的条件。

微粒在绝缘子表面上的沉积,受风力、重力、电场力的作用,其中于风力对绝缘子表面积污起主要作用,因此,有风、无风及风大、风小均对微粒的沉积影响较大,也直接影响绝缘子上、下表面积污的差别以及带电与否对积污的影响。

带电与否对绝缘子积污的影响,与地区的地理、气象等条件有很大关系,一般说来,如果污秽是急剧形成的(如风、海、雾),带电与否对积污的影响不大;如果污秽是缓慢积聚的,则带电与否有较大的影响,带电绝缘子的积污比带电绝缘子的积污要严重,在直流电压下绝缘子的积污比交流电压下绝缘子的积污要严重。

另外,绝缘子表面的光洁度等也影响微粒在其表面的附着。

因此,新的、光洁度良好的绝缘子与留有残余污秽的或者表面粗糙的绝缘子相比,其沉积污秽的状况是不同的。

绝缘子表面的光洁度越高,越不沉积污秽。

2)绝缘子表面的湿润大多数的污秽物在干燥状态下是不导电的,该状态下绝缘子放电电压和洁净干燥时非常接近。

但是当这些污秽物吸水受潮时,在绝缘子表面就会形成一层导电水膜,污物中的电解质成分电离,在水溶液中以离子形态存在时,污秽面的电阻就变小,绝缘子的闪络电压明显降。

污秽绝缘子表面的湿润由于小雨和雾等可直接产生,其他也可由相对湿度、绝缘子表面与周围空气的温差等而产生湿润。

若相对湿度增高,表面上附着的电解质会吸湿,开始湿润。

开始吸湿的相对湿度依电解质的种类而异,例如,食盐为75%左右,氯化镁约为35%,取决于电解质水溶液的饱和蒸汽压。

另一方面,由于夜间的辐射冷却和暖气的流入等,绝缘子表面温度比周围的低,其表面附近的空气层的相对湿度上升,导致吸湿。

当然,绝缘子表面的吸湿量随相对湿度、温差或附盐密度的增高而增大。

闪络电压降低的程度与润湿污层的电导率有关,长期的运行经验表明,雾、露、毛毛雨最容易引起绝缘子的污秽放电,其中雾的威胁性最大。

华北电力科学研究院统计了1970—1983年华北地区110~220kV线路污闪跳闸的气象条件,其中大雾天气下的污闪占76.4%,毛毛雨占9.7%。

这些气象条件之所以容易发生污闪,是因为它们能构使污层充分湿润,使污层中的电解质成分溶解,但又不使污层被冲洗掉。

在这种条件下污层的电导率最大,污闪电压最低。

露和雾一样也能使绝缘子的上下表面都湿润,是容易造成污闪的气象条件,污闪事故多发生在凌晨,这也与该时刻容易凝露有关。

在埃及较干燥的沙漠地区曾发生由凝露引起的严重污闪事故。

凝露气象条件对绝缘子污闪的影响是严重的,对此不可掉以轻心。

近年来,凝露对室内10kv设备曾造成一连串的闪络事故,也应引起重视。

毛毛雨一般仅仅能湿润绝缘子的上表面,在相同的条件下,一般污闪电压比浓雾条件高20%~30%。

雨一般分为大雨、中雨和小雨。

小雨时,雨点清晰可见,无漂浮现象,1h内的降水量可达2.5mm。

大雨和中雨的水滴较大,雨滴的降落速度也较快,对染污绝缘子表面有冲洗的作用,净化绝缘子表面积污的作用较大,一般在大雨和中雨条件下发生污闪的可能较少。

因此,一般地说,大雨不是污秽地区绝缘子运行的危险条件。

然而,对于伞裙较密、伞伸出不长的棒形支柱绝缘子、套管等设备,特别时在久旱无雨积污较多又突然降大雨的条件下,大雨的情况下,又可能发生闪络。

3)局部放电的产生在潮湿的气象条件下污秽绝缘子受潮湿润后,污秽物中的可溶物质会逐渐溶与水中,在绝缘子的表面会形成一层导电水膜。

污秽中的不溶物质可起吸附水分的作用,形成水膜,构成了沿绝缘子表面导电的通路,从而有泄漏电流沿绝缘子表面流过。

泄漏电流流过就产生焦耳热,其结果,在绝缘子表面上电流密度最大部分(例如在绝缘子的钢脚和铁帽附近,棒式支柱绝缘子的法兰交接处等)形成干区,干区具有很大的表面电阻,从而中断了泄漏电流,沿绝缘子表面的电压分布也随之发生变化。

加在绝缘子两端的电压主要由干区分担,当干区某处的场强超过沿介质表面空气放电的临界场强时,该处就会发成沿面的局部放电。

对于污秽面上产生的放电,可观测到有电弧放电、电晕放电、及辉光放电。

电弧放电由电压降小的充分电离的等离子通道构成,肉眼可以观测到。

另一方面,电晕放电和辉光放电是电离密度低的放电,由于电弧放电的加热,干区充分形成后容易产生。

灯丝状的电晕放电是与前沿2~5sμ、持续时间100~300sμ的短时电流波形相对应,产生在电压峰值附近。

然后,有时产生从电晕向电弧的转移。

从这种现象至闪络或表面充分干燥后放电停止,取决于污秽量、湿润量、电压等条件。

这种放电时不稳定的,呈间歇的脉冲状态。

当放电火花熄灭时,泄漏电流的烘干作用几乎终止,大气的潮气会使干区重新湿润,从而在某场强较高处又会产生新的放电火花。

放电火花出现的部位使随机的,在一支绝缘子上可能同时出现多个放电火花。

这种间歇的沿面放电可持续相当长时间,但绝缘子发生闪络的危险性不大。

随着使绝缘子受潮因素的减弱,这种放电现象会逐渐减弱,并最终消失。

沿绝缘子表面流过的泄漏电流是不稳定的,泄漏电流的大小不仅取决于绝缘子脏污的程度及污秽物中的可溶物质,不溶物质影响也不能忽略。

4) 局部电弧发展,完成闪络如果绝缘子的脏污比较严重,绝缘子表面又充分受潮,再加上绝缘子的泄漏距离较小,绝缘子的湿污层的电阻较小,在这种条件下会出现较强烈的放电现象。

此时跨越干区的放电形式为电弧放电,电弧呈树枝形状,放电通道中的温度可增高到热电离的程度。

与这种放电形式相对应的泄漏电流脉冲值较大,可达数十或数百毫安,局部放电的小电弧越强烈,相应的泄漏电流值就越大。

这种间歇脉冲状的放电现象的发生和发展也是随机的、不稳定的,在一定的条件下,局部电弧会逐步沿面伸展并最终完成闪络。

对一串绝缘子而言,污闪过程基本如上所述,但有以一些特点:单个绝缘子表面的电压分布取决于整串绝缘子的状态,当其中某个绝缘子首先形成环状干区,跨越干区的电压将是整串绝缘子总电压中的一部分,所以较易发生跨越干区的局部电弧;只有当多个绝缘子均已形成环状干区,分在一个干区上的电压才会减少下来。

流过某个绝缘子的泄漏电流,不仅取决于该绝缘子,而且取决于整串绝缘子在次时外绝缘变化的状态,它们互相关联,互相影响。

当某个绝缘子的干区被局部电弧桥络时,原来加在该绝缘子上的较高的电压将转移到其他绝缘子上,电压分配的突变,犹如一个触发脉冲,会促使其他绝缘子产生跨越干区的电弧,甚至会迫使整串绝缘子一起串联放电。

一旦所有绝缘子的干区都被电弧桥络,泄漏电流将决定于绝缘子串的剩余湿污层电阻,此时泄漏电流大增,强烈的放电有可能发展成整串绝缘子的闪络。

3.2 污闪特性污秽闪络现象的理论分析很早就有许多研究人员进行研究,在这里将具有代表性的奥本诺斯的研究做简单介绍。

奥本诺斯(Obennaus )于20世纪50年代首先提出了表面电弧与剩余污层电阻相串联的污闪物理模型,如图5-1所示:图5-1 污闪的物理模型X —总长度,12X x x =+; L —爬电距离; L X -—剩余污层长度当外施电压为U 时,电弧的持续方程如下:)(X IR AX U I n +=- (5-4)其中,X 为电弧长度;I 为流过表面的电流;R(x)为电弧长度为X 时的剩余污闪电阻;A , n 为静态特性常数。

上式中,I n AX -代表局部电弧的压降,为负伏安特性,压降随着电流的增大而减小;)(X IR 代表剩余污层电阻上的压降,为正伏安特性,压降随电流的增大而增大。

外施电压U 为两者之和,如图5-2所示。

对于某一电弧长度为X ,必须有一外施电压的最小值U min 。

若外施电压小于U min ,则电弧不能维持;若外施电压大于U min ,则电弧可以维持并向前延伸发展。

最小维持电压U min 和电弧长X 的关系如图5-3所示。

当狐长X c 时,每增加弧长X ∆,必须将外施电压相应增加U ∆,否则电弧不能维持,弧长将缩回原长;当弧长大雨X c 时,即使外施电压不增加,电弧仍能自动延伸,直至贯通两端电极。

U U UU 图5—2 污秽放电试品两端电压与电流关系 图5—3 最小维持电压U min 和弧长X 的关系为简化分析,假设染污表面是一块长度为L 的矩形玻璃板(如图5-2),板上污染均匀,每单位长度污层电阻为r c ,板上电流分布也均匀,即)()(X L r X R -=。

可以推导出,电弧发展的临界弧长X c 及污闪临界电压U c 为X c =)1/(+n L (5-5)U c =111n n n c Lr A ++⋅ (5-6)式中,L 为绝缘子的爬电距离;X c为临界弧长;A ,n 为电弧常数。

相关文档
最新文档