(完整版)必修五;正弦定理与余弦定理

合集下载

高中数学必修五 目录

高中数学必修五 目录

第一章解三角形
1.1 正弦定理和余弦定理
1.1.1 正弦定理
1课时
1.1.2 余弦定理
第1课时
1.2 应用举例
第1课时高度、距离
第2课时角度及其他问题
第3课时正余弦定理在几何中的应用章末检测卷第二章数列
2.1 数列的概念与简单表示法
1课时
2.2 等差数列
第1课时等差数列的概念
第2课时等差数列的性质
2.3 等差数列的前n项和
第1课时等差数列前n项和公式
第2课时等差数列习题课
2.4 等比数列
第1课时等比数列的概念
第2课时等比数列的性质
2.5 等比数列的前n项和
第1课时等比数列的前n项和公式
第2课时等差、等比数列综合应用
第3课时数列求和
章末检测卷
第三章不等式
3.1不等关系与不等式
1课时
3.2一元二次不等式及其解法
第1课时一元二次不等式及其解法
第2课时一元二次不等式的应用
3.3二元一次不等式(组与简单的线性规划问题3.3.1 二元一次不等式(组与平面区域
1课时
3.3.2 简单的线性规划问题
第1课时简单的线性规划问题
第2课时简单的线性规划问题的应用3.4基本不等式第1课时基本不等式
第2课时基本不等式的应用
章末检测卷。

高中数学必修五公式整理

高中数学必修五公式整理

高中数学必修五公式声明:本文非原创,由于界面阅读感不好而本人进行重新排版。

第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径) 变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n ∙-+=11或()d m n a a m n ∙-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-∙=或q a a mn m n -∙=3.求和公式: )(1q ,1==na S n )(1q 11)1(11≠--=--=qqa a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。

高中数学必修五1.1正弦定理和余弦定理 课件 (共34张PPT)

高中数学必修五1.1正弦定理和余弦定理 课件 (共34张PPT)

两种途径 根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角 转换.
双基自测 1.(人教A版教材习题改编)在△ABC中,A=60° ,B=75° ,a =10,则c等于( A.5 2 10 6 C. 3 ). B.10 2 D.5 6
a 解析 由A+B+C=180° ,知C=45° ,由正弦定理得: sin A = c 10 c 10 6 sin C,即 3= 2.∴c= 3 . 2 2 答案 C
sin A cos B 2.在△ABC 中,若 a = b ,则 B 的值为( A.30° 解析 B.45° C.60° D.90°
4. 已知两边和其中一边的对角, 解三角形时, 注意解的情况. 如 已知 a,b,A,则 A 为锐角 图形 A 为钝角或直角
关系 式 解的 个数
a<b sin A a=bsin A
bsin A<a< b 两解
a≥b a>b a≤b
无解
一解
一解 一解 无解
一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大, 正弦值较大的角也较大,即在△ABC 中,A>B⇔a>b⇔sin A >sin B. 两类问题 在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一 边,求其它边或角; (2) 已知两边及一边的对角,求其它边或 角.情况(2)中结果可能有一解、两解、无解,应注意区分.余 弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两 角;(2)已知三边,求各角.
正弦定理和余弦定理
基础梳理 a b c 1.正弦定理:sin A=sin B=sin C=2R,其中 R 是三角形外接 圆的半径.由正弦定理可以变形为: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a= 2Rsin A ,b= 2Rsin B ,c= 2Rsin C ; a b c (3)sin A=2R,sin B=2R,sin C=2R等形式,以解决不同的三 角形问题.

必修五正弦定理和余弦定理讲义

必修五正弦定理和余弦定理讲义

1.1 正弦定理和余弦定理一、正弦定理:在一个三角形中,各边和它所对角.......的正弦的比相等,即:A a sin =B b sin =C csin 注意:(1)正弦定理中,各边与其对角的正弦严格对应;(2)正弦定理中的比值是一个定值,具有一定几何意义,即为三角形外接圆的直径:A a sin =B b sin =Ccsin =2R [ R 指的是三角形外接圆半径 ];(3)正弦定理主要实现三角形中的边角互化.................;(4)S =C ab sin 21=A bc sin 21=B ac sin 21;(5)常用的公式: ①A +B +C =π,sin(A .....+.B)..=.sinC ....,. cos(A .....+.B)..=-..cosC ....,.tan(A .....+.B)..=-..tanC ....,.sin 2B A +=cos 2C ,cos 2B A +=sin 2C;②a =2RsinA ,b =2RsinB ,c =2RsinC ;③A >B ⇔a >b 【大角对大边】;④a +b >c ,a -b <c ;⑤a :b :c =sinA :sinB :sinC ;⑥a sinB =bsinA ,bsinC =csinB ,a sinC =csinA 。

例1:下列有关正弦定理的叙述:(1)正弦定理只适用于锐角三角形;(2)正弦定理不适用于直角三角形;(3)在某一确定的三角形中,各边与它所对角的正弦的比是一定值;(4)在△ABC 中,sinA :sinB :sinC = a :b :c 。

其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个 【解析】:B变式练习1:在△ABC 中,角A :角B :角C =2 :1 :1,则a :b :c 等于( )A :4 :1 :1B :2 :1 :1C :2 :1 :1D :3 :1 :1 【解析】:C变式练习2:在△ABC 中,角A :角B :角C =4 :1 :1,则a :b :c 等于( )A :4 :1 :1B :2 :1 :1C :2 :1 :1D :3 :1 :1 【解析】:D例2:在△ABC 中,a =2,b =1,∠A =450,∠B =___________。

人教版高中数学必修五正弦定理和余弦定理课件

人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

人教版高一必修五第一章正弦定理和余弦定理

人教版高一必修五第一章正弦定理和余弦定理
(二)思考:三角形的面积和它的元素之间有什么联系?
CD a sinB
S ABC
1 1 AB CD ac sin B 2 2
C a
同理:S ABC S ABC
1 ab sinC; 2 1 bc sin A. 2
b
B
c D
A
正弦定理:在一个三角形中各边和它所对角的正弦的比 相等.
A
C 且 B 180 ( A C ) 105
b c 解:∵ sin B sin C
c sin B 10 sin 105 b 19 sin C sin 30
例2:在
ABC中,已知a=20cm,b=28cm,A=40°,解三角形
(角度精确到1 ° ,边长精确到1cm). b sin A 28 sin 40 解:根据正弦定理, sin B 0.899 a 20 因为0<B<180 ,所以B 64或 116 (1)当B≈64°时, C=180°-(A+B)≈180°-(40°+64°)=76°
例题1
2
4
正弦定理
(1)在ABC中,已知b 12, A 30 ,
3.定理的应用举例 例1 在ABC 已知 解三角形. 变式:若将a=2 改为c=2,结果如何? 通过例题你发现了什么一般性结论吗?
A 300 , B 1350 , a 2
,
小结:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。
例 2、 已知a=16, b= 16 3, A=30° . 已知两边和其中一边 解三角形(2)将 A=30° 变为B= 30° 呢? 的对角,求其他边和角 a b 解:由正弦定理 C

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C 变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A为钝角或直角时,a ≤b ,无解.2、三角形常用面积公式1.S =a •h a (h a 表示边a 上的高);2.S =ab sin C =ac sin B =bc sin A .3.S =r (a +b +c )(r 为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1C.2D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =b sin A ,则a =()A.B .C .1D .三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A ,b 2=a 2+c 2﹣2ac cos B ,c 2=a 2+b 2﹣2ab cos C变形形式①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos A =,cos B =,cos C =解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba≥ba >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A 为钝角或直角时,a ≤b ,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且(a +b )2=c 2+ab ,B =30°,a =4,则△ABC 的面积为()A .4B .3C .4D .6例2.设△ABC 的三个内角A ,B ,C 成等差数列,其外接圆半径为2,且有,则三角形的面积为()A .B .C .或D .或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;的最大值.(2)若D为AC的中点,且BD=1,求S△ABC'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五:正弦定理和余弦定理
一:正弦定理
1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即
R C
c B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形
(1)R A
a C B A c
b a 2sin sin sin sin ==++++ (2)⎪⎩
⎪⎨⎧C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)⎪⎩
⎪⎨⎧B c C b A c C a A b B a sin sin sin sin sin sin ===
(4)R
abc A bc B ac C ab S ABC 4sin 21sin 21sin 21====∆ 以下是ABC ∆内的边角关系:熟记
(5)B A B A b a >⇔>⇔>sin sin (大边对大角)
(6)B A B A cos cos <⇔>
(7)⎪⎩
⎪⎨⎧+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系
(8)2
cos 2sin C B A += (9)若AD 是ABC ∆的角平分线,则
AC DC AB DB = 思考题:
1:若B A sin sin =,则B A ,有什么关系?
2:若B A 2sin 2sin =,则B A ,有什么关系?
3:若B A cos cos =,则B A ,有什么关系?
4:若2
1sin >
A ,则角A 的范围是什么?
解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形.
例1:已知ABC ∆,根据下列条件,解三角形.
(1)10,45,60=︒=∠︒=∠a B A .
(2)︒=∠==120,4,3A b a .
(3)︒=∠==30,4,6A b a .
(4)︒=∠==30,16,8A b a .
(5)︒=∠==30,4,3A b a .
思考:在已知“边边角”的情况下,如何判断三角形多解的情况
判断方法:(1)用正弦定理:比较正弦值与1的关系
(2)作图法:用已知角所对的高与已知角所对的边长比较.
练习:(1)若︒=∠==45,12,6A b a ,则符合条件的ABC ∆有几个?
(2)若︒=∠==30,12,6A b a ,则符合条件的ABC ∆有几个?
(3)若︒=∠==45,12,9A b a ,则符合条件的ABC ∆有几个?
例2:根据下列条件,判断三角形形状.
(1)C B A 2
22sin sin sin =+.
(2)C B A cos sin 2sin =
(3)B b A a cos cos =
(4)A b B a tan tan 22=
二:余弦定理
1:定理内容:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍.即
A bc c b a cos 2222-+=
B ac c a b cos 2222-+=
C ab b a c cos 2222-+= 另一种形式:bc
a c
b A 2cos 2
22-+=. 请写出另两个:
例1:根据下列条件,解三角形.
(1)在ABC ∆中,︒=∠==120,4,5C b a ,求边c .
(2)在ABC ∆中,︒=∠==60,8,5C b a ,求边c .
(3)在ABC ∆中,8,7,5===c b a ,求最大角与最小角的和.
(4)在ABC ∆中,13:8:7sin :sin :sin =C B A ,求C cos .
(5)在ABC ∆中,8,120,34=+︒=∠=b a C c ,求ABC ∆的面积.
(6)在ABC ∆中,34,60,4=︒=∠=∆ABC S C c ,求ABC ∆的周长.
(7)在ABC ∆中,1)(2
2=--bc
c b a ,求A ∠. (8)在ABC ∆中,4,3,2===c b a ,判断ABC ∆的形状.
(9)求证:在ABC ∆中,)cos cos cos (22
22C ab B ac A bc c b a ++=++.
(10)求证:平行四边形两对角线的平方和等于它各边的平方和.。

相关文档
最新文档