2013.3.磁性材料
磁性材料原理

磁性材料原理磁性材料是一类在磁场中具有特殊性质的材料。
它们在工业生产和科学研究中起着重要的作用。
本文将介绍磁性材料的原理及其应用。
一、磁性材料的概述磁性材料是指在外加磁场作用下,能够产生磁化现象的材料。
它们包括铁、钢、镍、钴等物质。
磁性材料有两种基本类型:铁磁性材料和非铁磁性材料。
铁磁性材料具有强烈的磁性,如铁、镍和钴等。
它们在强磁场中可以被永久磁化,形成磁体。
非铁磁性材料则具有较弱的磁性,它们一般不会被永久磁化。
二、磁性材料的原理1. 原子磁偶极矩磁性材料具有原子磁偶极矩。
原子内电子所带的自旋和轨道角动量导致了原子磁矩的形成。
在一个磁场中,这些原子磁矩会互相作用,从而形成磁性。
2. 域结构磁性材料中存在着不同的磁畴,每个磁畴具有自己的磁化方向。
在无外加磁场的情况下,这些磁畴的磁化方向是杂乱无序的。
当外加磁场作用于材料时,磁畴会逐渐重新排列,使整个材料形成统一的磁化方向。
3. 局域场和磁畴壁在磁性材料中,每个磁畴内的磁化强度是均匀的,但不同磁畴之间的磁化强度存在差异。
这种差异由局域场引起。
磁畴之间的过渡区域称为磁畴壁,磁畴壁上的磁化方向逐渐变化,使得整个材料的磁化过渡更加平滑。
三、磁性材料的应用1. 电磁设备磁性材料广泛应用于电磁设备中。
例如,铁磁性材料可以用于制造电动机、电磁铁和变压器等设备。
非铁磁性材料则用于制造电感器和传感器。
2. 数据存储磁性材料在数据存储领域有着重要的应用。
磁性材料通过改变磁化方向来储存和读取信息。
硬盘驱动器和磁带等设备都是基于磁性材料的数据存储原理。
3. 医疗应用磁性材料在医疗领域有广泛的应用。
例如,磁共振成像(MRI)利用磁性材料的特性来观察人体内部结构。
磁性材料也可以用于制造人工关节和植入式医疗器械。
4. 环境保护磁性材料在环境保护中的应用也越来越多。
例如,利用磁性材料可以制造高效的垃圾处理设备,帮助减少废物产生和环境污染。
四、磁性材料的发展前景随着科学技术的不断发展,磁性材料的应用领域将会不断扩大。
磁性材料

磁性材料磁性是物质的基本属性之一.磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性.一切物质都具有磁性.自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料.磁性材料的分类,性能特点和用途:1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物.他们大多具有亚铁磁性. 特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用.饱和磁化强度低,不适合高磁密度场合使用.居里温度比较低.2 铁磁性材料:指具有铁磁性的材料.例如铁镍钴及其合金, 某些稀土元素的合金.在居里温度以下,加外磁时材料具有较大的磁化强度.3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度.4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大.可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等.铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等.5软磁材料:容易磁化和退磁的材料.锰锌铁氧体软磁材料,其工作频率在1K-10M之间.镍锌铁氧体软磁材料,工作频率一般在1-300MHZ金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁, 铁铝合金, 铁钴合金,铁镍合金等,常用于变压器等.术语:1 饱和磁感应强度饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度.在实际应用中, 饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度.2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度.3 磁通密度矫顽力, 他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度, 使磁感应强度B减小到0时的磁感应强度.4内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度.5磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积.6 起始磁导率:磁性体在磁中性状态下磁导率的极限值.7 损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交变磁场的每周期中,损耗能量与储存能量的2派之比.8 比损耗角正切:这是材料的损耗角正切与起始导磁率的比值.9 温度系数:在两个给定温度之间,被测的变化量除以温度变化量.10磁导率的比温度系数:磁导率的温度系数与磁导率的比值.11 居里温度:在此温度上, 自发磁化强度为零, 即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度.磁性材料的命名方法:由4部分组成:1 材料类别:以汉语拼音的第一个字母表示,R—软磁,Y—永磁, X ---旋磁,J---矩磁,A---压磁.2 材料的性能,用数字表示.3 材料的特征以汉语拼音表示.4 序号.第三部分的特征代号仅限于软磁材料)Q—高Q B—高BS U—宽温度范围 X—小温度系数 H—低磁滞损耗F—高使用频率 D—高密度 T—高居里温度 Z—正小温度系数铁氧体零件的命名方法:1 零件的用途和形状,以拼音或英文表示.2 区别第一部分相同而形状不同的零件,以汉语拼音字母表示.3 零件的规格,以零件的特征尺寸或序号表示.4 材料牌号, 零件的等级或使用范围.磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
磁性材料相关知识

磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。
磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。
磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。
2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。
软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。
常见的软磁性材料有铁、镍、钴等。
软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。
2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。
硬磁性材料主要应用于存储设备、传感器等领域。
常见的硬磁性材料有钕铁硼、钴磁体等。
硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。
3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。
磁化过程可以分为顺磁化和逆磁化两种情况。
3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。
顺磁化过程中,磁性材料会被吸引到磁场较强的地方。
顺磁性材料的磁化强度与外磁场强度成正比。
3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。
逆磁化过程中,磁性材料会被排斥出磁场较强的地方。
逆磁性材料的磁化强度与外磁场强度成负相关。
4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。
矫顽力越高,磁性材料越难磁化。
矫顽力的单位是安培/米(A/m)。
4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。
磁导率越大,磁性材料的磁性能越好。
磁导率的单位是亨利/米(H/m)。
4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。
什么是磁性材料

什么是磁性材料磁性材料是一类具有磁性的材料,其在外加磁场作用下会产生磁化现象。
磁性材料广泛应用于电子、通信、医疗、能源等领域,是现代社会中不可或缺的重要材料之一。
本文将从磁性材料的基本特性、分类、应用以及发展趋势等方面进行介绍。
首先,磁性材料的基本特性。
磁性材料具有磁化特性,即在外加磁场作用下会产生磁化现象。
根据磁化特性的不同,磁性材料可分为铁磁材料、铁氧体材料、永磁材料和软磁材料等几类。
铁磁材料在外加磁场下会产生明显的磁化,而铁氧体材料具有较高的磁导率和电阻率,因此在高频电路中得到广泛应用。
永磁材料则具有自身较强的磁化特性,常用于制作永磁体。
软磁材料则具有较低的矫顽力和磁导率,适用于变压器、电感器等领域。
其次,磁性材料的分类。
根据磁性材料的不同特性和应用领域,可以将其分为多种类型。
例如,按照磁性材料的组成成分可分为金属磁性材料、合金磁性材料和氧化物磁性材料等;按照磁性材料的磁性能力可分为软磁材料和硬磁材料;按照磁性材料的应用领域可分为电子器件用磁性材料、电机用磁性材料和传感器用磁性材料等。
再者,磁性材料的应用。
磁性材料在各个领域都有着重要的应用价值。
在电子器件中,磁性材料被广泛应用于制作电感、变压器、磁头等元器件;在电机领域,永磁材料被应用于制作各种类型的电机,如风力发电机、电动汽车驱动电机等;在通信领域,磁性材料被应用于制作微波器件、天线等;在医疗领域,磁性材料被应用于制作医疗设备,如核磁共振成像设备等;在能源领域,磁性材料被应用于制作发电机、电池等。
最后,磁性材料的发展趋势。
随着科学技术的不断进步,磁性材料的研究和应用也在不断发展。
未来,磁性材料将更加注重环保、节能、高效的特性,以适应社会对清洁能源和高效能源的需求。
同时,磁性材料的微纳米化、多功能化、智能化也将成为发展的趋势,以满足各种领域对材料性能的要求。
总之,磁性材料作为一类具有磁化特性的材料,在现代社会中具有重要的应用价值。
通过对磁性材料的基本特性、分类、应用和发展趋势的介绍,相信读者对磁性材料有了更深入的了解,也为今后的研究和应用提供了一定的参考。
磁性材料 课件

思考探究 物理课代表李明在实验室时,把餐卡放在条形磁铁上,等他中午 去餐厅吃饭时,怎么刷卡也不成功.你知道这是为什么吗? 答案:餐卡是磁卡,磁卡背面黑色部分磁条是用作磁记录,记录卡 内存钱情况,当磁卡靠近磁铁时,磁卡内的磁性材料在磁铁强大的磁 场中破坏了原来的磁记录,所以无法使用.
典题例解 【例 2】
磁性材料
一、磁化与退磁
1.一些物体,与磁铁接触后就会显示出磁性,这种现象叫作磁化. 原来有磁性的物体,失去磁性的现象叫作退磁.
2.铁、钴、镍以及它们的合金,还有一些氧化物,磁化后的磁性比 其他物质强得多,这些物体叫作铁磁性物质,也叫强磁性物质.
3.磁性材料按磁化后去磁的难易可分为硬磁性材料和软磁性材 料.有些铁磁性材料磁化后撤去外磁场,仍具有很强的剩磁,这种材料 叫作硬磁性材料.有的铁磁性材料磁化后撤去外磁场,物体没有明显 的剩磁,这样的材料叫作软磁性材料.
普通录音机是通过一个磁头来录音的.磁头的结构如图.在一个 环形铁芯上绕一组线圈,铁芯有个缝隙,工作时,磁带就贴着缝隙移动. 录音时,磁头线圈跟微音器相连,磁带上涂有一层磁粉,磁粉能被磁化 且有剩磁.微音器的作用是把声音变化转化成电流变化,问普通录音 机的录音原理是怎样的?
答案:声音的变化经微音器转化成电流变化,变化的电流流过线 圈,在铁芯中产生变化的磁场,磁带经过磁头时磁粉被不同程度地磁 化,这样声音的变化就被记录成不同程度的磁信号,这就是录音的原 理.
A.录音机磁头线圈的铁芯为软磁性材料; B.录音、录像磁带上的磁粉为硬磁性材料; C.电脑用的磁盘为硬磁性材料,不删除一般不会自动丢失; D.电铃上的电磁铁铁芯为软磁性材料.
A.铁棒两极有感应电荷 B.铁棒对磁场有传导作用 C.铁棒内磁畴有规律地排列起来 D.铁棒内磁畴的磁化方向杂乱无章 思路点拨:小磁针运动说明其受到了磁场的作用. 解析:把条形磁铁的 N 极靠近铁棒,铁棒中的磁畴在外磁场的作 用下,有规律地排列起来,使铁棒对外表现磁性,左侧为 S 极,右侧为 N 极,从而把小磁针的 S 极吸引过来. 答案:C
磁性材料名词解释

磁性材料Jump to: navigation, search磁性材料magnetic material 可由磁场感生或改变磁化强度的物质。
按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。
铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。
现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。
磁性材料的用途广泛。
主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。
磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。
简史 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。
早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。
11世纪就发明了制造人工永磁材料的方法。
1086年《梦溪笔谈》记载了指南针的制作和使用。
1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。
近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。
永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。
随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。
20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。
50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。
50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。
压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。
后来又出现了强压磁性的稀土合金。
非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。
常用磁性材料介绍
常用磁性材料介绍◆钕铁硼介绍:诞生于八十年代初的第三代稀土永磁材料--钕铁硼,是当今世界上磁性的永磁材料,可分为烧结钕铁硼磁性材料和粘结钕铁硼磁性材料。
与烧结钕铁硼磁性材料相比,粘结钕铁硼磁性材料具有一次成形,多极取向的特点;主要应用于微电机上。
钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。
其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。
钕铁硼磁铁容易生锈、氧化,所以对钕铁硼磁铁,其表面通常需作电镀处理,如镀锌、镍、银、金等,也可以做磷化处理或喷环氧树脂来减慢其氧化速度。
钕铁硼的其他物理特性:Br 温度系数 -0.11%/°C密度 7.4g/cm3韦氏温度 600Hv拉伸温度 8.0kg/mm2比热 0.12k Cak(kg°C)弹性模量 1.6x1011N/m2横向变形系数 0.24居里温度 310-340°C电阻率144Ω.cm挠曲强度 25kg/mm2热膨胀系数 4x10-6/°C导热系数7.7cal/m.h.°C刚度 0.64N/m2压缩率 9.8x10-12m2/NiHc温度系数 -0.60%/°C磁铁的一般表面处理:镀锌、镍、锡、金、银、磷化处理、环氧树脂喷涂特性:钕铁硼永磁材料是以金属间化合物Nd2Fe14B为基础的永磁材料。
钕铁硼具有极高的磁能积和矫力,同时高能量密度的优点使钕铁硼永磁材料在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、磁选磁化等设备的小型化、轻量化、薄型化成为可能。
材质特点:钕铁硼的优点是性价比高,具良好的机械特性;不足之处在于居里温度点低,温度特性差,且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,才能达到实际应用的要求。
制造工艺:钕铁硼的制造采用粉末冶金工艺。
磁性材料基本参数详解
磁性材料基本参数详解磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。
自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。
铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。
顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。
本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。
锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。
它是以氧化铁、氧化锌为主要成分的复合氧化物。
其工作频率在1kHz 至10MHz 之间。
主要用着开关电源的主变压器用磁芯. 。
随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。
但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。
磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。
使用频率可达100KHZ ,甚至更高。
但最适合于10KHZ 以下使用。
磁场强度H :磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。
它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。
均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示;使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N IH 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。
磁性材料 课件
键。
探究二 磁性材料与磁记录
磁性材料为什么能记录信息?录音、录像磁带上的磁性材料应该用硬 磁性材料还是软磁性材料?
提示:磁性材料在外界磁场作用下,能够被磁化,这就使我们可以利用磁 性材料记录外界磁场的信息。磁记录时,通过把声音、图像或其他信息转变 为变化的磁场,使磁带、磁卡磁条上的磁粉层磁化,这样就能在磁带或磁卡 上记录下与声音、图像或其他信息相应的磁信号;录音、录像磁带上的磁性 材料是用来作磁记录的,需要磁化后长久保持磁性,所以用硬磁性材料。
2.磁记录 (1)磁卡背面的黑条,录音机、录像机上用的磁带,电子计算机上用的磁 盘都含有磁记录用的磁性材料。依靠磁记录,我们可以保存大量的信息,并 在需要的时候读出这些信息。 (2)地磁场留下的记录:地磁场会对含有磁性材料的岩石起作用,据推测, 地磁场的强度和方向随时间的推移在不断改变,大约每过 100 万年,地磁场 南北极会完全颠倒一次。
3.磁化与退磁的实质 铁磁性材料结构与其他物质有所不同,它们本身就是由很多已经磁化 的小区域组成的,这些磁化的小区域叫作磁畴。磁化前,各个磁畴磁化方向 不同,杂乱无章地混在一起,各个磁畴的作用宏观上互相抵消,物体对外不显 磁性。磁化过程中,由于外磁场的影响,磁畴磁化方向有规律地排列起来,使 得磁场大大加强。高温下磁性材料的磁畴会被破坏;在受到剧烈震动时,磁 畴的排列也会被打乱,这些情况下材料就会产生退磁现象,如图所示为材料 磁化前和磁化后的情形。
1.磁化和退磁的概念 (1)磁化 缝衣针、螺丝刀等钢铁物体与磁铁接触后显示磁性的现象叫作磁化。 如图所示。
螺丝刀与磁铁接触后磁化
(2)退磁 原来有磁性的物体,经过高温、剧烈震动或者逐渐减弱的交变磁场的 作用,就会失去磁性,这种现象叫作退磁。
磁性材料的应用原理
磁性材料的应用原理1. 引言磁性材料是一类具有磁性的材料,它在现代科技领域中具有广泛的应用。
磁性材料能够产生磁场,并且能被磁场所影响。
本文将介绍磁性材料的应用原理。
2. 磁性材料的分类磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两类。
2.1 软磁性材料软磁性材料是指在外加磁场作用下能够迅速磁化(磁滞损失小)并且去磁后能恢复到原来状态的材料。
它具有高导磁率和低矫顽力的特点。
软磁性材料主要用于制造电感器、变压器等电磁设备。
2.2 硬磁性材料硬磁性材料是指在外加磁场作用下能够保持自身磁化状态的材料。
它具有高矫顽力和高剩磁的特点。
硬磁性材料主要用于制造永磁体、磁头等磁性设备。
3. 磁性材料的应用原理磁性材料的应用原理主要是基于磁场的相互作用。
3.1 磁场的产生磁性材料在外加磁场作用下能够产生磁场。
当外加磁场加强时,磁性材料内部的磁化程度也会增强。
3.2 磁场的传递磁性材料能够传递磁场。
当磁性材料与其他物质接触时,磁场会通过磁性材料传递到其他物质中。
3.3 磁场的感应磁性材料能够感应外加磁场的变化。
当外加磁场发生变化时,磁性材料内部的磁场也会发生变化。
3.4 磁场的操控磁性材料能够通过外加磁场进行操控。
当外加磁场改变时,磁性材料的磁化状态也会改变。
4. 磁性材料的应用领域磁性材料的应用领域非常广泛,包括电子技术、能源技术、医疗技术等。
4.1 电子技术磁性材料在电子技术中应用广泛。
它可以用于制造电感器、变压器、电动机等电磁设备。
4.2 能源技术磁性材料在能源技术中的应用主要是利用磁场的相互作用。
例如,磁性材料可以用于制造发电机,实现能量的转换和传输。
4.3 医疗技术磁性材料在医疗技术中的应用主要是通过磁场的传递和感应。
例如,磁性材料可以用于制造磁共振成像(MRI)设备,用于医学图像的获取。
5. 结论磁性材料的应用原理是基于磁场的相互作用。
磁性材料能够产生、传递、感应和操控磁场。
磁性材料在电子技术、能源技术和医疗技术等领域具有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具有极高的磁化率,磁化易达
到饱和的物质。在外部磁场作用下 磁 场
获得磁性后,外部磁场消失后依然
保持其磁性。 如Fe,Co, Ni,稀土等金属及 其合金称为铁磁性物质。
铁磁性 m= 10-2 ~105 磁矩的排列与磁性的关系
19
1.4 磁性的分类
铁磁性的物理本质
铁磁物在无外磁场的存在时,元磁体也会定向排列, 呈现饱和磁化状态,叫做“自发磁化”。 并不是整体的饱和磁化,而是分成很多的小区域(磁 畴),在每个小区域内是饱和磁化的,各个区域是 杂乱取向的。
1.4 磁性的分类 (3)反铁磁性物质
——相邻原子的磁矩反
向平行,而且彼此的强
磁 场
度相等,两个方向的磁
矩互相抵消,总磁矩近
反铁磁性 m= 10-5 ~10-3 磁矩的排列与磁性的关系
23
为零,属于弱磁性。
1.4 磁性的分类
(3)反铁磁性物质
特点:磁化率在临界温度时出现极大值。 (奈尔温度) 温度高于奈尔温度时,呈顺磁性。 主要有:一部分金属Mn、Cr;部分铁氧体
(2)亚铁磁性物质 磁化率m 在10-2 ~106之间 亚铁磁性弱于铁磁性。它们相邻 磁 场 原子的磁矩反向平行,但彼此的 强度不相等,具有高磁化率和居 里温度。 如铁氧体(M2+Fe23+O4)等,复杂的 金属化合物,比铁磁体更常见。
亚铁磁性 m= 10-2 ~106
磁矩的排列与磁性的关系
22
铁钴合金
主要指含Co量为50%的铁钴合金。 纯铁中加入Co后,Bs明显提高,高的磁导率。 合金中存在(C、H、N等)会使材料变脆, 加入少量的V和Cr可改变其加工性能。
实际应用的铁钴合金主要有Fe49Co49V2和
(Fe50Co50)98.7V1.3
40
2.2.2各种软磁材料的特点
在较弱的磁场下易于磁化,也易
于退磁的材料称为软磁材料。
磁导率大:在较弱的外磁场下能
获得高磁感应强度,并随H的增强很 快达到饱和。 矫顽力小:当外磁场去除时,其 磁性基本消失。 软磁材料磁滞回线
磁滞回线呈细长条形。
33
2.2.2各种软磁材料的特点
常用的软磁材料有:电工纯铁、硅钢片、铁铝合 金、镍铁合金、铁氧体软磁材料等。 用途: 软磁材料在电子工业中主要是用来导磁。可 用作变压器、线圈、继电器等电子元件的导磁体 。
图 磁性物质的磁滞曲线
B Br Hc O
Bs
H
和磁感应强度)。
12
1.3 磁学的基本参量 (4)居里温度
对于所有的磁性材料来说,并不是在任何温 度下都具有磁性。一般地,磁性材料具有一个临 界温度Tc——居里温度。 高于居里温度,原子的剧烈热运动,原子磁
矩的排列是混乱无序的。
低于居里温度,原子磁矩排列整齐,物体成
4
1.2磁性的来源
(1)早期观点 a.安培分子电流
在磁介质中分子、原子存在分子电流,
使每个物质微粒都成为微小的磁体;
在没有被磁化时,分子电流杂乱无章
排列,不显磁性;加入磁场,分子电流
沿磁场方向规则排列,显磁性
5
1.2磁性的来源
(1)早期观点 b.磁荷:磁偶极子(电子及原子核)
介质没有被磁化,磁偶极子的取
磁 场
当受到外加磁场作用时,
电子轨道运动会发生变化 ,而且在与外加磁场的相 反方向产生很小的合磁矩 ,即M和H方向相反。
反磁性 m= -10-5 ~-10-6 磁矩的排列与磁性的关系
(磁化强度与磁场H方向相反)
27
1.4 磁性的分类
(5) 反磁性物质
主要有:惰性气体;不含过渡元素的离子 晶体(NaCl等);不含过渡族元素的共价
ZnFe2O4;某些化合物FeF2,NiO,MnO等
24
1.4 磁性的分类
(4)顺磁性物质
磁化率m=10-5 ~10-3
特征:一种弱磁性,是原子或 分子中含有没有完全抵消的电 子磁矩。当H=0时,磁矩没有 特定的取向; 加大磁场,M和H 方向才会相同。
顺磁性 m=10-5 ~10-3 磁 场
磁矩的排列与磁性的关系 (磁化强度与磁场H方向相同) 25
7
1.3 磁学的基本参量
(1)磁化强度(M,A/m或Gs):物质单位体积中所有
分子(或原子)的磁矩之矢量和。(衡量物质有无磁性或 磁性大小)。
磁场强度(H,A/m或Gs):外界磁场的大小 宏观磁体由许多具有固有磁矩的原子组成。
当原子磁矩同向平行排列时,宏观磁体对外显示的磁 性最强。 当原子磁矩不规则排列时,宏观磁体对外不显示磁性。
钢片。 • 但 Si 加入量过多时,会降低饱和磁化强度、居里 温度,含 Si 量的增大会使材料变脆,减低机械性 能和加工性能。
38
2.2.2各种软磁材料的特点
硅钢片(硅铁合金)
应用:各种形式的发电机、电动机和变压器中, 在继电器和测量仪表中也大量使用。 应用最广,用量最大的磁性材料。
39
2.2.2各种软磁材料的特点
化合物(CO2)和所有的有机化合物;某些
金属(如Bi、Zn、Cu、Ag、Au、Hg、Pb等
)和非金属(Si、P、S等)。
28
2.磁性材料分类及特点 磁功能材料是指利用材料的磁性能和磁 效应实现对能量及信息转换、存储或改变能 量状态等功能作用的材料。 磁性材料广泛地应用于计算机、通讯、 自动化、音像、电视、仪器和仪表、航空航
的,材料中有较多的杂质,磁性能也较差,材料在 使用一段时间以后,磁性能就恶化了。 在以后的发展过程中,纯铁中的杂质含量得到了 有效的控制,因而磁性能都得到很大的改善。
36
2.2.2各种软磁性材料的特点
电工用纯铁
具有高Bs、高μ 、较小Hc、良
好的冷加工性能,易焊接并有
一定的耐腐蚀性且成本低廉等
、逆磁性
17
1.4 磁性的分类
磁 场
铁磁性 m= 102 ~106
磁 场
亚铁磁性 m= 10-2 ~106
磁 场
反铁磁性 m= 10-5 ~10-3
磁 场
顺磁性 m=10-5 ~10-3
磁 场
反磁性 m= -10-5 ~-10-6
磁矩的排列与 磁性的关系
18
1.4 磁性的分类
1.3磁性的分类
<0,M 与 H 反向,是抗磁性物质;
>0 为顺磁性物质。
B = o(H+M) o -- 真空磁导率(真空导磁能力) = B / oH
-- 磁导率
代表了磁性材料被磁化的容易程度(材料对外
部磁场的灵敏程度)。
10
1.3 磁学的基本参量
(3)磁滞回线
磁感应强度 B( 或 M) 随外磁
34
2.2.2各种软磁性材料的特点
电工用纯铁
电工用纯铁是一种含碳量低,wFe>99.95%的软钢。 它在转炉中进行冶炼时,用氧化渣除去碳、硅、
锰等元素,再用还原渣除去磷和硫,出钢时在钢
包中加入脱氧剂而得。
35
2.2.2各种软磁性材料的特点
电工用纯铁
使用背景:
1886年,世界上第一台变压器就是用铁片做成
1.4 磁性的分类 顺磁性物质包括:
大多数气体、某些过渡族元素的金属和合 金以及含有过渡元素的化合物(如La,Pr, MnAl,FeSO4·7H2O, Gd2O3 „);除Be以外的
碱金属和碱土金属以及居里温度以上的铁磁性
金属Fe, Co, Ni等。
26
1.4 磁性的分类
(5) 反(抗)磁性物质 磁化率m<0;
(5)磁致伸缩 磁弹性能—通常称因磁致伸缩现象而产生的形变 能为磁弹性能。 通常温度升高,磁致伸缩的绝对值减小,并在居
里点处变为零。
磁致伸缩会激励磁棒产生机械振动,可应用在电
声技术领域。
16
1.4 磁性的分类 根据磁化率m的大小及其变化规律,可 以把各种物质的磁性分为5类:
铁磁性、亚铁磁性、反铁磁性和顺磁性
向无规,不显磁性;
处于磁场中, 产生磁偶力矩,沿
着磁场的方向排列,显示磁性
6
1.2磁性的来源
(2)现代观点:物质的磁性来源于组成物质中原子的磁性
a. 带电的粒子漂移或运动产生磁场
b. 电子的自旋
c.电子的轨道运动:核外电子的运动相当于一个闭 合电流,具有一定的轨道磁矩 d. 原子核的磁矩
材料的磁性主要来源于电子的轨道磁矩和自旋磁矩。原子核 的磁矩小,通常可略
主要成分:铁、镍、钼、铬、铜等元素
高的磁导率、低的饱和磁感应强度、低矫顽
力、低损耗,易加工。
广泛应用在电讯工业、仪表、电子计算机、
控制系统等领域中。
42
2.2.2各种软磁材料的特点
铁铝合金
居里温度随含铝量的增大而下降; 当含铝量大于18(重量)%时,合金的居里温 度已低于室温。 因而作为实用的软磁合金,铁铝合金的含铝 量需小于18%。
材料在未加外磁场时不显磁性,加磁场后只改变磁畴
的大小和取向。
20
1.4 磁性的分类
铁磁性的特点 铁磁材料只有在铁磁居里温度以下,才具有铁磁性, 高于居里温度,会转变为顺磁性。 因为温度升高促使原子磁矩定向排列的相互作用力
受晶体热运动的干扰,使其内部原子磁矩定向排
列破坏,铁磁性消失。
21
1.4 磁性的分类
优点,广泛用于直流应用中.
主要用于制造电磁铁的铁心和
磁极 , 继电器的磁路和各种零
件,电话中的振动膜等.
37
2.2.2各种软磁材料的特点
硅钢片(硅铁合金)
在电工用纯铁中加入0.4~4.5%的硅,形成固溶体, 可以提高材料电阻率,最大磁导率,降低矫顽力