函数的零点试题
有关极值点的几个题目

关于极值点与零点的几个题一.解答题(共7小题)1.已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.2.已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域内有两个不同的极值点(1)求a的取值范围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范围.3.已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.4.已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.5.已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.6.已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.7.已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f (x2)﹣1<f(x1)关于极值点的几个题目------有点难参考答案与试题解析一.解答题(共7小题)1.(2017•达州模拟)已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.【分析】(1)求出函数的导数,问题转化为,令,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可;(2)求出函数f(x)的导数,令F(x)=f'(x)=lnx﹣ax+1,求出函数F(x)的导数,通过讨论a的范围求出a的范围,证明即可.【解答】解:(1)因为f'(x)=lnx﹣ax+1(x>0),所以由f'(x)≤0在(0,+∞)上恒成立得,令,易知g(x)在(0,1)单调递增(1,+∞)单调递减,所以a≥g(1)=1,即得:a≥1…(5分)(2)函数y=f(x)有两个极值点x1,x2(x1<x2),即y=f'(x)有两个不同的零点,且均为正,f'(x)=lnx﹣ax+1(x>0),令F(x)=f'(x)=lnx﹣ax+1,由可知1)a≤0时,函数y=f(x)在(0,+∞)上是增函数,不可能有两个零点.2)a>0时,y=F(x)在是增函数在是减函数,此时为函数的极大值,也是最大值.当时,最多有一个零点,所以才可能有两个零点,得:0<a<1…(7分)此时又因为,,,令,φ(a)在(0,1)上单调递增,所以φ(a)<φ(1)=3﹣e2,即综上,所以a的取值范围是(0,1)…(8分)下面证明x1+x2>2由于y=F(x)在是增函数在是减函数,,可构造出构造函数则,故m(x)在区间上单调减.又由于,则,即有m(x1)>0在上恒成立,即有成立.由于,,y=F(x)在是减函数,所以所以成立…(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.2.(2017•天心区校级一模)已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域内有两个不同的极值点(1)求a的取值范围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范围.【分析】(1)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点;(2)原式等价于>,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),根据函数的单调性求出即可.【解答】解:(1)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根,即方程lnx﹣ax=0在(0,+∞)有两个不同根;转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如图示:,可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<;(2)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.由(1)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln =a(x1﹣x2),所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立.令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.【点评】本题考查了导数的综合应用及分类讨论,转化思想,数形结合的思想方法的应用,是一道综合题.3.(2017•湖北模拟)已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.【分析】(1)求出函数的导数,通过讨论a的范围,得到函数的单调区间,从而求出函数的极值的个数;(2)根据x1,x2是方程2ax2﹣x+1=0的两根,得到,,求出f(x1)+f(x2),根据函数的单调性证明即可.【解答】解:(1)由,得:,(ⅰ)a=0时,,x∈(0,1),f′(x)<0,x∈(1,+∞),f′(x)>0,所以x=1,f(x)取得极小值,x=1是f(x)的一个极小值点.(ⅱ)a<0时,△=1﹣8a>0,令f′(x)=0,得显然,x1>0,x2<0,∴,f(x)在x=x1取得极小值,f(x)有一个极小值点.(ⅲ)a>0时,△=1﹣8a≤0即时,f′(x)≤0,f(x)在(0,+∞)是减函数,f(x)无极值点.当时,△=1﹣8a>0,令f′(x)=0,得当x∈(0,x1)和x∈(x2,+∞)f′(x)<0,x∈(x1,x2)时,f′(x)>0,∴f(x)在x1取得极小值,在x2取得极大值,所以f(x)有两个极值点.综上可知:(ⅰ)a≤0时,f(x)仅有一个极值点;(ⅱ)当时,f(x)无极值点;(ⅲ)当时,f(x)有两个极值点.(2)证明:由(1)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2,且x1,x2是方程2ax2﹣x+1=0的两根,∴,,===,设,,∴时,g(a)是减函数,,∴,∴f(x1)+f(x2)>3﹣4ln2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论数思想,是一道综合题.4.(2016•包头校级三模)已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.【分析】(1)若a=,求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.【解答】解:(1)若a=,f(x)=(x2+bx+1)e﹣x,则f′(x)=(2x+b)e﹣x﹣(x2+bx+1)e﹣x=﹣[x2+(b﹣2)x+1﹣b]e﹣x=﹣(x﹣1)[x﹣(1﹣b)]e﹣x,由f′(x)=0得﹣(x﹣1)[x﹣(1﹣b)]=0,即x=1或x=1﹣b,①若1﹣b=1,即b=0时,f′(x)=﹣(x﹣1)2e﹣x≤0,此时函数单调递减,单调递减区间为(﹣∞,+∞).②若1﹣b>1,即b<0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1<x<1﹣b,此时函数单调递增,单调递增区间为(1,1﹣b),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1,或x>1﹣b,此时函数单调递减,单调递减区间为(﹣∞,1),(1﹣b,+∞),③若1﹣b<1,即b>0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1﹣b<x<1,此时函数单调递增,单调递增区间为(1﹣b,1),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1﹣b,或x>1,此时函数单调递减,单调递减区间为(﹣∞,1﹣b),(1,+∞).(2)若f(1)=1,则f(1)=(2a+b+1)e﹣1=1,即2a+b+1=e,则b=e﹣1﹣2a,若方程f(x)=1在(0,1)内有解,即方程f(x)=(2ax2+bx+1)e﹣x=1在(0,1)内有解,即2ax2+bx+1=e x在(0,1)内有解,即e x﹣2ax2﹣bx﹣1=0,设g(x)=e x﹣2ax2﹣bx﹣1,则g(x)在(0,1)内有零点,设x0是g(x)在(0,1)内的一个零点,则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,设h(x)=g′(x),则h(x)在(0,x0)和(x0,1)上存在零点,即h(x)在(0,1)上至少有两个零点,g′(x)=e x﹣4ax﹣b,h′(x)=e x﹣4a,当a≤时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,当a≥时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,当<a<时,令h′(x)=0,得x=ln(4a)∈(0,1),则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,h(ln(4a))=4a﹣4aln(4a)﹣b=6a﹣4aln(4a)+1﹣e,<a<,设φ(x)=x﹣xlnx+1﹣e,(1<x<e),则φ′(x)=﹣lnx,令φ′(x)=﹣lnx=0,得x=,当1<x<时,φ′(x)>0,此时函数φ(x)递增,当<x<e时,φ′(x)<0,此时函数φ(x)递减,则φ(x)max=φ()=+1﹣e<0,则h(ln(4a))<0恒成立,由h(0)=1﹣b=2a﹣e+2>0,h(1)=e﹣4a﹣b>0,得<a<,当<a<时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,在(x1,x2)上递减,在(x2,1)递增,则g(x1)>g(0)=0,g(x2)<g(1)=0,则g(x)在(x1,x2)内有零点,综上,实数a的取值范围是(,).【点评】本题主要考查函数单调性和单调区间的求解和判断,利用函数单调性的性质以及函数单调性和导数之间的关系是解决本题的关键.综合性较强,难度较大.5.(2016•宁城县模拟)已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.【分析】(Ⅰ)求出函数的导数,根据函数的单调性,分离参数a,问题转化为:当x>1时恒成立,解出即可;(Ⅱ)求出个零点x1,x2,得到.构造函数,根据函数的单调性证明即可.【解答】解:(I)因为f(x)=lnx﹣ax,则,若函数f(x)=lnx﹣ax在(1,+∞)上单调递减,则1﹣ax≤0在(1,+∞)上恒成立,即当x>1时恒成立,所以a≥1.(5分)(II)证明:根据题意,,因为x1,x2是函数的两个零点,所以,.两式相减,可得,(7分)即,故.那么,.令,其中0<t<1,则.构造函数,(10分)则.因为0<t<1,所以h'(t)>0恒成立,故h(t)<h(1),即.可知,故x1+x2>1.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.6.(2016•河南三模)已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.【分析】(1)求出函数的导数,通过讨论m的范围,确定函数的单调性;(2)求出g(x)的导数,通过讨论m的范围,求出函数的单调区间,从而求出函数的最值,判断是否符合题意,从而判断出m的范围即可.【解答】解:(1)由已知得mx+1>0,f′(x)=,①若m>0时,由mx+1>0,得:x>﹣,恒有f′(x)>0,∴f(x)在(﹣,+∞)递增;②若m<0,由mx+1>0,得:x<﹣,恒有f′(x)<0,∴f(x)在(﹣∞,﹣)递减;综上,m>0时,f(x)在(﹣,+∞)递增,m<0时,f(x)在(﹣∞,﹣)递减;(2)g(x)=ln(mx+1)+﹣2,(m>0),∴g′(x)=,令h(x)=mx2+4m﹣4,m≥1时,h(x)≥0,g′(x)≥0,g(x)无极值点,0<m<1时,令h(x)=0,得:x1=﹣2或x2=2,由g(x)的定义域可知x>﹣且x≠﹣2,∴﹣2>﹣且﹣2≠﹣2,解得:m≠,∴x1,x2为g(x)的两个极值点,即x1=﹣2,x2=2,且x1+x2=0,x1•x2=,得:g(x1)+g(x2)=ln(mx1+1)+﹣2+ln(mx2+1)+﹣2=ln(2m﹣1)2+﹣2,令t=2m﹣1,F(t)=lnt2+﹣2,①0<m<时,﹣1<t<0,∴F(t)=2ln(﹣t)+﹣2,∴F′(t)=<0,∴F(t)在(﹣1,0)递减,F(t)<F(﹣1)<0,即0<m<时,g(x1)+g(x2)<0成立,符合题意;②<m<1时,0<t<1,∴F(t)=2lnt+﹣2,F′(t)=<0,∴F(t)在(0,1)递减,F(t)>F(1)=0,∴<m<1时,g(x1)+g(x2)>0,不合题意,综上,m∈(0,).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.7.(2016•湖北模拟)已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f (x2)﹣1<f(x1)【分析】(1)利用导数的几何意义求切线斜率,解a;(2)利用极值点与其导数的关系求出a的范围,进一步求出f(x)的解析式,通过求导判断其单调性以及最值.【解答】解:(1)∵f′(x)=ln x﹣2ax+1,∴f′(1)=1﹣2a因为3x﹣y﹣1=0的斜率为3.依题意,得1﹣2a=3;则a=﹣1.…(4分)(2)证明:因为F(x)=g(x)+x2=ln x﹣2ax+1+x2,所以F′(x)=﹣2a+x=(x>0),函数F(x)=g(x)+x2有两个极值点x1,x2且x1<x2,即h(x)=x2﹣2ax+1在(0,+∞)上有两个相异零点x1,x2.∵x1x2=1>0,∴∴a>1.…(6分)当0<x<x1或x>x2时,h(x)>0,F′(x)>0.当x1<x<x2时,h(x)<0,F′(x)<0.所以F(x)在(0,x1)与(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.因为h(1)=2﹣2a<0,所以0<x1<1<a<x2,令x2﹣2ax+1=0,得a=,∴f(x)=x(ln x﹣ax)=xln x﹣x3﹣x,则f′(x)=ln x﹣x2+,设s(x)=ln x﹣x2+,s′(x)=﹣3x=,…(8分)①当x>1时,s′(x)<0,s(x)在(1,+∞)上单调递减,从而函数s(x)在(a,+∞)上单调递减,∴s(x)<s(a)<s(1)=﹣1<0,即f′(x)<0,所以f(x)在区间(1,+∞)上单调递减.故f(x)<f(1)=﹣1<0.又1<a<x2,因此f(x2)<﹣1.…(10分)②当0<x<1时,由s′(x)=>0,得0<x<.由s′(x)=<0,得<x<1,所以s(x)在[0,]上单调递增,s(x)在[,1]上单调递减,∴s(x)≤s max=ln<0,∴f(x)在(0,1)上单调递减,∴f(x)>f(1)=﹣1,∵x1∈(0,1),从而有f(x1)>﹣1.综上可知:f(x2)<﹣1<f(x1).…(12分)【点评】本题考查了导数的几何意义以及利用导数求函数的单调区间和最值;考查了讨论的数学思想,属于难题.。
河南省函数的概念与基本初等函数多选题试题含答案

河南省函数的概念与基本初等函数多选题试题含答案一、函数的概念与基本初等函数多选题1.已知函数221,0()log ,0x kx x f x x x ⎧-+≤=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的说法中,正确的是( )A .当1k >,有1个零点B .当2k =-时,有3个零点C .当10k >>,有4个零点D .当4k =-时,有7个零点【答案】ABD 【分析】令0y =得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为()f x t =和()1f t =-,作出函数()f x 的图象,利用数形结合即可得到结论.【详解】令0y =,得()1f f x =-⎡⎤⎣⎦,设()f x t =,则方程()1f f x =-⎡⎤⎣⎦等价为()1f t =-, 函数21y x kx =-+,开口向上,过点()0,1,对称轴为2kx =对于A ,当1k >时,作出函数()f x 的图象:()1f t =-,此时方程()1f t =-有一个根12t =,由()12f x =可知,此时x 只有一解,即函数()1y f f x =+⎡⎤⎣⎦有1个零点,故A 正确; 对于B ,当2k =-时,作出函数()f x 的图象:()1f t =-,此时方程()1f t =-有一个根12t =,由()12f x =可知,此时x 有3个解,即函数()1y f f x =+⎡⎤⎣⎦有3个零点,故B 正确;对于C ,当10k >>时,图像如A ,故只有1个零点,故C 错误; 对于D ,当4k =-时,作出函数()f x 的图象:()1f t =-,此时方程()1f t =-有3个根,其中112t =,2(1,0)t ∈-,3(4,3)t ∈--由()12f x =可知,此时x 有3个解,由()2(1,0)f x t =∈-,此时x 有3个解,由()3(4,3)f x t =∈--,此时x 有1个解,即函数()1y f f x =+⎡⎤⎣⎦有7个零点,故D 正确; 故选:ABD . 【点睛】方法点睛:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,属于难题.2.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞ C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD 【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.3.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B.34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<; B选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.4.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥,故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.5.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.6.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e =+在()6,0x ∈-上有3个零点C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e -<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e-=-,()2120f e-=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点,即函数()()32g x f x e =+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e-<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.7.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.8.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅ B .()()()1212f x x f x f x ⋅=+ C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即21lg lg 2x x =+合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.二、导数及其应用多选题9.已知2()ln f x x x =,2()()f x g x x'=,()'f x 是()f x 的导函数,则下列结论正确的是( )A .()f x 在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增. B .()g x 在(0,)+∞上两个零点C .当120x x e <<< 时,221212()()()m x x f x f x -<-恒成立,则32m ≥D .若函数()()h x f x ax =-只有一个极值点,则实数0a ≥ 【答案】ACD 【分析】求出导函数()'f x ,由()0f x '>确定增区间,判断A ,然后可得()g x ,再利用导数确定()g x 的单调性与极值,结合零点存在定理得零点个数,判断B ,构造函数2()()x f x mx ϕ=-,由()ϕx 在(0,)e 上递减,求得m 范围,判断C ,利用导数研究()h x 的单调性与极值点,得a 的范围,判断D . 【详解】()(2ln 1)(0)f x x x x '=+>,令()0f x '>,得1212ln 10ln 2x x x e -+>⇒>-⇒>,故A 正确2ln 1()x g x x+=, 212ln ()x g x x -'=,令()0g x '>得121ln 2x x e <⇒<,()0g x '<得120x e <<, 故()g x 在120,e ⎛⎫ ⎪⎝⎭上为减函数,在12e ⎛⎫+∞ ⎪⎝⎭上为增函数.当x →时,()g x →-∞;当x →+∞时,()0g x →且g()0x >()g x ∴的大致图象为()g x ∴只有一个零点,故B 错.记2()()x f x mx ϕ=-,则()ϕx 在(0,)e 上为减函数,()(2ln 1)20x x x mx ϕ'∴=+-≤对(0,)x e ∈恒成立22ln 1m x ∴≥+对(0,)x e ∈恒成立 23m ∴≥32m ∴≥.故C 正确.2()()ln h x f x ax x x ax =-=-,()(2ln 1)h x x x a =+'-,设()(2ln 1)H x x x =+,()h x 只有一个极值点, ()h x '0=只有一个解,即直线y a =与()y H x =的图象只有一个交点.()2(ln 1)12ln 3H x x x '=++=+,()H x '在(0,)+∞上为增函数,令()0H x '=,得320x e -=,当0(0,)x x ∈时,()0H x '<;当0(,)x x ∈+∞时,()0H x '>.()H x ∴在0(0,)x 上为减函数,在0(,)x +∞上为增函数,332203()21202H x e e --⎡⎤⎛⎫=⨯-+=-< ⎪⎢⎥⎝⎭⎣⎦,0(0,)x x ∈时,322ln 12ln 120x e -+<+=-<,即()0H x <,且0x →时,()0H x →,又x →+∞时,()H x →+∞,因此()H x 的大致图象如下(不含原点):直线y a =与它只有一个交点,则0a ≥.故D 正确. 故选:ACD . 【点睛】关键点点睛:本题考查用导数研究函数的性质,解题关键是由导数确定函数的单调性,得出函数的极值,对于零点问题,需要结合零点存在定理才能确定零点个数.注意数形结合思想的应用.10.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x-'=, (]0,x π∈, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减, 当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间(]0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >,所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确;对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,所以()()sin xg x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确. 故选:ACD. 【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin xf x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.。
高二数学函数与方程试题

高二数学函数与方程试题1.若函数满足,且时,,函数,则函数在区间内的零点的个数为()A.8B.9C.10D.13【答案】B【解析】函数满足知函数的周期,判断函数的零点个数,就是判断和图像的在区间交点个数,因此零点的个数为9个.【考点】函数的零点与函数图像的交点的个数.2.函数的零点必落在区间()A.B.C.D.(1,2)【答案】B【解析】要验证函数的零点存在区间,只需验证在区间有即可,经验证B符合条件.【考点】函数零点所在区间验证.3.方程x3﹣6x2+9x﹣4=0的实根的个数为()A.0B.1C.2D.3【答案】C【解析】方程x3﹣6x2+9x﹣4=0的实根的个数就是函数的零点个数.对函数求导,得,可得在为增函数,在时为减函数,又当时,当时,结合图象可知函数的零点有个,故方程有根.【考点】函数的零点,数形结合.4.已知函数(),若函数在上有两个零点,则的取值范围是()A.B.C.D.【答案】D【解析】显然当x>0时只有一个零点,所以当x≤0时有且只有一个零点,根据指数函数函数值的分布可知a的取值范围是.【考点】(1)函数的零点;(2)函数的性质.5.根据表格中的数据,可以判定函数的一个零点所在的区,则的值为()A.-1 B.0 C.1 D.2【答案】C【解析】由给出的数据,求出对应的函数值f(-1),f(0),f(1),f(2),f(3),根据零点存在性定理:函数是连续不断的,当f(a)f(b)<0时,f(x)在区间(a,b)存在零点,来判断零点所在的区间.解:因为f(-1)=0.37-1<0;f(0)=1-2<0;f(1)=2.72-3<0;f(2)=7.39-4>0;f(3)=20.09-5>0,所以f(1)f(2)<0;所以f(x)在区间(1,2)上有零点.故答案为C【考点】函数零点点评:本题考查了函数零点存在性定理的应用,求出函数在各端点值的符号是解题的关键.6.下列函数在其定义域内,既是奇函数又存在零点的是:()A.B.C.D.【答案】C【解析】函数是奇函数需满足,验证四个选项得B,C满足,当时当时,所以函数不存在零点,因此选C【考点】函数奇偶性即函数零点点评:函数满足在定义域内有,则函数是奇函数,若满足则是偶函数。
人教A版第三章函数的应用基础测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

专题5:人教A 版第三章函数的应用基础测试题(解析版)一、单选题1.已知函数()2f x ax bx c =++满足()20f <且()30f >,则()f x 在()2,3上的零点( ). A .至多有一个 B .有1个或2个 C .有且仅有一个 D .一个也没有1.C 【分析】由零点存在定理可判定出结果. 【详解】由题意知:()f x 在R 上至多有两个零点.由零点存在定理知:若()()230f f ⋅<,则()f x 在()2,3上有且仅有一个零点. 故选:C .2.函数()ln 4f x x x =+-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,52.B 【分析】计算区间端点处的函数值,根据零点存在定理判断. 【详解】(1)30f =-<,(2)ln 220f =-<,(3)ln 310f =->,∴零点在区间(2,3)上. 故选:B .3.函数()6ln f x x x =-+的零点所在区间应是( ) A .()2,3 B .()3,4C .()4,5D .()5,63.C 【分析】分别计算()2f ,()3f ,()4f ,()5f ,()6f ,根据零点存在性定理,即可得出结果. 【详解】因为()6ln f x x x =-+,所以()226ln 24ln 20f =-+=-+<,()336ln33ln30f =-+=-+<,()446ln 422ln 20f =-+=-+<, ()556ln51ln50f =-+=-+>,()666ln6ln60f =-+=>,由零点存在性定理,可得函数()6ln f x x x =-+的零点所在区间应是()4,5, 即C 正确,ABD 错误. 故选:C.4.下列函数中,没有零点的是( )A .2()log 7f x x =-B .()1f xC .()1f x x= D .()2f x x x =+4.C 【分析】分别解函数对应的方程,逐项判断,即可得出结果. 【详解】A 选项,由2()log 70f x x =-=可得72x =,即函数2()log 7f x x =-有零点;B 选项,由()10f x =得1x =,即函数()1f x 有零点;C 选项,由()10f x x ==解得,x 不存在,即函数()1f x x=没有零点; D 选项,由()20f x x x =+=解得1x =-或0,即函数()2f x x x =+有零点. 故选:C.5.函数()228f x x x =--零点是( )A .2和4-B .2-和4C .()2,0和()4,0-D .()2,0-和()4,05.B 【分析】解方程()0f x =,即可得出函数()f x 的零点. 【详解】解方程()0f x =,即2280x x --=,解得2x =-或4x =.因此,函数()228f x x x =--的零点是2-和4.故选:B.6.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为( ) A .1.2 B .1.3C .1.4D .1.56.C 【分析】根据二分法结合零点存在定理求解. 【详解】因为(1.375)0,(1.4375)0f f <>, 所以方程的解在区间()1.375,1.4375内, 又精确到0.1, 所以可取1.4 故选:C7.把函数2()log f x x =的图像向左平移1个单位,再向下平移2个单位后得到函数()g x 的图像,则函数()g x 的零点是( )A .3B .5C .34-D .547.A 【分析】根据平移变换得到()g x ,令()g x 0=,解方程可得结果. 【详解】依题意得2()log (1)2g x x =+-,由()0g x =得2log (1)2x +=,得14x +=,得3x =. 故选:A【点睛】关键点点睛:掌握函数零点的概念是本题解题关键.8.“道高一尺,魔高一丈”出于《西游记》第五十回“道高一尺魔高丈,性乱情昏错认家,可恨法身无坐位,当时行动念头差,”用来比喻取得一定成就后遇到的障碍会更大或正义终将战胜邪恶,若用下列函数中的一个来表示这句话的含义,则最合适的是( )A .10y x =,0x >B .110y x =,0x > C .10y x =+,0x > D .=9y x +,0x >8.A 【分析】根据一丈等于十尺,即可得出结果. 【详解】因为一丈等于十尺,所以“道高一尺魔高一丈”更适合用10y x =,0x >来表示; 故选:A.9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2 B .1.3C .1.41D .1.59.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<,(1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.41 故选:C10.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,210.C 【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.11.已知函数()25xf x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14-B .14C .12D .3411.D 【分析】利用零点存在定理求得整数m 的值,进而可求得42log mm +的值. 【详解】易知函数()f x 单调递减,又因为()2210f e -=->,()130f e -=-<,由零点存在定理可知,函数()f x 的零点在区间()2,1--内,则2m =-. 所以2441132log 2log 2424mm -+=+=+=. 故选:D. 【点睛】本题考查利用零点存在定理求参数值,同时也考查指数式与对数式的计算,考查计算能力,属于基础题.12.我们知道,人们对声音有不同的感觉,这与声音的强度有关系.声音的强度常用I (单位:瓦/米2,即2/m W )表示,但在实际测量时,声音的强度水平常用L (单位:分贝)表示,它们满足换算公式:010lgI L I =(0L ≥,其中1220110/m I W -=⨯是人们平均能听到的声音的最小强度).若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的( ) A .15B .1100C .110D .12012.C 【分析】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I ,代入可得选项. 【详解】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I , 由题意,得1210L L -=,即120010lg 10lg 10I II I -=, 解得21110I I =. 故选:C. 【点睛】本题考查函数模型的应用,关键在于理解生活中的数据在数学应用中的表达,属于基础题.二、填空题13.函数()22f x x x =+-的零点为______________.13.2-和1 【分析】解方程220x x +-=,即可得出函数()y f x =的零点. 【详解】令()0f x =,得220x x +-=,解得1x =或2x =-. 因此,函数()22f x x x =+-的零点为2-和1.故答案为:2-和1.【点睛】本题考查函数零点的求解,熟悉函数零点的定义是解题的关键,考查运算求解能力,属于基础题.14.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则实数k =_____________. 14.4 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入9y kx =-中,求得k 的值. 【详解】解37231x y x y -=⎧⎨+=⎩得21x y =⎧⎨=-⎩,代入9y kx =-得129k -=-, 解得4k =. 故答案为:4 【点睛】本题主要考查解二元一次方程组,意在考查学生对该知识的理解掌握水平. 15.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为函数25log 10Ov =,单位是m/s ,其中O 表示燕子的耗氧量.则当燕子静止时的耗氧量是______个单位. 15.10 【分析】当燕子静止时,速度为0,由此列方程,解方程求得O 的值. 【详解】若燕子静止,则0v =,即25log 0,11010O O==,所以10O =. 故填:10. 【点睛】本小题主要考查阅读理解能力,考查已知函数值以及函数解析式求自变量的值,属于基础题.16.已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 16.()2,+∞ 【分析】当0x ≤时,即()f x 恒有1个零点;当0x >时,得到相切时a 的值,即可求解。
【浙教版】高中数学必修一期末试题带答案(3)

一、选择题1.若()f x 为奇函数,且0x 是()x y f x e =- 的一个零点,则0x -一定是下列哪个函数的零点 ( )A .()1x y f x e =+B .()1x y f x e -=--C .()1x y f x e =-D .()1x y f x e =-+2.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( )A .a<0B .0<a<C . <a<1D .a≤0或a>13.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x x = ,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π4.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增 B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减5.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<6.函数32ln ||()x x f x x-=的图象大致为( )A .B .C .D .7.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2 D .3,24⎡⎫⎪⎢⎣⎭8.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B .y x =C .2x y =D .||y x x =-9.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3810.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-211.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .6112.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭二、填空题13.某汽车厂商生产销售一款电动汽车,每辆车的成本为4万元,销售价格为6万元,平均每月销量为800辆,今年该厂商对这款汽车进行升级换代,成本维持不变,但为了提高利润,准备提高销售价格,经过市场分析后发现,如果每辆车价格上涨0.1万元,月销量就会减少20辆,为了获取最大利润,每辆车的销售价格应定为__________万元. 14.函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同的实数解,则正数m 的取值范围为______. 15.现有下列四个结论:①若25a b m ==且a b =时,则1m =; ②若236log log log a b c ==,则c ab =;③对函数()3xf x =定义域内任意的1x ,都存在唯一的2x ,使得()()121f x f x ⋅=成立;④存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R .其中所有正确结论的序号是_________.16.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ . 17.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________.18.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.19.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.20.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.三、解答题21.已知函数()11f x x=-,实数a 、b 满足a b <. (1)在下面平面直角坐标系中画出函数()f x 的图象;(2)若函数在区间[],a b 上的值域为1,33⎡⎤⎢⎥⎣⎦,求+a b 的值;(3)若函数()f x 的定义域是[],a b ,值域是[](),0ma mb m >,求实数m 的取值范围. 22.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:3221805040,[120,144)3120080000,[144,500)2x x x x y x x x ⎧-+∈⎪⎪=⎨⎪--∈⎪⎩且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(1)当[200,300]x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 23.计算下列各式的值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭(2)3ln 2145log 2lg 4lg82e +++ 24.已知函数2()log (9)(0,1)a f x x ax a a =-+->≠. (1)当10a =时,求()f x 的值域和单调减区间; (2)若()f x 存在单调递增区间,求a 的取值范围.25.已知函数()y f x =是定义在R 上的奇函数,且当0x ≥时,()22f x x x =+.(1)求函数()f x 的解析式;(2)指出函数()f x 在R 上的单调性(不需要证明);(3)若对任意实数m ,()()20f m f m t +->恒成立,求实数t 的取值范围.26.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:根据题意有00()0x f x e-=,所以00()x f x e =,而000000()1()110x x x x f x e f x e e e ----+=-+=-⋅+=,所以有0x -是函数()1x y f x e =+的零点,故选A .考点:函数的零点的定义.2.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2xx a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.3.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称.所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.4.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反, 在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.5.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+, 则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增,又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.6.A解析:A 【分析】判断奇偶性可排除两个选项,再确定函数值的变化趋势排除一个,得出正确选项. 【详解】解:函数的定义域为{0}xx ≠∣, 因为3322()ln ||ln ||()()()x x x x f x f x x x-----===-,所以()f x 为偶函数,所以排除C ,D,又因为当0x >时,322ln ln ()x x xf x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A. 【点睛】本题考查由函数解析式选择函数图象,解题方法是排除法,即通过判断函数的性质,特殊的函数值或函数值的变化趋势等,排除错误选项,得出正确答案.7.D解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果.【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.8.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).9.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果. 【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.10.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.11.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.12.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.二、填空题13.7【分析】设每辆车的销售价格为万元求出每月的销售数量乘以每一辆的获利可得每月的利润再由二次函数求最值【详解】解:设每辆车的销售价格为万元则月销售为辆由解得获利当时取得最大值为1800万元为了获取最大解析:7 【分析】设每辆车的销售价格为x 万元,求出每月的销售数量,乘以每一辆的获利可得每月的利润,再由二次函数求最值. 【详解】解:设每辆车的销售价格为x 万元,则月销售为68002020002000.1x x --⨯=-辆, 由20002000x ->,解得10x <,∴获利2(2000200)(4)20028008000(010)y x x x x x =--=-+-<<,当28007400x ==时,y 取得最大值为1800万元. ∴为了获取最大利润,每辆车的销售价格应定为7万元.故答案为:7. 【点睛】本题考查函数模型的选择及应用,二次函数最值的求法,是基础题.14.【分析】先利用导数求出函数的单调区间和极值令由题意可知方程有两个不同的实数根根据数形结合和韦达定理可知一个根在内一个根在内再令因为所以只需由此即可求出的取值范围【详解】解:令得或1当时函数在上单调递解析:3366e m e >+【分析】先利用导数求出函数()f x 的单调区间和极值,令()f x t =,由题意可知,方程210t mt -+=有两个不同的实数根1t ,2t ,根据数形结合和韦达定理可知,一个根在36,e ⎛⎫∞ ⎪⎝⎭内,一个根在36,e ⎛⎫∞ ⎪⎝⎭内,再令()21g t t mt =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,由此即可求出m 的取值范围. 【详解】解:()()()()22331xxx x e x f e x x =+-=+-',令()0f x '=得,3x =-或1,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >, 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减, 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增, 所以()()363f x f e=-=极大值,()()12f x f e ==-极小值, 令()f x t =, 因为关于x 的方程()()210fx mf x -+=恰有四个不同的实数解,所以方程210t mt -+=有两个不同的实数根1t ,2t ,且一个根在360,e ⎛⎫⎪⎝⎭内,一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,或者两个根都在()2,0e -内,或者一根为36e ,另一根在()2,0e -内;因为m 为正数,所以121t t =,120t t m +=>,所以1t ,2t 都为正根,所以两个根不可能在()2,0e -内,也不可能一根为36e ,另一根在()2,0e -内; 所以实数根1t ,2t ,且一个根在360,e ⎛⎫ ⎪⎝⎭内,一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,令()21g t t mt =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e>+,即m 的取值范围为:336,6e e ⎛⎫++∞ ⎪⎝⎭.故答案为:336,6e e ⎛⎫++∞ ⎪⎝⎭.【点睛】本题主要考查了利用导数研究函数的单调性和极值,考查了函数的零点与方程根的关系,是中档题.15.①②③【分析】利用换底公式结合求得的值可判断①的正误;设利用对数与指数的互化以及指数的运算性质可判断②的正误;由求得可判断③的正误;求出函数的定义域值域分别为时对应的实数的取值范围可判断④的正误【详解析:①②③ 【分析】利用换底公式结合a b =,求得m 的值,可判断①的正误;设236log log log a b c t ===,利用对数与指数的互化以及指数的运算性质可判断②的正误;由()()121f x f x ⋅=求得21x x =-,可判断③的正误;求出函数()g x 的定义域、值域分别为R 时,对应的实数a 的取值范围,可判断④的正误. 【详解】对于①,由于250abm ==>,可得2lg log lg 2m a m ==,5lg log lg 5mb m ==, 由于a b =可得lg lg lg 2lg 5m m=,则lg 0m =,解得1m =,①正确; 对于②,设236log log log a b c t ===,可得2t a =,3t b =,6t c =,则236t t t ab c =⋅==,②正确;对于③,对任意的1x R ∈,则()()1212123331xxx x f x f x +⋅=⋅==,120x x ∴+=,可得21x x =-,③正确;对于④,若函数()()2ln g x x ax a =++的定义域为R ,对于函数2y x ax a =++,240a a ∆=-<,解得01a <<;若函数()()2ln g x x ax a =++的值域为R ,则函数2y x ax a =++的值域包含()0,∞+,则240a a ∆=-≥,解得0a ≤或1a ≥.所以,不存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R ,④错误.故答案为:①②③. 【点睛】关键点点睛:解本题第④问的关键点在于找到函数()()2ln g x x ax a =++的定义域为R的等价条件∆<0;函数()()2ln g x x ax a =++的值域为R 的等价条件0∆≥.16.【解析】由于对数函数y=lnx 在区间(0+∞)上的增长速度慢于一次函数y=x 所以函数y =x2比函数y =xlnx 在区间(0+∞)上增长较快填 解析:2yx【解析】由于对数函数y=lnx 在区间(0,+∞)上的增长速度慢于一次函数y=x ,所以函数y =x 2比函数y =x ln x 在区间(0,+∞)上增长较快,填2y x =.17.18【分析】根据递推关系式依次求f(2)f(3)【详解】因为f(n+1)=3f(n)所以【点睛】本题考查根据递推关系求函数值考查基本求解能力解析:18 【分析】根据递推关系式依次求f (2) ,f (3). 【详解】因为f (n+1)=3f (n),所以(2)3(1)6,(3)3(2)18.f f f f ==== 【点睛】本题考查根据递推关系求函数值,考查基本求解能力.18.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .19.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当解析:2a ≥或1a = 【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可. 【详解】由题意可得,集合A 为φ或有且仅有一个元素, 当A φ=时,方程()21210a x x -++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根,当10a -=,即1a =时,方程有一根12x =-符合题意;当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=,解得2a =;综上可知a 的取值范围为:2a ≥或1a =. 故答案为:2a ≥或1a = 【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.20.【分析】首先求得集合N 然后确定实数k 的取值范围即可【详解】由题意可得:结合可知实数k 的取值范围是:故答案为:【点睛】本题主要考查交集的运算由集合的运算结果求参数取值范围的方法等知识意在考查学生的转化 解析:{}|1k k <-【分析】首先求得集合N ,然后确定实数k 的取值范围即可.【详解】由题意可得:{}|N x x k =≤,结合M N ⋂=∅可知实数k 的取值范围是:1k <-. 故答案为:{}|1k k <-. 【点睛】本题主要考查交集的运算,由集合的运算结果求参数取值范围的方法等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)图象见解析;(2)1;(3)10,4⎛⎫⎪⎝⎭. 【分析】(1)化简函数()f x 的解析式,进而可作出函数()f x 的图象; (2)分别解方程()13f x =和()3f x =,结合图象可得出a 、b 的值,进而可求得结果; (3)由题意可知函数()f x 在区间[],a b 上单调递增,分析得出方程210mx x -+=在[)1,+∞上有两个不等的实根,利用二次函数的零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】(1)由题意可得()(]()()11,0,11111,,01,x xf x x x x⎧-∈⎪⎪=-=⎨⎪-∈-∞⋃+∞⎪⎩,则由图形变换可画出函数图象,如图:(2)当()13f x =时,此时1113x -=,解得32x =或34x =;当()3f x =时,此时113x -=,解得12x =-或14x =.由(1)中的图象可知,若使得函数()f x 在区间[],a b 上的值域为1,33⎡⎤⎢⎥⎣⎦,则[](),0,a b ⊆+∞,由图象可得1344a b ==,,所以1a b +=; (3)因为函数()f x 的定义域是[],a b ,值域是[](),0ma mb m >,分以下几种情况讨论:①若0a b <<,则0ma mb <<,由图象可知,函数()f x 在[],a b 上单调递增,函数()f x 在[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,由图象可知()()00f a f b ⎧>⎪⎨>⎪⎩,不合乎题意;②若01a b <<<,则函数()f x 在[],a b 上单调递减,所以函数()11f x x =-在[],a b 上的值域为()(),f b f a ⎡⎤⎣⎦,则()()1111f b ma bf a mba ⎧=-=⎪⎪⎨⎪=-=⎪⎩, 上述两个等式相减得1m ab =,将1m ab =代入11ma b-=可得10,矛盾; ③若01a b <<≤,则[]0,ma mb ∈,而0ma >,0mb >,矛盾; ④若1b a >≥,函数()f x 在[],a b 上单调递增,又函数()f x 在[)1,+∞上单调递增,所以()()fa ma fb mb ⎧=⎪⎨=⎪⎩,即1111ma a mb b⎧-=⎪⎪⎨⎪-=⎪⎩,则a 、b 为方程11mx x-=的两个根,即210mx x -+=在[)1,+∞上有两个不等实根, 可设()21g x mx x =-+,则有()14010112m g m m⎧⎪∆=->⎪=≥⎨⎪⎪>⎩,解得104m <<,所以实数m 的取值范围为10,4⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素:(1)二次项系数的符号; (2)判别式; (3)对称轴的位置; (4)区间端点函数值的符号. 结合图象得出关于参数的不等式组求解.22.(1)不能获利,政府每月至少需要补贴5000元才能使该项目不亏损,(2)400 【分析】(1)先确定该项目获得的函数,再利用配方法确定不会获利,从而可求政府每月至少需要补贴的费用;(2)确定食品残渣的每吨的平均处理成本函数,分别求出分段函数的最小值,即可求得结论 【详解】解:(1)当[200,300]x ∈时,该项目获利为S ,则2211200(20080000)(400)22S x x x x =--+=--,所以当[200,300]x ∈时,0S <,因此该项目不会获利,当300x =时,S 取得最大值5000-,所以政府每月至少需要补贴5000元才能使项目不亏损,(2)由题意可知,生活垃圾每吨的平均处理成本为21805040,[120,144)3180000200,[144,500)2x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩,当[120,144)x ∈时,21(120)2403y x x =-+, 所以当120x =时,yx取得最小值240; 当[144,500)x ∈时,1800002002002002y x x x =+-≥=,当且仅当1800002x x =,即400x =时,yx取得最小值200, 因为240200>,所以当每月处理量为400吨时,才能使每吨的平均处理成本最低 【点睛】关键点点睛:此题考查基本不等式在最值问题中的应用,函数模型的选择与应用,考查函数模型的构建,考查函数的最值,解题的关键是根据题意确定函数关系式,属于中档题 23.(1)53-;(2)172. 【分析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现符号错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误. 【详解】(1)原式()()1134340.321-⎡⎤=-+⎣⎦150.32143-=-+-=-.(2)原式32ln 2322log 2515lg 4lg lg 1621828log 4e ⎛⎫=+++=-+⨯+ ⎪⎝⎭ 172=. 【点晴】本题主要考查函数的定义域、指数幂的运算,属于中档题. 指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)24.(1)(][),16;5,9lg -∞(2)6a > 【分析】(1)当10a =时,()()()(221010log 109log [516f x x x x ⎤=-+-=--+⎦,令2109t x x =-+-,求出2109t x x =-+-的单调区间与取值范围,即可得出结果;(2)若()f x 存在单调递增区间,则当1a >,则函数29t x ax =-+-存在单调递增区间即可,当01a <<,则函数29t x ax =-+-存在单调递减区间即可,根据判别式即可得出结果. 【详解】解:(1)当10a =时,()()()(221010log 109log [516f x x x x ⎤=-+-=--+⎦,设()22109516t x x x =-+-=--+,由21090x x -+->,得21090x x -+<,得19x <<,即函数的定义域为()1,9, 此时()(]25160,16t x =--+∈,则1010log log 16y t =≤,即函数的值域为(],16lg -∞,要求()f x 的单调减区间,等价为求()2516t x =--+的单调递减区间,()2516t x =--+的单调递减区间为[)5,9,()f x ∴的单调递减区间为[)5,9.(2)若()f x 存在单调递增区间,则当1a >,则函数29t x ax =-+-存在单调递增区间即可,则判别式2360a ∆=->得6a >或6a <-舍,当01a <<,则函数29t x ax =-+-存在单调递减区间即可,则判别式2360a ∆=->得6a >或6a <-,此时a 不成立, 综上实数a 的取值范围是6a >. 【点睛】本题主要考查对数型复合函数的单调性、以及已知函数单调性求参数的问题,熟记对数函数以及二次函数的单调性即可,属于常考题型.25.(1)()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩;(2)增函数;(3)14t <-.【分析】(1)当0x <时,0x ->,求出()f x -,根据奇函数得到()f x ; (2)由解析式可直接写出;(3)先根据奇函数的性质化不等式为()()2f m f t m>-,利用单调性脱去“f ”,转化为2t m m <+恒成立,求出2m m +的最小值即可.【详解】(1)当0x <时,0x ->,又()f x 是奇函数, ∴()()()22f x x x f x -=--=-∴()()220f x x x x =-+<,∴()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩(2)由()f x 的解析式以及二次函数、分段函数的性质可知()f x 为R 上的增函数: (3)由()()210f m f m +->和()f x 是奇函数得()()()22f m f m t f t m>--=-,因为()f x 为R 上的增函数, ∴2m t m >-,221124t m m m ⎛⎫<+=+- ⎪⎝⎭,∴14t <-. 【点睛】方法点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.26.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可;(2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.。
高二数学函数与方程试题答案及解析

高二数学函数与方程试题答案及解析1.已知函数有零点,则的取值范围是.【答案】【解析】由题意知有解,即方程有解,可转化为直线与方程所表示的曲线有交点,用数形结合思想可得的取值范围。
【考点】函数的零点与相应的方程根的关系及数形结合思想的应用。
2.已知是定义在上且周期为3的函数,当时,,若函数在区间上有10个零点(互不相同),则实数的取值范围是.【答案】【解析】由于函数在区间上有10个零点(互不相同),因此与函数有10个不同的交点,由于函数周期为3,所以与函数在一个周期内交点个数为4,对于函数,当时,,为翻折之后抛物线的顶点,由于恒成立,要使在一个周期内的交点为4,满足,此时,函数在区间上有10个零点(互不相同).【考点】函数的交点.3.下列图象表示的函数能用二分法求零点的是()【答案】C【解析】函数在区间上存在零点,满足两条:一是函数在区间连续,二是,满足这两条的是【考点】函数的零点.4.函数的零点所在区间为()A.B.C.D.【答案】A【解析】,;则,所以函数的零点所在区间为.【考点】零点存在定理.5.已知符号表示不超过的最大整数,若函数有且仅有3个零点,则的取值范围是()A.B.C.D.【答案】C【解析】因为,有且仅有3个零点,则方程在(0,+∞)上有且仅有3个实数根,且 a>0.∵x>0,∴[x]≥0;若[x]=0,则=0;若[x]≥1,因为[x]≤x<[x]+1,∴<<1,∴<a≤1,且随着[x]的增大而增大.故不同的[x]对应不同的a值,故有[x]=1,2,3,4.若[x]=1,则有<≤1;若[x]=2,则有<≤1;若[x]=3,则有<≤1;若[x]=4,则有<≤1;综上所述,<a≤,故选C.考点:函数零点,对新概念的理解,分类整合思想6.函数的零点个数为 ( )A.0B.1C.2D.3【答案】B【解析】在同一个直角坐标系中画出的图像,易知两图像的交点只有一个,故选B。
【考点】利用函数图像判断函数零点的个数。
函数零点测试题(含答案)

函数零点一、单选题(共10道,每道10分)1.已知函数的图象是连续不断的曲线,且有如下的对应值表则函数在区间上的零点至少有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:函数零点的存在性2.函数的零点个数为( )A.0B.1C.2D.3答案:C解题思路:试题难度:三颗星知识点:函数零点的存在性3.已知函数,在下列区间中,包含零点的区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数零点的存在性4.已知是函数的零点,若,则的值满足( )A. B.C. D.的符号不确定答案:C解题思路:试题难度:三颗星知识点:函数的零点5.已知是函数的一个零点,若,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的零点6.已知函数,.若函数有两个零点,则实数的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的零点7.对实数,定义运算“*”:,设函数,若函数有两个零点,则实数的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数零点的存在性8.已知函数,,若存在,则实数的取值范围为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的零点9.方程的解所在的区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数零点的存在性10.定义在上的奇函数,当时,,则关于的函数的所有零点之和为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的零点。
山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法(学生版)

山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法一、选择题1 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)设函数4()(0)f x x ax a =->的零点都在区间[0,5]上,则函数1()g x x=与函数3()h x x a =- 的图象的交点的横坐标为正整数时实数a 的取值个数为( )A .3B .4C .5D .无穷个2 .(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A .在区间),1(),1,1(e e 内均有零点B .在区间),1(),1,1(e e 内均无零点C .在区间)1,1(e 内有零点,在区间),1(e 内无零点D .在区间)1,1(e内无零点,在区间),1(e 内有零点3 .(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(,0]-∞B .[0,1)C .(,1)-∞D .[0,)+∞4 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数2, 0(), 0x x f x x x x ≤⎧=⎨->⎩,若函数()()g x f x m =-有三个不同的零点,则实数m 的取值范围为( ) A .1[,1]2- B .1[,1)2- C .1(,0)4- D .1(,0]4-5 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )= 110x⎛⎫⎪⎝⎭,在x ∈[0,4]上解的个数是( )A .1B .2C .3D .46 .(山东省曲阜市2013届高三11月月考数学(理)试题)如果若干个函数图象经过平移后能够重合,则称这些函数为“同族函数”.给出下列函数:①()sin cos f x x x =; ②()2sin 4f x x π⎛⎫=+ ⎪⎝⎭;③()sin f x x x =; ④()21f x x =+其中“同族函数”的是 ( )A .①②B .①④C .②③D .③④ 7 .(山东省实验中学2013届高三第三次诊断性测试理科数学)函数x x x f ln )1()(+=的零点有 ( )A .0个B .1个C .2个D .3个8 .(2013年山东临沂市高三教学质量检测考试理科数学)函数1f (x )lg x x=-的零点所在的区间是( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)9 .(山东省烟台市2013届高三上学期期末考试数学(理)试题)设()338x f x x =+-,用二分法求方程3380x x +-=在(1,2)x ∈内近似解的过程中得(1)0,(1.5)0,(1.25)0f f f <><,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定10.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+⎩ 的零点个数为 ( )A .3B .2C .1D .011.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,()f x x =,则方程3()log ||f x x =的解个数是( )A .0个B .2个C .4个D .6个 12.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))函数23)(3+-=x x x f 的零点为 ( )A .1,2B .±1,-2C .1,-2D .±1, 2 13.(山东省青岛市2013届高三上学期期中考试数学(理)试题)若函数a ax x f 213)(-+=在区间)1,1(-上存在一个零点,则a 的取值范围是 ( )A .51>a B .51>a 或1-<a C .511<<-a D .1a <-14.(山东省曲阜市2013届高三11月月考数学(理)试题)函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数是( )A .0B .1C .2D .315.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)定义在R 上的奇函数()f x ,当x ≥0时, ))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为( )A .1-2aB .21a-C .12a--D .21a--16.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是( )A .2k ≤B .10k -<<C .21k -≤<-D .2k ≤-17.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)已知定义在R 上的函数()f x 的对称轴为3x =-,且当3x ≥-时,()23xf x =-,若函数()f x 在区间(1,)()k k k Z -∈上有零点,则K 的值为 ( )A .2或-7B .2或-8C .1或-7D .1或-818.(山东省日照市2013届高三12月份阶段训练数学(理)试题)设函数()f x 的零点为1x ,函数()422x g x x =+-的零点为2x ,若1214x x ->,则()f x 可以是 ( )A .()122f x x =-B .()214f x x x =-+- C.()110xf x =-D .()()ln 82f x x =-19.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))已知0x 是xx f x1)21()(+=的一个零点,)0,(),,(0201x x x x ∈-∞∈,则 ( )A .0)(,0)(21<<x f x fB .0)(,0)(21>>x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21><x f x f 20.(山东省临沂市2013届高三5月高考模拟理科数学)已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 取值范围是( )A .10,5,5+∞ (]()B .10,[5,5+∞ ())C .11,]5,775(()D .11,[5,775())21.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知()f x 是定义在R 上的奇函数,满足33()()22f x f x -+=+,当3(0,)2x ∈时, 2()ln(1)f x x x =-+,则函数()f x 在区间[0,6]上的零点个数是 ( )A .3B .5C .7D .922.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知函数x x f x 21log 2)(-=,且实数a >b >c >0满足0)()()(<⋅⋅c f b f a f ,若实数0x 是函数y =)(x f 的一个零点,那么下列不等式中不可..能.成立的是 ( )A .a x <0B .a x >0C .b x <0 D .c x <0二、填空题 23.(山东省文登市2013届高三3月二轮模拟考试数学(理))函数12()3sin log f x x x π=-的零点的个数是__________.24.(2011年高考(山东理))已知函数()log a f x x x b =+-(0a >,且1a ≠).当234a b <<<<时,函数()f x 的零点()0,1x n n ∈+,*n N ∈,则n =_________.25.(2013届山东省高考压轴卷理科数学)给定方程:1()sin 102x x +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若0x 是该方程的实数解,则0x >–1.则正确命题是___________.26.(山东省烟台市2013届高三上学期期中考试数学试题(理科))函数2221()431x x f x x x x -≤⎧=⎨-+>⎩, , 的图象和函数()()ln 1g x x =-的图象的交点个数是 ____________.27.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)若函数()33f x x x a =-+有三个不同的零点,则实数a 的取值范围是__________.28.(山东省济南市2013届高三3月高考模拟理科数学)()()()()()()()121116()|21|,(),,,n n f x x f x f x f x f f x f x f f x -=-=== .则函数()4y f x =的零点个数为______________.29.(2009高考(山东理))若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 . 30.(山东省威海市2013届高三上学期期末考试理科数学)已知|||lg |,0()2,0x x x f x x >⎧=⎨≤⎩,则函数22()3()1y f x f x =-+的零点的个数为_______个.31.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)若函数()(01)xf x a x a a a =--≠ 且有两个零点,则实数a 的取值范围是________.山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法参考答案一、选择题1. 【答案】B43()()0f x x ax x x a =-=-=,解得0x =或x =即函数的零点有两个,要使零点都在区间[0,5]上,则有05<≤,解得0125a <≤.由()()h x g x =得31x a x-=,即41x ax -=有正整数解.设4()m x x ax =-,当1x =时,(1)11m a =-=,解得0a =,不成立.当2x =时,4(2)221621m a a =-=-=,解得151252a =<成立.当3x =时,4(3)338131m a a =-=-=,解得2551254a =<成立.当5x =时,4(5)5562551m a a =-=-=,解得6241255a =<成立.当6x =时,4(6)66129661m a a =-=-=,解得12951256a =>,不成立.所以满足条件的实数a 的取值为2,3,4,5,共有4个.选B.2. D 【解析】111()10(1)=0()10333e f e f f e e =->>=+>,,,根据根的存在定理可知,选D.3. C 【解析】做出函数)(x f 的图象如图,,由图象可知当直线为1+=x y 时,直线与函数)(x f 只要一个交点,要使直线与函数有两个交点,则需要把直线1+=x y 向下平移,此时直线恒和函数)(x f 有两个交点,所以1<a ,选C.4. 【答案】 C 由()()=0g x f x m =-得()f x m =,作出函数()y f x =的图象,,当0x >时,2211()()024f x x x x =-=--≥,所以要使函数()()g x f x m =-有三个不同的零点,则104m <<,即1(,0)4-,选C.5. 【答案】D【解析】由)1()1(+=-x f x f ,知)()2(x f x f =+,周期为2,又函数为偶函数,所以)1()1()1(x f x f x f -=+=-,函数关于1=x 对称,在同一坐标内做出函数x y x f y )101(),(==的图象,由图象知在]4,0[内交点个数为个.选D.6. C7. B 【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选B.8. 【答案】B 因为1(2)lg 202f =-<,1(3)lg 303f =->, 所以函数的零点在区间(2,3)上,选B. 9. 【答案】B【解析】因为(1.5)0,(1.25)0f f ><,所以根据根的存在定理可知方程的根落在区间(1.25,1.5)上,所以选B. 10. B 11. C12. C 【解析】由3()320f x x x =-+=得3(22)0x x x ---=,即2(1)(2)0x x -+=,解得1x =或2x =-,选C. 13. B 14. C15. 【答案】A当01x ≤<时,()0f x ≤.当1x ≥时,函数()1|3|f x x =--,关于3x =对称,当1x ≤-时,函数关于3x =-对称,由()()0F x f x a =-=,得(),y f x y a ==.所以函数()()F x f x a =-有5个零点.当10x -≤<,时,01x <-≤,所以122()log (1)log (1)f x x x -=-+=--,即2()log (1)f x x =-,10x -≤<.由2()log (1)f x x a =-=,解得12a x =-,因为函数()f x 为奇函数,所以函数()()F x f x a =-(0<a <1)的所有零点之和为12a x =-,选A. 16. 【答案】D【解析】由()0y f x k =+=,得()f x k =-,所以0k ≤.做出函数()y f x =的图象如图,要使函数()y f x k =+有三个零点,则由2k -≥,即2k ≤-,选D. 17. A18. C 【解析】113()2220422g =+-=-<,1()212102g =+-=>,则11()()024g g ⋅<,所以 21142x <<.若为 A.()122f x x =-,则()122f x x =-的零点为114x =,所以211044x <-<,所以121||4x x -<,不满足题意.如为 B.()214f x x x =-+-的零点为112x =,211024x <-<,所以121||4x x -<,不满足题意.若为 C.()110x f x =-的零点为10x =,所以211042x <-<,所以满足121||4x x ->.若为D.()()ln 82f x x =-的零点为138x =,23133182884x -<-<-,即2131888x -<-<,所以121||8x x -<,不满足题意,所以选C.19. C 【解析】在同一坐标系下做出函数11()(),()2x f x f x x==-的图象由图象可知当0(,)x x ∈-∞时,11()2x x >-,0(,0)x x ∈时,11()2x x<-,所以当)0,(),,(0201x x x x ∈-∞∈,有0)(,0)(21<>x f x f ,选C20. 【答案】A 由(1)()f x f x +=-得,(2)()f x f x +=,所以函数的周期是2. 由()()log =0a g x f x x =-.得()=log a f x x ,分别作出函数(),()=log a y f x y m x x ==的图象,因为(5)=log 5(5)a m m =-.所以若1a >,由图象可知要使函数()()log a g x f x x =-至少6个零点,则满足(5)=log 51a m <.此时5a >.若01a <<,由图象可知要使函数()()log a g x f x x =-至少6个零点,则满足(5)=log 51a m -≥-,此时105a <≤.所以a 取值范围是10,5,5+∞ (](),选A.21. D22. D二、填空题 23. 924.解析:根据(2)log 22log 230a a f b a =+-<+-=,(3)log 32log 340a a f b a =+->+-=,而函数()f x 在(0,)+∞上连续,单调递增,故函数()f x 的零点在区间(2,3)内,故2n =.答案应填:2.25. ②③④【解析】由1()sin 102x x +-=得1sin 1()2x x =-,令()f x =sin x ,()g x =11()2x-,在同一坐标系中画出两函数的图像如右,由图像知:①错,③、④对,而由于()g x =11()2x-递增,小于1,且以直线1=y 为渐近线,()f x =sin x 在-1到1之间振荡,故在区间(0,+∞)上,两者图像有无穷多个交点,所以②对,故选填②③④.26. 2 【解析】画出图象知交点个数为2.27. (2,2)- 【解析】函数的导数为()22'333(1)f x x x =-=-,所以1x =和1x =-是函数的两个极值,由题意知,极大值为(1)2f a -=+,极小值为(1)2f a =-+,所以要使函数()f x 有三个不同的零点,则有20a +>且20a -+<,解得22a -<<,即实数a 的取值范围是(2,2)-. 28. 【答案】8由43()(())0f x f f x ==,即32()10f x -=,解得31()2f x =.又3221()(())2()12f x f f x f x ==-=,解得23()4f x =或21()4f x =.当23()4f x =时,2113()(())2()14f x f f x f x ==-=,解得17()8f x =或11()8f x =,当21()4f x =时,2111()(())2()14f x f f x f x ==-=,解得15()8f x =或13()8f x =,由17()()218f x f x x ==-=,所以1511616x =或.由13()()218f x f x x ==-=,所以1151616x =或.由15()()218f x f x x ==-=,所以1331616x =或.由13()()218f x f x x ==-=,所以1151616x =或.所以共有8个零点.29. 【解析】: 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,就是函数(0,xy a a =>且1}a ≠与函数y x a =+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)xy a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是1>a 答案: 1>a30. 【答案】5 由22()3()10y f x f x =-+=解得()1f x =或1()2f x =.若()1f x =,当0x >时,由lg 1x =,得lg 1x =±,解得10x =或110x =.当0x ≤时,由21x =得0x =.若1()2f x =,当0x >时,由1lg 2x =,得1lg 2x =±,解得x =或x =.当0x ≤时,由122x=得1x =-,此时无解.综上共有5个零点.31. {|1}a a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数七、函数的零点
一、选择题(每小题
6分,共36分)1、函数f (x )=e x +x -2的零点所在的一个区间是()
A. (-2,-1)
B. (-1,0)
C. (0,1)
D. (1,2)2、如图所示的函数图象与
x 轴均有交点,其中不能用二分法求图中交点横坐标的是()
A. ①②
B. ①③
C. ①④
D. ③④3、若定义在
R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数
y =f (x )-log 3|x|的零点个数是()
A. 多于4个
B. 4个
C. 3个
D. 2个4、函数f (x )=
x 2+2x -3,x ≤0,
-2+lnx ,x >0的零点个数为()A. 0
B. 1
C. 2
D. 3 5、函数f (x )=log 3 x -x +2的零点的个数是()A. 0 B. 1
C. 2
D. 3 6、不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是
7、定义在R 上的偶函数y =f (x ),当x ≥0时,y =f (x )是单调递增的,f (1)·f (2)<0.则函数y =f (x )的图象与
x 轴的交点个数是8、在用二分法求方程x 3-2x -1=0的一个近似解时,已知一个根在区间(
1,2)内,则下一步可断定该根所在的区间为
9、若函数|1|1()2x y m 存在零点,则m 的取值范围是
__________. 10、已知函数f (x )=4x +k ·2x +1仅有一个零点,求实数
k 的值,并求出该零点
.
11、已知a∈R,函数f(x)=x2+2ax+1,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围。
12、已知函数f(x)=x2+bx+c满足条件:f(x-3)=f(5-x),且方程f(x)=x 有相等实根.
(1)求f(x)的解析式;
(2)当x∈[-1,+∞)时,f(x)≥2(a-1)x+a+1
4
恒成立,求a的取值范围.。