构造函数法证明不等式的八种方法
不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。
这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。
这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。
就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。
这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。
证明不等式的八大绝招

证明不等式的八大绝招高考数学的压轴题常以不等式为背景,而不等式的证明因其方法灵活,技巧性强,历来是学生学习中的一大难点,本文给同学们介绍不等式证明中的八大绝招:“变形法、拆项法、添项法、放缩法、构造法、换元法、导数法、数形结合法”,希望对同学们的学习有所禅益。
一、变形法例1、已知121212101010,,,:a b c a b c R a b c bc ca ab+∈++≥++求证 证明:原不等式等价于:131313101010a b c a b c abc ++≥++()131313101010a b c abc a b c ⇔++≥++ (*)1313112211a b a b a b +≥+ , 1313112211b c b c b c +≥+, 1313112211c a a c a c +≥+, ()()()()1313131122112211222a b c a b c b a c c a b ∴++≥+++++()1111111010102222a bc b ac c ab abc a b c ≥++=++。
从而()131313101010a b c abc a b c ++≥++;所以(*)式成立,故原不等式成立。
二、拆项法例2、已知,,,1a b c R a b c +∈++=且 ,求证:231.432ab c ≤证明:122333b b c c c a b c a =++=+++++ 66≥=232362316432ab c ⋅∴≤=。
三、添项法例3、【第36届IMO 试题】设,,a b c 为正数,满足1abc =,求证:()()()33311132a b c b a c c a b ++≥+++.证明:()()3114b c a b c bc a ++≥=+ , ()3114a c b a c ac b++≥=+,311()4a b c a b ab c++≥=+, ∴()()()33311111114b c a c a b a b c b a c c a b bc ac ab a b c+++⎛⎫+++++≥++ ⎪+++⎝⎭.从而()()()33311111111112a b c b a c c a b a b c a b c ⎛⎫++≥++-++ ⎪+++⎝⎭1111322a b c ⎛⎫=++≥= ⎪⎝⎭. 故∴原不等式成立. 四、放缩法 例4、【1998年全国高考试题】求证:())*111111114732n N n ⎛⎫⎛⎫⎛⎫++++>∈ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭ 。
构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方
法
泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。
在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。
本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。
1. 利用 $(1+x)^n$ 的二项式展开式证明。
2. 利用 $e^x$ 的泰勒展开式证明。
3. 利用 $\ln (1+x)$ 的泰勒展开式证明。
4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。
5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。
6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。
7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。
8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。
这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。
但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。
总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。
下面就列举八种常用的构造函数法证明不等式的方法。
1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。
2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。
3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。
4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
以上就是八种常用的构造函数法证明不等式的方法。
在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。
此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。
构造函数法证明不等式的常见方法

构造函数法证明不等式一、教学目标:1.知识与技能:利用导数研究函数的单调性极值和最值,再由单调性和最值来证明不等式.2.过程与方法:引导学生钻研教材,归纳求导的四则运算法则的应用,通过类比,化归思想转换命题,抓住条件与结论的结构形式,合理构造函数.3.情感与态度:通过这部分内容的学习,培养学生的分析能力(归纳与类比)与推理能力(证明),培养学生战胜困难的决心和解题信心。
二、教学重难点:解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
难点:将命题的结论进行转化与化归,变成熟悉的题型。
三、教法学法:变式训练 四、教学过程: (一)引入课题:1.复习导数的运算法则:2.问题探源:(教材第32页B 组题第1题)利用函数的单调性,证明下列不等式,并通过函数图象直观验证(3)1(0)(4)ln 1(0)x e x x x x x >+≠≤->3.问题探究:1、直观感知(几何画板演示);(2)推理论证 4高考探究:例1、(2013年北京高考)设L 为曲线C :ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方.若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.()af a >b )(b f变式练习2:证明:对任意的正整数n ,不等式11ln(1)111nn+>-+ 都成立(类似还有2012年湖北高考题第22题)变式练习3:已知m 、n 都是正整数,且,1n m <<证明:mnn m )1()1(+>+思考题5.(全国卷)已知函数()ln g x x x = 设b a <<0,证明 :()()()22g a g b a bg ++>(1)知识点:(2)解题步骤:(3)数学思想方法高考真题训练:1.【2015年新课标Ⅰ文21】. (本小题满分12分)设函数()2ln xf x e a x =-.证明:当0a >时()22lnf x a a a≥+. 分析:利用函数最值和不等式单调性证明.2.【15北京理科】已知函数()1ln 1x f x x +=-,求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; 分析:移项构造函数利用函数单调性求证。
构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。
例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。
2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。
例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。
3. 构造反函数法:通过构造一个特定的反函数来证明不等式。
例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。
4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。
例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。
5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。
例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。
6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。
例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造函数法证明不等式的八种方法
利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
1、从条件特征入手构造函数证明
【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f
【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f <x
e 的解集.
【变式2】若函数y =)(x f 是定义在()0,∞-上的可导函数且满足不等式)()(2x f x x f '+>2
x .
求不等式0)2(4)2015()2015(2
>--++f x f x 的解集.
2、移项法构造函数
【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-
)1ln(1
1
1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11
1
)1ln()(-+++=x x x g ,从其导数入手即可证明。
3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f +=
求证:在区间),1(∞+上,函数)(x f 的图象在函数33
2
)(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,设)()()(x f x g x F -=
4、换元法构造函数证明
【例4】(2007年,山东卷)证明:对任意的正整数n ,不等式321
1)11ln(n
n n ->+ 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令
x n
=1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2
3
++-=x x x x h ,求导即可达到证明。
5、对数法构造函数(选用于幂指数函数不等式) 【例5】证明当2
111)1(,0x x
e
x x +
+
<+>时
6、构造形似函数
【例6】证明当a b b a e a b >>>证明,
7、构造二阶导数函数证明导数的单调性 【例7】已知函数21()2
x
f x ae x =-
(1)若f(x)在R 上为增函数,求a 的取值范围;(2)若a=1,求证:x >0时,f(x)>1+x
8、主元法构造函数
【例8】(全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=
(1) 求函数)(x f 的最大值; (2)设b a <<0,证明 :2ln )()2
(2)()(0a b b
a g
b g a g -<+-+<.
【思维挑战】
1、(2007年,陕西))(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a <b ,则必有( )
(A )af (b )≤bf (a )(B )bf (a )≤af (b )(C )af (a )≤f (b ) (D )bf (b )≤f (a )
2、(2007年,安徽卷)已知定义在正实数集上的函数,ln 3)(,22
1)(2
2b x a x g ax x x f +=+=其中a >0,且a a a b ln 32522-=,求证:)()(x g x f ≥
3、已知函数x x x x f +-+=1)1ln()(,求证:对任意的正数a 、b , 恒有.1ln ln a
b
b a -≥-。