高中不等式的证明方法
高考数学中常规的不等式证明思路及技巧

高考数学中常规的不等式证明思路及技巧数学是高考中必不可少的一门科目,而数学中的不等式证明题目更是高考难点之一。
不等式证明题目考察的是学生的推理能力、逻辑思维能力和精准计算能力。
本文将介绍常见的不等式证明思路及技巧,以帮助高中生更好地应对高考数学中的不等式证明题目。
一、利用已知条件推出结论在不等式证明题目中,往往会给出一些已知条件,利用这些条件我们可以推出某个结论,从而间接证明不等式的正确性。
在做题时,我们应该把题目中的已知条件先作出标注,理清思路后再进行推导。
例如:给定实数 $x$,$y$,$z$,满足 $x^2+y^2+z^2=1$,求证:$x+y+z\leq \sqrt{3}$。
解析:首先,我们可以根据均值不等式得出 $x+y+z\leq\sqrt{3(x^2+y^2+z^2)}$。
接下来,根据题目中的条件$x^2+y^2+z^2=1$,我们可以将被开方量化简为 $\sqrt{3}$,从而得到 $x+y+z\leq \sqrt{3}$。
因此,我们成功地证明了该不等式的正确性。
二、借助已知不等式证明目标不等式借助已知不等式间接证明目标不等式的正确性是不等式证明中最常用的方法之一。
这种方法需要对不等式理解深入,需要对不等式的性质有全面认知。
可以通过加、减、乘、除等运算方式进行变形,或者通过引理证明的方式来证明目标不等式的正确性。
例如:已知 $ab+bc+ca=1$,证明$\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\geq\dfrac{3\sqrt{3}}{4}$。
解析:首先,我们可以通过柯西不等式将原不等式中的多项式化成分数进行求解。
具体而言,我们有:$$\begin{aligned}&\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\\ &\geq\dfrac{(a+b+c)^2}{a+ab^2+b+b^2c+c+c^2a+a^2}\\ &\geq\dfrac{3}{\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}+1}\\ &\geq\dfrac{3}{\sqrt[4]{\dfrac{abc}{abc}}+1}\\ &=\dfrac{3}{2}\end{aligned}$$由此,我们可以通过制定合适的策略,借助已知不等式成功证明了目标不等式的正确性。
高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
证明不等式的八种方法

1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
不等式证明使用技巧

不等式证明使用技巧不等式证明是高中数学中的一个重要内容,掌握不等式证明的技巧对于解题和提升数学水平都有很大的帮助。
下面我将介绍一些常用的不等式证明技巧。
一、代入法代入法是一种常用的证明不等式的方法。
我们可以先假设不等式成立,然后进行推导得出结论。
如果得到的结论与原不等式一致,就证明了不等式的成立。
例如,我们要证明对于任意正实数a、b和c,有$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\ge q 9$。
我们可以假设$a\leq b\leq c$,然后代入得到:$a^2+b^2+c^2=2a^2+(b^2-a^2+c^2)\geq 2a^2=2(a\cdot a)\geq2(ab)$,$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\fra c{1}{b^2}+\frac{1}{c^2}\geq 3(\frac{1}{ab})=\frac{3}{ab}$。
然后,将两个不等式代入原不等式得到:$(2ab)(\frac{3}{ab})=6\geq 9$。
由此可见,原不等式成立。
二、放缩法放缩法是另一种常用的证明不等式的方法。
我们可以通过放缩不等式的各个部分来改变不等式的形式,从而得到更容易证明的形式。
例如,我们要证明对于任意正实数a、b和c,有$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$。
我们可以通过放缩的方法,将不等式的各个部分放缩至一个更容易证明的形式。
我们注意到,$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ca}$。
然后,我们可以通过平方展开和放缩的方法,得到:$\frac{(a+b+c)^2}{ab+bc+ca}\geq 3$。
不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。
高中数学不等式的证明方法

高中数学不等式的证明方法高中数学中,不等式的证明是一个非常重要的部分。
搞懂这些证明不仅能帮助你解决复杂的数学问题,还能在考试中加分。
接下来,我们就一起“啃”啃这块“硬骨头”,看一看如何在不等式的世界里游刃有余。
1. 不等式的基本概念1.1 什么是不等式?简单来说,不等式就是两个数或者两个表达式之间的大小关系,比如 ( a > b ) 或者( x leq y )。
它们告诉我们一个数大于、等于或小于另一个数。
1.2 不等式的类型常见的不等式有:大于不等式 ( a > b )、小于不等式 ( a < b )、大于等于不等式 ( a geq b ) 和小于等于不等式 ( a leq b )。
不同的类型会在证明方法上有所不同。
2. 不等式证明的基本方法2.1 直接证明法这种方法最简单,直观明了。
比如,我们要证明 ( 2 + 3 > 4 ),那就是直接算出结果,2+3确实大于4。
这种方法适合比较简单的证明。
2.2 反证法反证法就是假设一个错误的情况,然后推导出矛盾,从而证明最初的假设是对的。
例如,要证明 ( x > 3 ) 对于某个特定的 ( x ) 成立,我们可以假设 ( x leq 3 ),然后找到一个矛盾,进而证明 ( x > 3 ) 是对的。
2.3 归纳法归纳法特别适合处理涉及多个步骤的问题。
我们先证明最简单的情况,然后假设对于某个 ( n ) 成立,接着证明对于 ( n+1 ) 也成立。
这种方法特别适合证明不等式的一些规律。
3. 常用的不等式证明技巧3.1 均值不等式均值不等式在不等式证明中非常有用。
比如,算术平均数和几何平均数的关系,就是一个经典的例子。
记住这个不等式:算术平均数总是大于或等于几何平均数。
这个原理可以帮助我们解决很多看似棘手的问题。
3.2 柯西不等式柯西不等式是一个很有用的工具,特别是在处理向量或矩阵时。
它告诉我们,对于任意的向量 ( mathbf{a} ) 和 ( mathbf{b} ),都有 ((mathbf{a} cdot mathbf{b})^2 leq (mathbf{a} cdot mathbf{a})(mathbf{b} cdot mathbf{b}))。
高一基本不等式各种解题方法全部

高一基本不等式各种解题方法全部
本文将介绍高一基本不等式的各种解题方法,包括基本不等式的证明、绝对值不等式、平均值不等式、柯西不等式、特殊不等式等内容。
1. 基本不等式的证明
基本不等式是高中数学中非常重要的一个不等式,它是指对于任意正实数a1、a2、……、an,有如下不等式成立:
(a1+a2+……+an) / n >= √(a1×a2×……×an)
其证明可以通过数学归纳法进行,具体过程可参考相关的数学教材。
2. 绝对值不等式
绝对值不等式是指对于任意实数a和b,有如下不等式成立: |a+b| <= |a|+|b|
该不等式的证明可以通过考虑a和b的正负性,以及绝对值的三角不等式来得到。
3. 平均值不等式
平均值不等式是指对于任意正实数a1、a2、……、an,有如下不等式成立:
(a1+a2+……+an) / n >= (a1×a2×……×an)的1/n 该不等式可以通过对数函数和基本不等式的运用得到。
4. 柯西不等式
柯西不等式是指对于任意实数a1、a2、b1、b2,有如下不等式
成立:
(a1×b1+a2×b2)^2 <= (a1^2+a2^2)(b1^2+b2^2)
该不等式可以通过向量的内积和向量的长度之间的关系来得到。
5. 特殊不等式
在解题中,还会遇到一些特殊的不等式,如均值不等式、威布尔不等式、多项式不等式等。
对于这些不等式,需要根据具体情况选择相应的解题方法。
总之,在高一数学中,不等式是一个非常重要的知识点,掌握不等式的各种解题方法对于提高数学成绩具有重要作用。
不等式证明都有哪几种方法

不等式证明都有哪几种方法
不等式的证明方法(1)比较法:作差比较: . 作差比较的步骤:①作差:对要比较大小的两个数(或式)作差. ②变形:对差进行因式分解或配方成几个数(或式)的完全平方和. ③判断差的符号:结合变形的结果及题设条件判断差的符号. 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小. (2)综合法:由因导果. (3)分析法:执果索因.基本步骤:要证……只需证……,只需证…… ①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达. (4)反证法:正难则反. (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法的方法有:①添加或舍去一些项,如:;;
②将分子或分母放大(或缩小);③利用基本不等式,如:;;(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元. 如:已知,可设;已知,可设 ( );已知,可设;已知,可设;(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴0)(4)(44)()(14141)(2≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理0)(414141)(2≥+=+-+-c b bc c b c b c b ,0)(414141)(2≥+=+-+-c a ac a c a c a c 三式相加,可得0111212121≥+-+-+-++ac c b b a c b a ∴ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a证:2222)(1)(3c b a c b a ++=≥++⇔∴2222)()(3c b a c b a ++-++0)()()(222222222222≥-+-+-=---++=a c c b b a cabc ab c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++证:∵22442b a b a >+22442c b c b >+22442a c a c >+∴222222444a c c b b a c b a ++>++∵ c ab c b b a c b b a 22222222222=⋅>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+∴)(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++证明:∵)(22222222)(22b a b a b a b aab ab +≥++≥+∴≥+即2)(222b a b a+≥+,两边开平方得)(222222b a b a b a+≥+≥+ 同理可得)(2222c b c b+≥+)(2222a c a c+≥+三式相加,得 )(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
证:)1)(1()11)(11(y y x x y x y x ++++=++)(25)2)(2(y xx y y x x y ++=++=9225=⋅+≥ 6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121,,2=+∈≤⇒⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式 证明:411,,≤∴=+∈+ab b a R b a 。
.91111.981211111111111 ≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴=+≥+=+++=+++=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+b a ab ab ab b a ab b a b a 而三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+证:要证:)3(3)2(23abc c b a ab b a -++≤-+只需证:332abc c ab -≤- 即:332abc ab c ≥+∵ 3333abc ab ab c ab ab c =≥++成立∴ 原不等式成立8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
证:3≤++c b a 3)(2≤++⇔c b a 即:2222≤++ac bc ab∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立 四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、1<b ,求证:1)1)(1(22≤--+b a ab 。
证明:令αsin =a 2ππα+≠k Z ∈k βsin =b2ππβ+≠k Z ∈k左βαβαβαβαcos cos sin sin cos cos sin sin ±=⋅+=1)cos(≤±=βα∴1)1)(1(22≤--+b a ab10、122=+y x ,求证:22≤+≤-y x 证:由122=+y x 设αcos =x ,αsin =y ∴ ]2,2[)4sin(2sin cos -∈+=+=+παααy x∴ 22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 证明:∵a -b>0, b -c>0, a -c>0 ∴可设a -b=x, b -c=y (x, y>0) 则a -c= x + y, 原不等式转化为证明y x y x +≥+411即证4)11)((≥++y x y x ,即证42≥++x y y x ∵2≥+xy y x ∴原不等式成立(当仅x=y 当“=”成立)12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2),∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3∴ 21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan 21)|≤r 5≤10. 14、解不等式15+--x x >21 解:因为22)1()5(++-x x =6,故可令 x -5 =6 sin θ,1+x =6 cos θ,θ∈[0,2π] 则原不等式化为 6 sin θ-6 cos θ >21所以6 sin θ >21+6 cos θ 由θ∈[0,2π]知21+6 cos θ>0,将上式两边平方并整理,得48 cos 2θ+46 cos θ-23<0解得0≤cos θ<246282-所以x =6cos 2θ-1<124724-,且x ≥-1,故原不等式的解集是{x|-1≤x <124724-} .15、-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π),∵-4π≤θ-4π≤43π,∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简. 16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225.∴(a +2)2+(b +2)2≥225.六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知策略:做“1”的代换。
证明: c c b a b c b a a c b a c b a ++++++++=++111922233=+++≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b .七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
18、若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 ⇒ p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2<0,矛盾.故假设p +q >2不成立,∴p +q ≤2.19、已知a 、b 、∈c (0,1),求证:b a )1(-,c b )1(-,a c )1(-,不能均大于41。
证明:假设b a ⋅-)1(,c b ⋅-)1(,a c ⋅-)1(均大于41∵ )1(a -,b 均为正 ∴2141)1(2)1(=>⋅-≥+-b a b a同理2141)1(2)1(=>⋅-≥+-c b cb 212)1(>+-a c ∴2121212)1(2)1(2)1(++>+-++-++-a c c b b a∴ 2323>不正确 ∴ 假设不成立 ∴ 原命题正确20、已知a,b,c ∈(0,1),求证:(1-a )b, (1-b )c, (1-c )a 不能同时大于41。