证明不等式的八种方法
不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。
这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。
这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。
就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。
这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。
高考数学证明不等式的基本方法

知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络
证明不等式的八大绝招

证明不等式的八大绝招高考数学的压轴题常以不等式为背景,而不等式的证明因其方法灵活,技巧性强,历来是学生学习中的一大难点,本文给同学们介绍不等式证明中的八大绝招:“变形法、拆项法、添项法、放缩法、构造法、换元法、导数法、数形结合法”,希望对同学们的学习有所禅益。
一、变形法例1、已知121212101010,,,:a b c a b c R a b c bc ca ab+∈++≥++求证 证明:原不等式等价于:131313101010a b c a b c abc ++≥++()131313101010a b c abc a b c ⇔++≥++ (*)1313112211a b a b a b +≥+ , 1313112211b c b c b c +≥+, 1313112211c a a c a c +≥+, ()()()()1313131122112211222a b c a b c b a c c a b ∴++≥+++++()1111111010102222a bc b ac c ab abc a b c ≥++=++。
从而()131313101010a b c abc a b c ++≥++;所以(*)式成立,故原不等式成立。
二、拆项法例2、已知,,,1a b c R a b c +∈++=且 ,求证:231.432ab c ≤证明:122333b b c c c a b c a =++=+++++ 66≥=232362316432ab c ⋅∴≤=。
三、添项法例3、【第36届IMO 试题】设,,a b c 为正数,满足1abc =,求证:()()()33311132a b c b a c c a b ++≥+++.证明:()()3114b c a b c bc a ++≥=+ , ()3114a c b a c ac b++≥=+,311()4a b c a b ab c++≥=+, ∴()()()33311111114b c a c a b a b c b a c c a b bc ac ab a b c+++⎛⎫+++++≥++ ⎪+++⎝⎭.从而()()()33311111111112a b c b a c c a b a b c a b c ⎛⎫++≥++-++ ⎪+++⎝⎭1111322a b c ⎛⎫=++≥= ⎪⎝⎭. 故∴原不等式成立. 四、放缩法 例4、【1998年全国高考试题】求证:())*111111114732n N n ⎛⎫⎛⎫⎛⎫++++>∈ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭ 。
不等式证明方法大全

不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。
目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。
二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。
三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。
四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。
五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。
六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。
七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。
以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。
不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1
①
∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: ab=[(a-1)+1][(b-1)+1] =(a-1)(b-1)+a-1+b-1+1 =(a-1)(b-1)-1+a+b ∵a≥2,b≥2 ∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1 即(a-1)(b-1)-1≥0 ∴(a-1)(b-1)-1+a+b≥a+b 即ab≥a+b 证毕
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
放缩法:要证等式A<B成立,有时可以将 它的一边放大或缩小,寻找一个中间量,如 将A放大成C,即A<C,后证C<B。
7 Math Part 放缩法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: a、b之间的大小关系对该 命题没有影响 不妨设a≥b ∵b≥2 ∴ab≥2a 原不等式变形为
2a≥a+b 移项得 a≥b 由假设知该命题成立 所以原命题成立 证毕
8 Math Part
换元法
8 Math Part 换元法
换元法:解一些复杂的因式分解问题,常用 到换元法,即对结构比较复杂的多项式,若 把其中某些部分看成一个整体,用新字母代 替(即换元),则能使复杂的问题简单化,明 朗化,在减少多项式项数,降低多项式结构 复杂程度等方面有独到作用 。
证明: ∵a≥2,b≥2 要证ab≥a+b 只需证1≥ 1 1
ab
∵a≥2,b≥2 ∴ 1 1 ,1 1
a 2b 2
∴1 1 1
ab
所以原命题成立
证毕
4 Math Part
反证法
3 Math Part 分析法
反证法:首先假设要证明的命题是错误的, 然后利用公理、已知的定义、定理,命题的 条件,得到和命题的条件或公理、定理、定 义及明显成立的事实等矛盾的结论,以此说 明假设的结论不成立,从而原结论成立。
3 Math Part
分析法
3 Math Part 分析法
分析法:从需要证明的命题出发,分析使这 个命题成立的充分条件,逐步寻找使这个命 题成立的充分条件,直至所寻求的充分条件 显然成立,或由已知证明成立,从而确定所 证的命题成立的一种方法。
3 Math Part 分析法
例题:已知a≥2,b≥2,求证:ab≥a+b
S4=(a-1)(b-1)
S=S1+S2+S4-S0
即有ab=a+b+S4-S0
即 ab-a-b=S4-S0
①
下证S4比S0不小
b
∵S0是长宽均为1的的正方形面积 而S4是长为a-1≥1,宽为b-1≥1的矩形面积 ∴S4≥S0 ∴①式成立 ∴原命题成立 证毕
7 Math Part
放缩法
7 Math Part 放缩法
等式、琴生不等式、伯努利不等式等等。
5 Math Part 公式法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: ∵a≥2,b≥2 ∴a-2≥0,b-2≥0 由伯努利不等式知 [(a-2)+1][(b-2)+1]≥1+(a-2)+(b-2) 即(a-1)(b-1)≥1+(a-2)+(b-2) 展开得
ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Mபைடு நூலகம்th Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
不等式的证明方法之“八仙过海”
学校:庆云县第一中学 作者:王超
Math 方法
Method
1 比较法
2 综合法
3 分析法
4 反证法
5 公式法 6 构造法 7 放缩法 8 换元法
Math 例题
Example
例题:已知a≥2,b≥2,求证:ab≥a+b
1 Math Part
比较法
1 Math Part 比较法
6 Math Part 构造法
几何构造法
1
例题:已知a≥2,b≥2,求证:ab≥a+b
S4
证明:
a
如图所示,构造长度为a宽度为b的矩形,
S1
则矩形面积S=ab
在矩形内部以a为长,1为宽作小矩形以
黄色区域表示;和b为长1为宽作小矩形
S0
以绿色区域表示,则两个矩形的面积分
S2
1
别为S1=a,S2=b 重合部分面积记为S0=1 两个小矩形均未覆盖部分记为