2020年中考数学总复习课件:§3.3 反比例函数
合集下载
九年级数学中考一次函数反比例函数二次函数复习人教版PPT课件

1、正比例函数与一次函数的关系:
正比例函数
y=kx(k≠0)
一次函数
(b=0)
y=kx+b(k≠0)
图象与性质: 都是一条直线
k>0
k<0
y
y
b>0
b>0
(0,b)
b=0
b=0
b
b<0 b<0
x
x
b
正比例函数是特殊的一次函数
2、一次函数y=kx+b(k≠0)的图象的位置及 增减性:
当k>0时
y
当k<0时
3.一次函数与正比例函数之间的关系: 正比例函数是当b=0时的特殊的一次函 数.
(一)、一次函数:
由于两点确定一条直线,因此在今后作 一次函数图象时,只要描出适合关系式的 两点,再连成直线即可 .
一般选取两个特殊点:直线与 y 轴的交
点(0,b),直线与 x 轴的交点(- b ,0)
k
画正比例函数y=kx的图象时,只要描 出点(0,0), (1,k)即可
oA
x
y
b>0
b=0
o
x
b<0
b<0
b=0 o
x
b<0
• y随x的增大而增大; y随x的增大而减小.
3、特殊的一次函数——正比例函数y=kx(k≠0)的 性质:
<1>正比例函数y=kx的图象必经过原点; <2>当k>0时,图象经过第一、三象限,y随x的增 大而增大; <3>当k<0时,图象经过第二、四象限,y随x的增 大而减小.
k
k
y Y=kx+b
(o,b) Y>0
北师大中考数学总复习《反比例函数》课件

归 类 探 究
探究一 与反比例函数的概念 命题角度: 1. 反比例函数的概念; 2. 求反比例函数的解析式.
例 1 [2013·温州] 已知点 P(1,-3)在反比例函
k 数 y= (k≠0)的图象上,则 k 的值是( B ) x
A.3 1 C. 3
考点聚焦 归类探究
B.-3 1 D.- 3
回归教材 中考预测
归类探究 回归教材 中考预测
考点聚焦
此类一次函数,反比例函数,二元一次方 程组,三角形面积等知识的综合运用,其关 键是理清解题思路,在直角坐标系中,求三 角形或四边形面积时,常常采用分割法,把 所求的图形分成几个三角形或四边形,分别 求出面积后再相加.
考点聚焦
归类探究
回归教材
中考预测
回 归 教 材
图13-2
考点聚焦 要注 意点的坐标与线段长之间的转化,并且利用 解析式和横坐标,求各点的纵坐标是求面积 的关键.
考点聚焦
归类探究
回归教材
中考预测
探究四
反比例函数的应用
命题角度: 1. 反比例函数在实际生活中的应用; 2. 反比例函数与一次函数的综合运用. 例 4 [2013·成都] 如图 13-3,一次函数 y1=x+1 的
k 图象与反比例函数 y2= (k 为常数,且 k≠0)的图象都经过点 x A(m,2).
(1)求点 A 的坐标及反比例函数 的解析式; (2)结合图象直接比较:当 x>0 时, y1 与 y2 的大小.
图13-3
考点聚焦 归类探究 回归教材 中考预测
解
(1)将点 A(m,2)的坐标代入一次函数 y1=x+1 得 2=m+1,解得 m=1. 即点 A 的坐标为(1,2). k 将点 A(1,2)的坐标代入反比例函数 y2= 得 2= x k ,即 k=2. 1 2 ∴反比例函数的解析式为 y2= . x (2)当 0<x<1 时,y1<y2;当 x=1 时,y1=y2; 当 x>1 时,y1>y2.
中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
中考数学专题复习 反比例函数及其应用

上一页 返回导航 下一页
(教材母题链接:北师九上 P162T11)
上一页 返回导航 下一页
反比例函数与几何图形的综合 9.(2020 滨州)如图,点 A 在双曲线 y=4x上,点 B 在双曲线 y=1x2上, 且 AB∥x 轴,点 C,D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为 (C )
(C ) A.k=2 B.函数图象分布在第一、三象限
C.当 x>0 时,y 随 x 的增大而增大
D.当 x>0 时,y 随 x 的增大而减小
上一页 返回导航 下一页
2.(2020 河南)若点 A(-1,y1),B(2,y2),C(3,y3)在反比例函数 y= -6x的图象上,则 y1,y2,y3 的大小关系是( C )
上一页 返回导航 下一页
2.关于反比例函数 y=-3x,下列说法不正确的是( D ) A.图象经过点(1,-3) B.图象位于第二、四象限 C.图象关于直线 y=x 对称 D.y 随 x 的增大而增大
上一页 返回导航 下一页
三、反比例函数解析式的确定 待定系数法: (1)设所求的反比例函数的解析式为 y=kx(k≠0); (2)将图象上的一点坐标代入 y=kx中,求出 k; (3)把 k 代入解析式 y=kx中,写出解析式.
第一部分 夯实基础
第三章 函 数
第3节 反比例函数及其应用
上一页 返回导航 下一页
课标导航 ·结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数的表达式. ·能画出反比例函数的图象,根据图象和表达式 y=kx(k≠0).探索并理 解 k>0 和 k<0 时,图象的变化情况. ·能用反比例函数解决简单实际问题.
上一页 返回导航 下一页
(2)若一次函数图象与 y 轴交于点 C,点 D 为点 C 关于原点 O 的对称点, 求△ACD 的面积.
(教材母题链接:北师九上 P162T11)
上一页 返回导航 下一页
反比例函数与几何图形的综合 9.(2020 滨州)如图,点 A 在双曲线 y=4x上,点 B 在双曲线 y=1x2上, 且 AB∥x 轴,点 C,D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为 (C )
(C ) A.k=2 B.函数图象分布在第一、三象限
C.当 x>0 时,y 随 x 的增大而增大
D.当 x>0 时,y 随 x 的增大而减小
上一页 返回导航 下一页
2.(2020 河南)若点 A(-1,y1),B(2,y2),C(3,y3)在反比例函数 y= -6x的图象上,则 y1,y2,y3 的大小关系是( C )
上一页 返回导航 下一页
2.关于反比例函数 y=-3x,下列说法不正确的是( D ) A.图象经过点(1,-3) B.图象位于第二、四象限 C.图象关于直线 y=x 对称 D.y 随 x 的增大而增大
上一页 返回导航 下一页
三、反比例函数解析式的确定 待定系数法: (1)设所求的反比例函数的解析式为 y=kx(k≠0); (2)将图象上的一点坐标代入 y=kx中,求出 k; (3)把 k 代入解析式 y=kx中,写出解析式.
第一部分 夯实基础
第三章 函 数
第3节 反比例函数及其应用
上一页 返回导航 下一页
课标导航 ·结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数的表达式. ·能画出反比例函数的图象,根据图象和表达式 y=kx(k≠0).探索并理 解 k>0 和 k<0 时,图象的变化情况. ·能用反比例函数解决简单实际问题.
上一页 返回导航 下一页
(2)若一次函数图象与 y 轴交于点 C,点 D 为点 C 关于原点 O 的对称点, 求△ACD 的面积.
【中考数学考点复习】第三节反比例函数的图象与性质课件

∴点C的坐标为(m,12m),
∴PC=|m8 -12m|,
∴S△POC=12PC·xP,
第9题图
即3=12×|m8 -12m|·m,(7分) 整理为|8-12m2|=6, 解得m=±2或±2 7, ∵点P在第一象限, ∴m>0, ∴P(2,4)或(2 7,477).(10分)
第9题图
10. 在平面直角坐标系 xOy 中,反比例函数 y=mx (x>0)的图象经过点 A(3, 4),过点 A 的直线 y=kx+b 与 x 轴、y 轴分别交于 B,C 两点.
(5)【思维教练】通过作辅助线将△PAB分为两个三角形,利用分割法 及三角形面积公式求解;
解:如解图②,过点 P 作 PQ 垂直于 x 轴,交直线 AB 于点 Q, 则点 Q(52,32),
∴S △PAB(xB-xQ)·PQ+12(xQ-xA)·PQ
Q
∟
=12(xB-xA)·PQ=12×2×32 =3;
y=-8,
联立
x y=1x+5-m
整理得 ,
12x
2+(5-m)x
+8=0,
2
Δ=(5-m)2-16=0,解得 m=1 或 m=9.(9 分) ∴m 的值为 1 或 9.(10 分)
第8题图
9.图,在平面直角坐标系 xOy 中,已知正比例函数 y=1x 的图象与反比 2
例函数 y=k的图象交于 A(a,-2),B 两点. x
∴不等式kx<-x+4 的解集为 x<0 或 1<x<3;
(3)连接 OA,OB,求△AOB 的面积;
第 7 题图②
(3)【思维教练】先求得直线与x轴的交点坐标,再利用和差法及三角形 面积公式求解;
解:如解图①,设直线 AB 与 x 轴交于点 C,
2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

其中,两个变量之间的函数关系可以用如图所示的图象表示的是( )
A.①②
B.①③
C.②③
D.①②③
【详解】解:由函数图象可知,这两个变量之间成反比例函数关系,
①矩形的面积= ⋅ ,因此矩形的面积一定时,一边长y与它的邻边x可以用形如 = ≠ 0 的式子表
示,即满足所给的函数图象;
②耕地面积= ⋅ ,因此耕地面积一定时,该村人均耕地面积S与全村总人口n可以用形如 =
这个函数图象上的点是(
)A. 1,6
1
B. − 2 , 12 ,
C. −2, −3
2
D.
3
,4
2
6
【对点训练1】(2019·吉林长春·中考模拟)如图,函数y=(x>0)、y=(x>0)的图象将第一象限分成了A、
B、C三个部分.下列各点中,在B部分的是( )
即:反比例函数的图象关于直线y=±x成轴对称,关于原点成中心对称.
反比例 待定系数法求反比例函数解析式的一般步骤:
函数解
析式的
确定方
法
k
1)设反比例函数的解析式为y = (k为常数,k≠0);
x
2)把已知的一对x,y的值带入解析式,得到一个关于待定系数k的方程;
3)解方程求出待定系数k;
4)将所求的k值代入所设解析式中.
【例3】(2022上·山东枣庄·九年级校考期末)已知函数 = ( + 1)
是
【详解】∵函数 = ( + 1)
.
2 −5
2 −5
是关于的反比例函数,则的值
是关于的反比例函数,
∴ + 1 ≠ 0,2 − 5 = −1,
∴ = ±2,
【中考一轮复习】反比例函数的图象及性质课件
典型例题---反比例函数的图象与性质
【例1】已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数
y
6 x
的图象上,则y1、y2、y3的大小关系是( D )
A.y3<y1<y2 B.y1<y2<y3 C.y2<y1<y3 D.y3<y2<y1
方法一:求出函数值再比较函数值的大小;
方法二:利用图象比较函数值的大小;
Ox D
当堂训练---反比例函数的图象与性质
3.已知点P(a,m),Q(b,n)都在反比例函数 y 2 的图象上,且
x
a<0<b,则下列结论一定正确的是( D )
A.m+n<0 B.m+n>0
C.m<n
D.m>n
4.反比例函数 y k 的图象经过点(3,-2),下列各点在图象上的 x
是( D )
1及.如y2图=,2x直的线图l象⊥分x于别点交P于,且点与A反、比B,例连函接数OA,yO1B=,已4x 知 △AOB的面积为_1__.
yl A
B
2y.2如 图kx2 ,(x平行0)的于图x轴象的分直别线相与交函于数A,yB1两 k点x1 (,x点 0A)在与点 B的右侧,C为x轴上的一个动点,若△ABC的面积为
数的图象 对称,由于反比例函数中自变量x≠0,函数y≠0,所以,它 及性质 的图象与x轴、y轴都__没__有__交点,即双曲线的两个分支
无限接近坐标轴,但永远达不到坐标轴。
考点聚焦---反比例函数的图象与性质
函数
图象形状 图象位置 增减性 延伸性 对称性
k>0
yk x k<0
y
函数图象的 在每一支
典型例题---用待定系数法求解析式
【例3】若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则
专题 反比例函数-2023年中考数学第一轮总复习课件(全国通用)全
解,然后在作答中说明.
典例精讲
反比例函数与几何图形的综合
知识点四
【例4】(2020·T18)如图,Rt△ABC中,∠ACB=90º,顶点A,B都在反比例函
k
数 y = ( x > 0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB
x
OA = 2 2.
于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45º,
(0,1),顶点C在第一象限,若函数y=k/x(x>0)的图象经过点C,则k=___.
6
13.如图,已知矩形OABC的面积为100/3,它的对角线OB与双曲线y=k/x相交
12
于点D,且OB∶OD=5∶3,则k=____.
14.如图,已知A,B两点分别在反比例函数y=9/x和y=k/x第一象限的图象上.
O
心:__)
典例精讲
反比例函数的图象与性质
知识点一
2
【例1-1】已知点P(a,m),Q(b,n)都在反比例函数 y 的图象上,且a<0<
x
b,则下列结论一定正确的是( D )
A.m+n<0
B.m+n>0
C.m<n
D.m>n
【变式】若点A(a,m)和B(b,n)在反比例函数y=7/x的图象上,且a<b,则( D )
-3
查漏补缺
当堂训练
反比例函数
查漏补缺
7.如图,点M为x轴上一点,过点M的直线l∥y轴分别与双曲
-20
线y=8/x和y=k/x的图象交于P,Q两点,若S△POQ=14,则k=____.
8.在平面直角坐标系中,若一条平行于x轴的直线l分别交
双曲线y=-8/x和y=2/x于A,B两点,P是x轴上的任意一点,则
典例精讲
反比例函数与几何图形的综合
知识点四
【例4】(2020·T18)如图,Rt△ABC中,∠ACB=90º,顶点A,B都在反比例函
k
数 y = ( x > 0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB
x
OA = 2 2.
于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45º,
(0,1),顶点C在第一象限,若函数y=k/x(x>0)的图象经过点C,则k=___.
6
13.如图,已知矩形OABC的面积为100/3,它的对角线OB与双曲线y=k/x相交
12
于点D,且OB∶OD=5∶3,则k=____.
14.如图,已知A,B两点分别在反比例函数y=9/x和y=k/x第一象限的图象上.
O
心:__)
典例精讲
反比例函数的图象与性质
知识点一
2
【例1-1】已知点P(a,m),Q(b,n)都在反比例函数 y 的图象上,且a<0<
x
b,则下列结论一定正确的是( D )
A.m+n<0
B.m+n>0
C.m<n
D.m>n
【变式】若点A(a,m)和B(b,n)在反比例函数y=7/x的图象上,且a<b,则( D )
-3
查漏补缺
当堂训练
反比例函数
查漏补缺
7.如图,点M为x轴上一点,过点M的直线l∥y轴分别与双曲
-20
线y=8/x和y=k/x的图象交于P,Q两点,若S△POQ=14,则k=____.
8.在平面直角坐标系中,若一条平行于x轴的直线l分别交
双曲线y=-8/x和y=2/x于A,B两点,P是x轴上的任意一点,则
人教版中考数学专题课件:反比例函数
|k| |k| 由于△ABO 的面积= ,所以 =3, 解 析 2 2 k=±6,又双曲线落在第一象限,k 只能为 6.
皖考解读
考点聚焦
皖考探究
当堂检测
反比例函数
利用反比例函数中 k 的几何意义解答问题, 通常是根 据三角形或矩形的面积建立关于 k 的方程来求解.
皖考解读
考点聚焦
皖考探究
当堂检测
反比例函数
一般步骤: k 1.根据两变量之间的反比例关系, 设 y= ; x 反比例函数解 析式的确定 2.代入图象上一个点的坐标,即 x、y 的一 对对应值,求出 k 的值; 3.写出解析式. 反比例函 k 数与一次 求直线 y=kx+b(k≠0)和双曲线 y= 的交 x 函数图象 点坐标就是解这两个函数解析式组成的 的交点的 方程组. 求法
解 析
k k 把 P(1,-3)代入 y= (k≠0),得-3= ,k= x 1
-3.故选 B.
皖考解读
考点聚焦
皖考探究
当堂检测
反比例函数
用待定系数法确定反比例函数的解析式,通常把已知点 的坐标作为 x, y 的对应值代入解析式一般形式中求解. 因反 比例函数的解析式中只有一个未知数 k,故只需找出一对 x、 y 的值即可.
皖考解读 考点聚焦 皖考探究 当堂检测
反比例函数
皖 考 探 究
探究一 反比例函数的解析式
命题角度: 结合点的坐标、 图象、 图形等求反比例函数的解析式.
皖考解读
考点聚焦
皖考探究
当堂检测
反比例函数
k 例 1 [2013· 温州] 已知点 P(1,-3)在反比例函数 y= x (k≠0)的图象上, 则 k 的值是 ( B ) 1 1 A.3 B.-3 C. D.- 3 3
中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT
★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(2019重庆A卷,9,4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x
轴,反比例函数y= k (k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4), 则k的值为 ( ) x
A.16 B.20 C.32 D.40
答案 B ∵点D(0,4),DB∥x轴, ∴点B的纵坐标为4,设点B的坐标为(a,4). 由点A(2,0),点D(0,4)可知OA=2,OD=4, ∴AD= 22 42 = 20 ,AB= (a 2)2 42 ,DB=a. ∵四边形ABCD是矩形,∴∠DAB=90°. 在Rt△DAB中,DA2+AB2=DB2, ∴( 20 )2+[ (a 2)2 42 ]2=a2,解得a=10. ∴点B的坐标为(10,4). ∵四边形ABCD是矩形,∴点E为DB的中点.
§3.3 反比例函数中考数学
A组 2019年全国中考题组
考点一 反比例函数的图象与性质
1.(2019吉林长春,8,3分)如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别为(0,3),(3,0),∠ACB=9
0°,AC=2BC,函数y= k (k>0,x>0)的图象经过点B,则k的值为 ( ) x
考点二 反比例函数与一次函数的综合应用
1.(2019江西,5,3分)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是 ()
即点A的坐标为
1 2
,
2
3
.
思路分析 (1)根据等边三角形的性质及OC=2可求点B的坐标,再代入反比例函数的表达式即可求k;(2)由
四边形ACBO的面积等于三角形BOC与三角形AOC的面积之和,可得三角形AOC的面积,利用OC=2,可求点
A到x轴的距离,即点A的纵坐标,设出点A坐标,代入反比例函数的表达式求出点A的横坐标,问题得到解决.
∴点E的坐标为(5. x
思路分析 由DB∥x轴,可得点B的纵坐标和点D的纵坐标相同,故可设点B(a,4).在Rt△DAB中,可用勾股定
理列出关于a的方程,解得a的值.由于点E为DB的中点,故可求出点E的坐标,将点E的坐标代入y= k 中,便可求 x
(2)S四边形ACBO=S△BOC+S△AOC,过点A作AN⊥x轴于点N.
∵S△BOC= 3 OC2= 3 ,∴ 3 +S△AOC=3 3 , 4
∴S△AOC=2 3 ,即 1 OC·AN=2 3 ,又∵OC=2,∴AN=2 3 , 2
设A(t,2 3 ),∴2 3 t= 3 ,∴t= 1 , 2
由勾股定理得,AB= OA2
OB2
= 5
,∴OE= OA OB
AB
= 2 5 5
,∴CO= 4 5 5
.易证△OEA∽△ODC,∴ OE
OA
=
OD
OC
,∴OD= 8 ,∴CD= OC2
5
OD2
= 4 ,∴点C的坐标为
5
8 5
,
4 5
,∴k=- 32 .
25
6.(2019甘肃兰州,23,7分)如图,在平面直角坐标系xOy中,反比例函数y= k (k≠0)的图象过等边三角形BOC的 x
A. 9 B.9 C. 27 D. 27
2
8
4
答案 D 过点B作BD⊥x轴于点D,易得△AOC∽△CDB.∵AC=2BC,∴相似比为2∶1,于是可得BD=CD=
32 .∴OD=3+ 32 = 92 ,∴B 92 ,
3 2
,∴k= 9 × 3 = 27 .
22 4
思路分析 过点B作x轴的垂线,构造两个相似的三角形,利用相似比求出边长,进而求出点B的坐标,最后可 得k的值. 解后反思 直角三角形的性质、勾股定理、等腰三角形的性质和判定以及反比例函数图象上点的坐标特 征是解决问题的必备知识,恰当地将线段的长与坐标互相转化,使问题得以解决.
解析式为y= k (k≠0),把(3,2)代入得k=6.点M的纵坐标与点A的纵坐标相同,为4,令4= 6 ,得x= 3 ,∴点M的坐标
x
x
2
为
3 2
,
4
.
思路分析 首先根据矩形的对称性求出点D的坐标为(3,2),进而求出反比例函数解析式,最后根据点M的纵 坐标与点A的纵坐标相同,求出点M的坐标. 方法指导 解答反比例函数与几何图形相结合问题的常用方法是由点的坐标求相关线段的长度,根据相关 线段的长度求点的坐标.
5.(2019内蒙古包头,19,3分)如图,在平面直角坐标系中,已知A(-1,0),B(0,2),将△ABO沿直线AB翻折后得到
△ABC,若反比例函数y= k (x<0)的图象经过点C,则k=
.
x
答案 - 32 25
解析 如图,作CD⊥x轴于点D,连接CO交AB于点E,由翻折得AB⊥OC,OE=CE,∵A(-1,0),B(0,2),∴在Rt△AOB中,
顶点B,OC=2,点A在反比例函数图象上,连接AC,AO.
(1)求反比例函数y= k (k≠0)的表达式; x
(2)若四边形ACBO的面积是3 3 ,求点A的坐标.
解析 (1)∵OC=2,且△BOC为等边三角形, ∴B(-1,- 3 ),
∴k=(-1)×(- 3 )= 3 ,∴反比例函数表达式为y= 3. x
<y1<y2,故选B.
4.(2019陕西,13,3分)如图,D是矩形AOBC的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D,交AC
于点M,则点M的坐标为
.
答案
3 2
,
4
解析 ∵点D是矩形AOBC的对称中心,A(0,4),B(6,0),∴点D是AB的中点,∴点D的坐标为(3,2),设反比例函数
出k的值.
3.(2019天津,10,3分)若点A(-3,y1),B(-2,y2),C(1,y3)都在反比例函数y=- 1x2 的图象上,则y1,y2,y3的大小关系是
() A.y2<y1<y3 B.y3<y1<y2 C.y1<y2<y3 D.y3<y2<y1
答案 B 将A(-3,y1),B(-2,y2),C(1,y3)分别代入反比例函数y=- 1x2 中,得y1=- 123 =4,y2=- 122 =6,y3=- 112 =-12,所以y3