26.1.1_反比例函数PPT课件
合集下载
26.1.1反比例函数课件人教版数学九年级下册

(1) 京沪线铁路全程为1463 km,某次列车的平均速度v
(单位:km/h) 随此次列车的全程运行时间 t (单位:h)
的变化而变化;
v 1 463 t
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪, 草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;
y 1 000 x
8.已知y与x成反比例,且当x=-3时,y=2.
当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?
(1)写出y关于x的函数解析式; (2)当x=9时,求y的值.
1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( )
归纳新知
概念、三种表达方式
反
比
例
用待定系数法求反比例函数解析式
函
数
建立反比例函数模型
课堂练习
1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的 函数关系式为( C )
A.y=1x0
B.y=x5 C.y=2x0
D.y=2x0
2.已知水池的容量为50立方米,每小时灌水量为n(立方米),注满水所需 时间为t(小时),那么t与n之间的函数关系式是( C )
9.在xy+2=0中,y是x的( )
下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.
k 6 1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( ) = ,解得 k=-6,∴y 关于 x 的函数解析式为 y=- 下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式. -3 x 了解反比例函数的概念,能判断一个给定的函数是否为反比例函数。
人教版九年级数学下册26.1.1 反比例函数-课件PPT

坪,草坪的长y(单位:m) 随宽x(单位:m)的变化
而变化;
y 1000 . x
(3) 已知北京市的总面积为1.68×104km2,人均占
有面积S(km2/人) 随全市总人口n(单位:人)的变化
而变化.
1.68 104
S
.
n
问题:观察以上三个解析式,你觉得它们有什么共同 特点?
v 1463, y 1000, S 1.68104 .
B. 2个 C. 3个 D. 4个
3. 填空
要满足m-1≠0
(1)若y m 1是反比例函数,则m的取值范围
x
是 m≠1
. 系数不为0
(2)若 y m m 2是反比例函数,则m的取值范
x
围是 m≠0且m≠-2 .
(3)若 y
m2 xm2 m1
是反比例函数,则m的值是
m=-1
.
要满足同时满足系数不为0,和x的次数为-1,此
2
x 1 2
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
反比例函数:定义/三种表达方式
反
比
例 函
用待定系数法求反比例函数解析式
数
根据实际问题建立反比例函数模型
THANKS!
九年级 数学
课件全新制作
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.理解并掌握反比例函数的概念.(重点) 2.从实际问题中抽象出反比例函数的概念,能根据 已知条件确定反比例函数的解析式.(重点、难点)
x y 12 3.
而变化;
y 1000 . x
(3) 已知北京市的总面积为1.68×104km2,人均占
有面积S(km2/人) 随全市总人口n(单位:人)的变化
而变化.
1.68 104
S
.
n
问题:观察以上三个解析式,你觉得它们有什么共同 特点?
v 1463, y 1000, S 1.68104 .
B. 2个 C. 3个 D. 4个
3. 填空
要满足m-1≠0
(1)若y m 1是反比例函数,则m的取值范围
x
是 m≠1
. 系数不为0
(2)若 y m m 2是反比例函数,则m的取值范
x
围是 m≠0且m≠-2 .
(3)若 y
m2 xm2 m1
是反比例函数,则m的值是
m=-1
.
要满足同时满足系数不为0,和x的次数为-1,此
2
x 1 2
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
反比例函数:定义/三种表达方式
反
比
例 函
用待定系数法求反比例函数解析式
数
根据实际问题建立反比例函数模型
THANKS!
九年级 数学
课件全新制作
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.理解并掌握反比例函数的概念.(重点) 2.从实际问题中抽象出反比例函数的概念,能根据 已知条件确定反比例函数的解析式.(重点、难点)
x y 12 3.
人教版数学九年级下册26.1.1反比例函数中K的几何意义课件

,求$k$的值。
利用K值解决实际问题
例题3:某工厂生产A、B两种配套产品 ,其中每天生产$x$吨A产品,需生产 $y$吨B产品。已知生产A产品的成本与 产量的平方成正比。经测算,生产1吨 A产品需要4万元,而B产品的成本为每
吨8万元。求
(1)生产A、B两种配套产品的平均成本 的最小值;
(2)若原料供应商对这种小型工厂供货 办法使得该工厂每天生产A产品的产量 $x$在$0 < x leqslant 2$的范围内, 那么在这种情况下,该工厂应生产A产
当$K < 0$时,距离公式同样适用, 只是图像位于第二、四象限。
K值与角度关系
对于反比例函数图像上任意一点,其与原点连线的倾斜角$theta$与该点 的横坐标$x$和纵坐标$y$满足关系:$tantheta = frac{y}{x} = frac{K}{x^2}$。
当$K > 0$时,$theta$为锐角或直角;当$K < 0$时,$theta$为钝角或 直角。
随着$|K|$的增大,倾斜角$theta$也逐渐增大,但始终不会超过直角。
05
典型例题解析
求反比例函数中K值
01
例题1
已知反比例函数$y = frac{k}{x}$的图像经过点 $A(2,3)$,求$k$的值。
02
例题2
已知反比例函数$y = frac{k}{x}$的图像经过点 $B(m,n)$和$C(p,q)$,且$mn = 6$,$pq = 8$
06
课堂小结与拓展延伸
课堂小结
反比例函数$y = frac{k}{x}$($k neq 0$)中,比例系数$k$的几 何意义:过双曲线上任意一点引 $x$轴、$y$轴垂线,所得矩形面
积为$|k|$。
利用K值解决实际问题
例题3:某工厂生产A、B两种配套产品 ,其中每天生产$x$吨A产品,需生产 $y$吨B产品。已知生产A产品的成本与 产量的平方成正比。经测算,生产1吨 A产品需要4万元,而B产品的成本为每
吨8万元。求
(1)生产A、B两种配套产品的平均成本 的最小值;
(2)若原料供应商对这种小型工厂供货 办法使得该工厂每天生产A产品的产量 $x$在$0 < x leqslant 2$的范围内, 那么在这种情况下,该工厂应生产A产
当$K < 0$时,距离公式同样适用, 只是图像位于第二、四象限。
K值与角度关系
对于反比例函数图像上任意一点,其与原点连线的倾斜角$theta$与该点 的横坐标$x$和纵坐标$y$满足关系:$tantheta = frac{y}{x} = frac{K}{x^2}$。
当$K > 0$时,$theta$为锐角或直角;当$K < 0$时,$theta$为钝角或 直角。
随着$|K|$的增大,倾斜角$theta$也逐渐增大,但始终不会超过直角。
05
典型例题解析
求反比例函数中K值
01
例题1
已知反比例函数$y = frac{k}{x}$的图像经过点 $A(2,3)$,求$k$的值。
02
例题2
已知反比例函数$y = frac{k}{x}$的图像经过点 $B(m,n)$和$C(p,q)$,且$mn = 6$,$pq = 8$
06
课堂小结与拓展延伸
课堂小结
反比例函数$y = frac{k}{x}$($k neq 0$)中,比例系数$k$的几 何意义:过双曲线上任意一点引 $x$轴、$y$轴垂线,所得矩形面
积为$|k|$。
反比例函数的定义ppt课件

将下列各题中y与x的函数关系写出来. (1)y与x成反比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与X成正比例;
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
【待定系数法求反比例函数的表达式】
1
x -3 -2 -1 2
-4 1
…
2…
y2 3
1
1
2 -4 2 -2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。 学习重点:目标 1 学习难点:目标 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
自主学习(1) 1分钟
欧姆定律 我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
【待定系数法求反比例函数的表达式】
1
x -3 -2 -1 2
-4 1
…
2…
y2 3
1
1
2 -4 2 -2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。 学习重点:目标 1 学习难点:目标 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
自主学习(1) 1分钟
欧姆定律 我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
26.1.1反比例函数(教学课件)-九年级数学下册同步教学精品课件(人教版)

典例小结
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
(人教版)九年级数学下:26.1.1《反比例函数》ppt课件

课题
五、强化训练
4、矩形的面积为4,一条边的长为x ,另
一条边的长为y,则y与 x 的函数解析式
为 y4 ; x
5、已知y是x 的反比例函数,当x=2时, y 1 (1)求y与x的函数关系式;
(2)当 x 1 时,求y的值;
4
(3)当 y 1 时,求x的值. 2
新课引入 展示目标 研读课文 归纳小结
反比例函数的三种表达式:
①yk x
② y kx1 ③ xy k
新课引入 展示目标 研读课文 归纳小结 强化训练
三、研读课文
例1 已知y与x成反比例,并且当x=2时,
y=6.
(1)写出y和x之间的函数关式;
知
(2)求x=4时y的值.
识 点 一
解:(1)设y= k ,因为当x=2时y=6,
三、研读课文
认真阅读课本第39至40页的内容, 完成下面练习并体验知识点的形成过程.
新课引入 展示目标
课题
归变量间的对应关系可
用怎样的函数关系式表示?这些函数有什
知 么共同特点? 识
点 一
(1)京沪线铁路全程为1463km,某次列车平均 速度v(单位:km/h)随此次列车的全程运行时
代入 y 2
x
解得 x 4
新课引入 展示目标 研读课文 归纳小结
课题
Thank you!
课题
五、强化训练
5. 已知y是 x的反比例函数,当 x=2时,y 1
(1)求y与x 的函数关系式;
解:设 y k
x
因为 当 x 2 时 y 1
所以有 1 k
2
解得 k 2
所以
y与
x的函数关系式是
26.1 第1课时 反比例函数的图象 课件(共21张PPT)数学人教版九年级下册

(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
(2) 当 k < 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.
k 的正负决定反比例函 数图象的位置和增减性
当堂练习
1.已知反比例函数 y m 2 的图象在第一、三
y
4 x
的图象.
解析:通过刚刚的学习可知画图象的三个步骤为
列表
描点
连线
需要注意的是在反比例函数中自变量 x 不能为 0.
解:列表如下
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
…2 3
0.8 1
4 3
2
4 -4 -2 - 4 -1
3
-0.8 - 2 …
3
y
y=
4 x
6
5 4 3
为(-1,3),则它们的另一个交点坐标是
( C)
A. (1,3)
y
B. (3,1) C. (1,-3)
x O
D. (-1,3)
4.已知反比例函数y k 的图象经过点 A (2,3). x
(1) 求这个函数的表达式;
解:∵ 反比例函数 y k 的图象经过点 A(2,3), x
∴ 把点 A 的坐标代入表达式,得 3 k , 2
例3 已知反比例函数的图象经过点 A (2,6). (1) 这个函数的图象位于哪些象限?y 随 x 的增大如
何变化?
解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小.
(2) 点B(3,4),C( 2 1 , 4 4),D(2,5)是否在这个
26.1.1 反比例函数 课件-人教版数学九年级下册

感悟新知
知1-练
1-1.[月考·成都锦江区]下列函数中,y是x的反比例函数的 是( B )
A. y=x-4 1 C. y=32x
B. y=25x D. y=x12
感悟新知
知2-讲
知识点 2 反比例关系与反比例函数的区别与联系
1. 如果xy=k(k为常数,k ≠ 0),那么x与y这两个量成反比例 关系,这里的x和y既可以是单项式,也可以是多项式.
学习目标
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
学习目标
1 课时讲解 反比例函数的定义
反比例关系与反比例函数的区别与联系 求反比例函数的解析式 在实际问题中建立反比例函数模型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 反比例函数的定义
知1-讲
0),整理,得y=x-k 5-2,显然,y不是x的反比例函数.
感悟新知
知2-练
例 2 已知y=y1+y2,y1与x成正比例,y2与x成反比例,并 且当x=2时,y=-4;当x=-1 时,y=5,求y关于x 的函数解析式.
思路引导:
感悟新知
解:∵ y1与x成正比例,∴设y1=k1x(k1≠0).
知2-练
感悟新知
(2)求当x=8时的函数值y. 【解】当 x=8 时,y=2×(8-1)+68=1434.
知2-练
感悟新知
知识点 3 求反比例函数的解析式
知3-讲
1. 确定反比例函数解析式的方法是待定系数法,由于在反
比例函数y=,即可求出k的值,从而确 定其解析式.
综合应用创新
把x=3代入y=-2x,得y=-2x. 所以y是x的反比例函数,函数解析式为y=-2x. 补全表格如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/2
2
生活情景
(4)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪
的长y(单位:m )随宽x(单位:m )的变化而变化。
_函__数__关__系__式_为__:__y___10_x0_0__
(5)已知北京市的总面积为1.68×104平方千米,人均占有的土
地面积S(单位:平方千米/人)随全市总人口n(单位:人)的
y=
k x
2021/3/2
y=kx-1 xy=k
8
例题欣赏
例题:已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时y的值.
待定系数法求函数的解析式
其步骤是: 1.设一次函数的一般形式y=kx+b(k≠0) ; 2.根据已知条件列出关于k , b 的二元一次方程组; 3.解这个关于k、b方程组,求出k, b ; 4 .将已经求出的 k, b的值代入所设的解析式中.
(2)
把
x=4
代入
y=
12 x
得
y=
12 4
=3
情寄待定系数法求函数的解析式
2021/3/2
10
例题欣赏
例2、y是x的反比例函数,下表给出了x与y的
一些值: x
-1
-
1 2
1 2
1
魂 牵
y2
4 -4 -2
梦
(1)写出这个反比例函数的表达式;
绕
(2)根据函数表达式完成上表.
解:∵ y是x的反比例函数,设y k (k 0)
函数关系式为:y 1000 ,此时x可以取-100吗?为什么? x
注202意1/3/2:在实际问题中,自变量的取值还需考虑它的实际意义6。
步行课堂
1、写出下列问题中的函数关系式,并指出各是什么函数:
⑴ 一个游泳池的容积为2000m3 ,注满游泳池所用的
时间t(单位:h)随注水速度v(单位:m3 /h) 的变化而变
t
x
n
S=x2
2021/3/2
4
探求新知
函数关系式:
v 1463 t
y 1000 S 1.68104
x
n
它们具有什么共同特征?
具有 y=
k x
的形式,其中k≠0,k为常数.
2021/3/2
5
形如 y k (k为常数,k≠0)的函数称为反比例 函数(inversexproportional function),其中x是自 变量,y是函数。
化。 t 2000 v
⑵ 某长方体的体积为1000cm3 ,长方体的高(单位:cm)
随底面积s(单位:cm2)源自的变化而变化。 h1000
s
⑶ 一个物体重100牛顿 ,物体对地面的压强p随物体与
地面的接触面积s的变化而变化。 p
100
s
2021/3/2
7
步行课堂
2、下列关系式中的y是x的反比例函数吗?如果是,比例
④ y 1000 x
n
在上面所列出函数中哪些是我们学过的函数?
S=60t 正比例函数 y=kx (k为不等于零的常数)
y=50- 0.1x 一次函数 y=kx+b (k≠0,k,b为常数)
在剩下的4个函数中,如果让你分为两类,你觉得
应该怎么分?为什么?
v 1463 y 1000 S 1.68104
系数k是多少?
(1)y=
4 x
(2)y=-
1 2x
(3)y=1-x
{ { (1此反(7、423y关比时比))、、分是如y系 例函例已当x析果=xy数函式系x知m的=函:-的数1取1函数x数反y解 ?什数+ky4比等析么y=mm==2+x式0值于例((3-21中kxk为2时≠多+58m函=3y) )-为,是7-少0是数1反函yyyx?反==的比数,解比若反例得xy比x12x1例不函比函例是数.(-例m数mm1系,,=函≠,则那±数请1数(-么)6m1说1为x)吗km=明=yk2?-即=_若(1理62_x:是_是2,k由.≠mx,记这形的=。10住些式)
x
待 定
系
得k 2. y 2 .
数
x
法
2021/3/2
11
下列的数表中分别给出了变量y与x之间的对应 关系,其中有一个表示的是反比例函数,你能把 它找出来吗?
x -3 -2 -1 1 2 3
y 5 4 3 1 0 -1
(A) y x 2
x -3 -2 -1 1 2 3
y -4 -3 -2 0 1 2
(B) y x 1
x -3 -2 -1 1 2 3
y -2 -3 -6 6 3 2
2021/3/2
9
例题欣赏
例1、已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时y的值.
解已求:(知当1∴)yyy=是设与6=x2yx的=k时2的函xk x反数,的因关比为系值解当例式得.x为函=2ky=时数=1y21,=x2当6,x所=以3有时,y=-8.
议一议 对于反比例函数 y 1000 x
①当x=50时,y=___2_0____ ②当x=-100时,y=_-__1__0___
③X的值能不能取0?为什么?
函数
y
k x
(k≠0)中,自变量x的取值范围是不为0的一切实数。
④某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的 长y(单位:m)随宽x(单位:m)的变化而变化。
(2)一辆汽车的油箱中现有汽油50升,如果不再加油,平 均每千米耗油量为0.1升,油箱中剩余的油量y(单位:升)随行 驶里程 x(单位:千米)的变化而变化。
函__数_关_系_式_为__:__y_=_5_0_-__0_._1_x___
(3)京沪线铁路全程为1463km,某次列车的平均速度v(单 位:km/h)随此次列车的全程运行时间t(单位:h)的变化而 变化。_函__数__关__系__式_为_:_v___1_4_t6_3___
变化而变化。
函数关系式为:S
1.68 104
__________________n____
(6)正方形的面积S随边长x的变化而变化。
_函__数__关__系__式__为__:__S__=_x_2_
2021/3/2
3
探求新知
① S=60t ② y=50-0.1x
⑤S 1.68104 ⑥ S=x2
③v 1463 t
人教版 九年义务教育 数学九年级(下)
第二十六章 反比例函数
2021/3/2
1
生活情景
在下列实际问题中,变量间的对应关系可用怎样的函 数关系式表示?
(1)一辆以60km/h匀速行驶的汽车,它行驶的距离S(单 位:km)随时间t(单位:h)的变化而变化。
_函__数__关__系__式__为__:__S_=_6_0__t