人教版九年级下册数学第26章 反比例函数优质课件章节全套
合集下载
人教版九年级数学下册第二十六章《反比例函数》优质优质课课件3

第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
1 . 一 般 地 , 形 如 y = (k 为 常 数 , k ≠ 0) 的 函 数 , 叫 做取2值.反范比判围例断函是两数个不,变等于其量0中成的反一x比切是例实自的数变方.量法,:y是 函数 ,自变量x的
(1)两个变量的积是否是一个 不为0 的常数,即xy=k(k≠0);
14.已知 y 与 2x+1 成反比例,且当 x=1 时,y=2,则当 y=-2 时,x=_-2 . 三、解答题(共 35 分) 15.(8 分)已知函数 y=(5m-3)x2-n+(n+m). (1)当 m,n 为何值时,该函数是一次函数? (2)当 m,n 为何值时,该函数是正比例函数? (3)当 m,n 为何值时,该函数是反比例函数?
10.对于 y=x+3 5-1,以下说法正确的是( D ) A.y 是 x 的反比例函数 B.y 是 x 的一次函数 C.y 与 x+5 成反比例 D.y+1 与 x+5 成反比例 11.若 y 与 x-2 成反比例,当 x=6 时,y=2,则 y 与 x 之间的函数关系是( C ) A.y=1x2 B.y=xx+ -22
•
16.(8 分)在物理学中,由欧姆定律知,电压 U 不变时,电流 I 与电阻 R 成
反比例,已知电压 U 不变,当电阻 R=20Ω时,电流 I 为 0.25A.
(1)求 I 关于 R 的函数表达式;
(2)当 R=12.5Ω时,求 I.
解:(1)设 I=UR,把 R=20Ω,I=0.25 A 分别代入,得 0.25=2U0,即 U=5V,
A 1 D.m=-2 或-1
3.(4 分)下列说法正确的是( B )
A.在圆的面积公式 S=πr2 中,S 与 r 成正比例关系
26.1 反比例函数 26.1.1 反比例函数
1 . 一 般 地 , 形 如 y = (k 为 常 数 , k ≠ 0) 的 函 数 , 叫 做取2值.反范比判围例断函是两数个不,变等于其量0中成的反一x比切是例实自的数变方.量法,:y是 函数 ,自变量x的
(1)两个变量的积是否是一个 不为0 的常数,即xy=k(k≠0);
14.已知 y 与 2x+1 成反比例,且当 x=1 时,y=2,则当 y=-2 时,x=_-2 . 三、解答题(共 35 分) 15.(8 分)已知函数 y=(5m-3)x2-n+(n+m). (1)当 m,n 为何值时,该函数是一次函数? (2)当 m,n 为何值时,该函数是正比例函数? (3)当 m,n 为何值时,该函数是反比例函数?
10.对于 y=x+3 5-1,以下说法正确的是( D ) A.y 是 x 的反比例函数 B.y 是 x 的一次函数 C.y 与 x+5 成反比例 D.y+1 与 x+5 成反比例 11.若 y 与 x-2 成反比例,当 x=6 时,y=2,则 y 与 x 之间的函数关系是( C ) A.y=1x2 B.y=xx+ -22
•
16.(8 分)在物理学中,由欧姆定律知,电压 U 不变时,电流 I 与电阻 R 成
反比例,已知电压 U 不变,当电阻 R=20Ω时,电流 I 为 0.25A.
(1)求 I 关于 R 的函数表达式;
(2)当 R=12.5Ω时,求 I.
解:(1)设 I=UR,把 R=20Ω,I=0.25 A 分别代入,得 0.25=2U0,即 U=5V,
A 1 D.m=-2 或-1
3.(4 分)下列说法正确的是( B )
A.在圆的面积公式 S=πr2 中,S 与 r 成正比例关系
人教版初中数学九年级下册第二十六章 反比例函数课件(共29张PPT)

反比例函数
第1课时
1.什么是反比例函数? 2.理解反比例函数的概念,会列出实际问题的 反比例函数关系式.
1、体育课上,同学们跑800米时,每个同学跑步的平均
速度v(单位:米/分)随着此同学跑完全程的时间t (单位:分)பைடு நூலகம்变化而变化,用含t的式子表示v.
2、一次数学课上,老师要同学们画一个面积为10平方
画出函数 y 4 的图象
解:1.列 x
表: x … -8 -4 -3 -2 -1 1 … 1 1 2 3 4 8
2
2
y 4 … 1 1 4 2 4 8 … -8 -4 -2 4 -1 1
x
2
3
3
2
2.描点: 以表中各组对应值作为点的坐标,在直角坐 标系内描出相应的点.
3.连线: 用光滑的曲线顺次连接各点,就可得到 图象.
当a≠4 时,点B不在反比例函数图象上.
反比例函数的图象和性质
1.形状 反比例函数的图象是由两支曲线组成的, 因此称反比例函数的图象为双曲线.
2.位置 当k>0时,两支曲线分别位于第一、三象限内;在每 一个象限内,y随x的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,y
随x的增大而增大.
函数
的两支曲线分别
函数
y 的kx 图像是由两支双曲线组
(1)当 k>0 时,两支曲一 线三分别位于
减 在每一象限内,y的值随x值的增大而 _____;
(2)当 k<0 时,两支二曲线四小分别
位在于每第一__象_、限_内__,象y限的.值增随x值的增大
大
1、反比例函数y = - 5 的图象大致是( D )
y 10 s 16 800
第1课时
1.什么是反比例函数? 2.理解反比例函数的概念,会列出实际问题的 反比例函数关系式.
1、体育课上,同学们跑800米时,每个同学跑步的平均
速度v(单位:米/分)随着此同学跑完全程的时间t (单位:分)பைடு நூலகம்变化而变化,用含t的式子表示v.
2、一次数学课上,老师要同学们画一个面积为10平方
画出函数 y 4 的图象
解:1.列 x
表: x … -8 -4 -3 -2 -1 1 … 1 1 2 3 4 8
2
2
y 4 … 1 1 4 2 4 8 … -8 -4 -2 4 -1 1
x
2
3
3
2
2.描点: 以表中各组对应值作为点的坐标,在直角坐 标系内描出相应的点.
3.连线: 用光滑的曲线顺次连接各点,就可得到 图象.
当a≠4 时,点B不在反比例函数图象上.
反比例函数的图象和性质
1.形状 反比例函数的图象是由两支曲线组成的, 因此称反比例函数的图象为双曲线.
2.位置 当k>0时,两支曲线分别位于第一、三象限内;在每 一个象限内,y随x的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,y
随x的增大而增大.
函数
的两支曲线分别
函数
y 的kx 图像是由两支双曲线组
(1)当 k>0 时,两支曲一 线三分别位于
减 在每一象限内,y的值随x值的增大而 _____;
(2)当 k<0 时,两支二曲线四小分别
位在于每第一__象_、限_内__,象y限的.值增随x值的增大
大
1、反比例函数y = - 5 的图象大致是( D )
y 10 s 16 800
人教版九年级下册数学全册精优教学课件

y 12 3. 4
你可以从中归纳出用待定系数法求反比例函数
解析式的一般步骤吗?
比例函数解析式的一般
步骤是:(1)设,即设所求的反比例函数解析 式为 y k(k≠0).(2)代,即将已知条件中对应的
x x、y值代入 y k 中得到关于k的方程.(3)解,即解
x 方程,求出k的值.(4)定,即将k值代入 y k 中,
x 确定函数解析式.
第四部分 知识小结
知识小结
概念 反 比 例 函 数
解析式
一般地,形如 y kx(k 为常数, k ≠ 0)的函数,叫做反比例函数, 其中 x 是自变量,y 是函数.
求解析式时, ①设 y k ,
x ②由已知条件求出 k .
1
九年级数学下册(RJ)教学课件
第二十六章 反比例函数
第一节 反比例函数 第一课时 反比例函数的意义
1 1. 情景导学
2 2. 新课目标
Contents
目录
3. 新课进行时 4. 知识小结 5. 随堂演练
6. 课后作业
第一部分 情景导学
情景导学
刘翔在2004年雅典奥运会110 m 栏比赛中以12.91s的成 绩夺得金牌,被称为中国“飞人” .如果刘翔在比赛中 跑完全程所用的时间为t s,平均速度为v m/s .你能写出v 与t之间的关系式吗?
第三部分 新课进行时
新课进行时
核心知识点一 反比例函数的定义
问题1 京沪线铁路全 程为 1 463 km,某次列车 的平均速度 v(单位:km/h )随此次列车的全程运行 时间 t(单位:h)的变化 而变化.
(1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由 (3)你能写出 v 关于 t 的解析式吗?
《反比例函数》PPT优质课堂课件1人教版

数学
九年级下册 人教版
第二十六章 反比例函数
26.1.1 反比例函数
反比例函数的定义
1.(4分)下列关系式中,y是x的反比例函数的是( C )
A.y=2x B.y=x2
C.y=2x
D.y=
2 x
2.(4分)若函数y=m-x 3 是关于x的反比例函数,则m必须满足( B ) A.m≠0 B.m≠3 C.m≠-3 D.m为一切实数
解:设y1=3kx1 ,y2=k2(-x2),则y=3kx1 +k2(-x2),将x=1,y=5与x =-1,y=-2代入,可得k1=221 ,k2=-32 ,则y=27x +32 x2,当x =3时,y=434
((11))当 求mI关为于何R6值的.时函,数(3y解是分析x的式)正设;比每例函个数?工人一天能做某种型号的工艺品 A3..(正4分方)下形列的x关个面系积,中S与,若边两长个某a量的工之关间系艺为反品比厂例函每数关天系生的是产( 这)种工艺品60个, 155..(6(9分分)在)已下需知列y要=函(数m工解2+析人2式my)中x名m,2+x,均m为-则自1.变y量关,于哪些x是的反函比例数函数解?析每一式个反为比(例函C数)中相应的比例系数是多少?
5.(6分)在下列函数解析式中,x均为自变量,哪些是反比例函数?每 一个反比例函数中相应的比例系数是多少?
(1)y=5x ;(2)y=x5 ;(3)y=53x ; (4)xy=5;(5)y=5x-1;(6)y=5x -1. 解:(1)(3)(4)是反比例函数,其比例系数分别是5,35 ,5
根据实际问题列反比例函数解析式
解:(1)m=1 (2)m=-1+2 13 或-1-2 13 (3)m=-1
(2)当m为1何6值.时(,1y0是分x的)二(渗次函透数?学科知识)在物理学中,由欧姆定律知,电压U不变时,
九年级下册 人教版
第二十六章 反比例函数
26.1.1 反比例函数
反比例函数的定义
1.(4分)下列关系式中,y是x的反比例函数的是( C )
A.y=2x B.y=x2
C.y=2x
D.y=
2 x
2.(4分)若函数y=m-x 3 是关于x的反比例函数,则m必须满足( B ) A.m≠0 B.m≠3 C.m≠-3 D.m为一切实数
解:设y1=3kx1 ,y2=k2(-x2),则y=3kx1 +k2(-x2),将x=1,y=5与x =-1,y=-2代入,可得k1=221 ,k2=-32 ,则y=27x +32 x2,当x =3时,y=434
((11))当 求mI关为于何R6值的.时函,数(3y解是分析x的式)正设;比每例函个数?工人一天能做某种型号的工艺品 A3..(正4分方)下形列的x关个面系积,中S与,若边两长个某a量的工之关间系艺为反品比厂例函每数关天系生的是产( 这)种工艺品60个, 155..(6(9分分)在)已下需知列y要=函(数m工解2+析人2式my)中x名m,2+x,均m为-则自1.变y量关,于哪些x是的反函比例数函数解?析每一式个反为比(例函C数)中相应的比例系数是多少?
5.(6分)在下列函数解析式中,x均为自变量,哪些是反比例函数?每 一个反比例函数中相应的比例系数是多少?
(1)y=5x ;(2)y=x5 ;(3)y=53x ; (4)xy=5;(5)y=5x-1;(6)y=5x -1. 解:(1)(3)(4)是反比例函数,其比例系数分别是5,35 ,5
根据实际问题列反比例函数解析式
解:(1)m=1 (2)m=-1+2 13 或-1-2 13 (3)m=-1
(2)当m为1何6值.时(,1y0是分x的)二(渗次函透数?学科知识)在物理学中,由欧姆定律知,电压U不变时,
26.1.1反比例函数(教学课件)-九年级数学下册同步教学精品课件(人教版)

典例小结
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3
新人教版九年级数学下册第26章:反比例函数复习课件(共19张PPT)

9.如图,正比例函数 y1=k1x 的图象与反比例函数 y2=kx2的图象相交于 A,B
两点,其中点 A 的横坐标为 2,当 y1<y2 时,x 的取值范围是( B )
A.x<-2 或 x>2 B.x<-2 或 0<x<2 C.-2<x<0 或 0<x<2 D.-2<x<0 或 x>2
方法2 求反比例函数解析式的方法
y2=1
000(x≥25). x
.
•
(2)当 x1=5 时,y1=2×5+20=30, 当 x2=30 时,y2=1 30000=1300, ∴y1<y2,∴第 30 分钟时学生注意力更集中. (3)令 y1=36,∴36=2x1+20,∴x1=8. 令 y2=36,∴36=1 x0200,∴x2=1 30600≈27.8. ∵27.8-8=19.8>19, ∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题
(2)联立方程组
y=2x-2,
y=4, x
解得
xy11==22,,或
x2=-1, y2=-4.
.
•
∴C(-1,-4), 由图象,得 y1<y2 时 x 的取值范围是 x<-1 或 0<x<2. (3)连接 OC,设直线 y1=2x-2 与 y 轴交于点 E,则点 E 的坐标为 (0,-2).由(2)得点 C(-1,-4),点 A(2,2), ∴S△AOC=S△OCE+S△AOE=12×1×2+21×2×2=3.
D.当 x>1 时,y>3
6.已知点(-1,y1),(-2,y2),(3,y3)在反比例函数 y=-kx2-1的图象上,
下列正确的是( B )
A.y1>y3>y2
C.y3>y1>y2
B.y1>y2>y3 D.y3>y2>y1
26.1.1 反比例函数 课件-人教版数学九年级下册

感悟新知
知1-练
1-1.[月考·成都锦江区]下列函数中,y是x的反比例函数的 是( B )
A. y=x-4 1 C. y=32x
B. y=25x D. y=x12
感悟新知
知2-讲
知识点 2 反比例关系与反比例函数的区别与联系
1. 如果xy=k(k为常数,k ≠ 0),那么x与y这两个量成反比例 关系,这里的x和y既可以是单项式,也可以是多项式.
学习目标
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
学习目标
1 课时讲解 反比例函数的定义
反比例关系与反比例函数的区别与联系 求反比例函数的解析式 在实际问题中建立反比例函数模型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 反比例函数的定义
知1-讲
0),整理,得y=x-k 5-2,显然,y不是x的反比例函数.
感悟新知
知2-练
例 2 已知y=y1+y2,y1与x成正比例,y2与x成反比例,并 且当x=2时,y=-4;当x=-1 时,y=5,求y关于x 的函数解析式.
思路引导:
感悟新知
解:∵ y1与x成正比例,∴设y1=k1x(k1≠0).
知2-练
感悟新知
(2)求当x=8时的函数值y. 【解】当 x=8 时,y=2×(8-1)+68=1434.
知2-练
感悟新知
知识点 3 求反比例函数的解析式
知3-讲
1. 确定反比例函数解析式的方法是待定系数法,由于在反
比例函数y=,即可求出k的值,从而确 定其解析式.
综合应用创新
把x=3代入y=-2x,得y=-2x. 所以y是x的反比例函数,函数解析式为y=-2x. 补全表格如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(k是常数,k≠0)的函数称为
反比例函数,其中x是自变量,y是函数.
探究新知
26.1 反比例函数/
反比例函数:形如 y kx(k为常数,且k≠0) 【思考】 1.自变量x的取值范围是什么?
因为 x 作为分母,不能等于零,因此自变量 x
的取值范围是所有非零实数.
2.在实际问题中自变量x的取值范围是什么?
是,k 3 2
巩固练习
26.1 反比例函数/
2.在下列函数中,y 是 x 的反比例函数的是( C )
A.
y
8 x5
C. xy =5
B.
y3x 2
D.
y
2 x2
探究新知
26.1 反比例函数/
素养考点 1 利用反比例函数的定义求字母的值
例1 已知函数 y 2m2 m 1 是反比例 x2m2 3m3
函数,求 m 的值.
解:因为 y 2m2 m 1 x2m23m3 是反比例函数,
所以 2m2 + 3m-3=-1 2m2 + m-1≠0
解得 m =-2.
归纳总结:已知某个函数为反比例函数,只需要根据反比例函数的定义
列出方程(组)求解即可,如本题中 x 的次数为-1,且系数不等于0.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x = 7 时,求 y 的值.
解:(1)
设
y
k x 1
,因为当
x = 3 时,y =4 ,
所以有 4 k
31
,解得
k =16,因此
y 16 .
x 1
(2)
当
x = 7 时,
y 16 2. 7 1
探究新知
26.1 反比例函数/
2. 能判断一个给定的函数是否为反比例函数, 并会用待定系数法求函数解析式. 1. 理解并掌握反比例函数的概念.
探究新知
26.1 反比例函数/
知识点 1 反比例函数的定义
下列问题中,变量间具有函数关系吗?如果有,请写出它 们的解析式.
(1) 京沪线铁路全程为1463 km,某次列车的平均速度v (单
解:(1)设
y k. x
因为当
x=2时,y=6,所以有
6 k. 2
解得(2)把 x=4 代入
y
12 ,得
x
y 12 3. 4
探究新知
26.1 反比例函数/
归纳总结
用待定系数法求反比例函数解析式的一般步骤是:
(1)设,即设所求的反比例函数解析式为
[教育部审定]
26.1 反比例函数/
人教版九年级数学下册精编版课件
26.1.1反比例函数
26.1.2反比例函数 的图象和性质
26.2 实际问题与反 比例函数
26.1 反比例函数/
使用说明:点击对应 课时,就会跳转到相 应章节内容,方便使 用。
人教版 数学 九年级 下册
26.1 反比例函数/
26.1 反比例函数
yk x
(k≠0).
(2)代,即将已知条件中对应的 x、y 值代入
于k的方程.
y k 中得到关 x
(3)解,即解方程,求出 k 的值.
(4)定,即将
k 值代入 y
k x
中,确定函数解析式.
巩固练习
26.1 反比例函数/
4.已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
知识点 2 建立反比例函数的模型解答问题
人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察
前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野
为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的
函数解析式,并计算当车速为100km/h 时视野的度数.
要根据具体情况来确定.
例如,在前面得到的第二个解析式
y 1000 x
,x的
取值范围是 x>0,且当 x 取每一个确定的值时,y 都
有唯一确定的值与其对应.
探究新知
26.1 反比例函数/
3.形如 y kx 1 (k 0的)式子是反比例函数吗? 式子 xy k(k 0) 呢?
反比例函数的三种表达方式:(注意 k ≠ 0)
素养考点 2 利用待定系数法求反比例函数的解析式
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x=4 时,求 y 的值. 分析:因为 y 是 x 的反比例函数,所以设
y
k x
.把
x=2
和
y=6
代
入上式,就可求出常数 k 的值.
位:km/h) 随此次列车的全程运行时间t (单位:h) 的变化而
变化;
v 1463 . t
探究新知
26.1 反比例函数/
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪, 草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;
y 1000 . x
(3) 已知北京市的总面积为1.68×104 km2 ,人均占有面
26.1.1 反比例函数
导入新知
26.1 反比例函数/
当杂技演员表演滚钉板的节目时,观众们看到密密麻麻 的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越 安全,钉子越少反而越危险,你认同吗?为什么?
素养目标
26.1 反比例函数/
3. 能根据实际问题中的条件确定反比例函数 的解析式,体会函数的模型思想.
y k, x
y kx1,
xy k.
巩固练习
26.1 反比例函数/
1.下列函数中哪些是反比例函数,并指出相应k的值?
① y =3x-1
是,k = 3
② y =2x2
不是
③ y1 ④
x
是,k = 1
y 2x 3
不是
⑤ y =3x-1
不是
⑥ xy 1 3
是, k 1 3
⑦ y 3 2x
巩固练习
26.1 反比例函数/
3.
(1)当m =__1_.5__时,函数 y
4 x 2m2 是反比例函数.
(2)已知函数 y 3xm7 是反比例函数,则 m =___6____.
(3)若函数 y (m 2)xm25 是反比例函数,则m的
值为__2____.
探究新知
26.1 反比例函数/
积 S (单位:km2/人) 随全市总人口 n (单位:人) 的变化
而变化.
1.68 104
S
.
n
探究新知 传授新知
26.1 反比例函数/
【观察】这三个函数解析式有什么共同点?
1463
1000
1.68 104
v
y
S
t
x
n
都是 y = k 的形式,其中k是非零常数。
x
一般地,形如
yk x