不等式的证明方法习题精选精讲

合集下载

不等式的证明-高中数学知识点讲解(含答案)

不等式的证明-高中数学知识点讲解(含答案)

不等式的证明(北京习题集)(教师版)一.解答题(共7 小题)1.(2018•北京)设n 为正整数,集合A { | (t ,t ,t ) ,t {0 ,1},k 1,2,,n},对于集合A 中1 2 n k的任意元素 (x ,x ,,) 和(y ,,y ,记x y) 1 2 n 1 2nM (1,) [(x y | x y |) (x y | x y |) (x y | x y |)]1 1 1 12 2 2 2 n n n n2(Ⅰ)当n 时,若 (1,1, 0) , (0,1,1) ,求M (,) 和M (,) 的值;3(Ⅱ)当 4 时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当n B A B M (,)M (,) B,不同时,是偶数.求集合中元素个数的最大值;(Ⅲ)给定不小于 2 的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,,M (,) 0 ,写出一个集合B ,使其元素个数最多,并说明理由.2 2 22.(2016 春•北京校级月考)已知,,求证 a b …(a b) (用分析法证明)a b R23 .(2014 •朝阳区二模)已知,x 是函数 f (x ) x 2 mx t 的两个零点,其中常数m ,t Z ,设x1 2nT x x n Nn r r *( )n 1 2r0.(1)用m ,t 表示T ,T ;1 2(2)求证:T mT tT ;5 4 3(3)求证:对任意的n N ,.* T Zn4.(2014•北京校级模拟)(1)求证:7 6 5 2 ;x x 2(2)已知函数f (x ) e ,用反证法证明方程f (x ) 0 没有负数根.x 1b b5.(2019 秋•大兴区期中)①已知0 ,求证:.a b 1a 1 a②已知1,当取什么值时,x 的值最小?最小值是多少?x x 9x 16.(2019 秋•西城区校级期中)已知a ,b 0 ,证明:a3 b3…a2b ab2 .a a a11 12 1na a a7.(2019•东城区二模)若n 行n 列的数表 ( )(n 2) 满足:,,,2,,,21 22 2 … a {0 1}(i j 1 n)nM M Mija a an1 n2 nn第1页(共8页)n nn 0 m n) ( )a m(i 1,2,,,,| a a | 0 (i, j 1, 2,,n,i j) ,记这样的一个数表为A m .对于ik ik jk nk 1 k 1nk 1A m T(n,m) a a ,1 i j n , i, j N*( ) ,记集合…….|T(n,m) | 表示集合T(n,m)中元素的个数. n ij ij ik jk1 1 0(Ⅰ)已知,写出ij i j i j N 的值;A (2) (0 1 1) (1…… 3 , , * )31 0 1(Ⅱ)是否存在数表A (2)满足|T(4, 2) |1?若存在,求出(2),若不存在,说明理由;A4 4n(Ⅲ)对于数表A (m)(0 m n,m N ) ,求证:|T(n,m) |….*n2第2页(共8页)不等式的证明(北京习题集)(教师版)参考答案与试题解析一.解答题(共7 小题)1.(2018•北京)设n 为正整数,集合{ | ( ,t ,t ) ,{0 ,,,2,,,对于集合中A t t 1}k 1 n} A1 2 n k的任意元素,,,和,,,记(x x x ) (y y y )1 2 n 1 2 nM (1,) [(x y | x y |) (x y | x y |) (x y | x y |)]1 1 1 12 2 2 2 n n n n2(Ⅰ)当n 时,若 (1,1, 0) , (0,1,1) ,求M (,) 和M (,) 的值;3(Ⅱ)当 4 时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当n B A B M (,)M (,) B,不同时,是偶数.求集合中元素个数的最大值;(Ⅲ)给定不小于 2 的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,,M (,) 0 ,写出一个集合,使其元素个数最多,并说明理由.B【分析】(Ⅰ)直接根据定义计算.(Ⅱ)注意到 1 的个数的奇偶性,根据定义反证证明.(Ⅲ)根据抽屉原理即可得证.【解答】解:,.(I ) M (,) 11 0 2 M (,) 0 1 0 1x y | x y |(II) 考虑数对 (x ,y ) 只有四种情况: (0,0) 、 (0,1) 、 (1, 0) 、 (1,1) ,相应的分别为 0、0、0、1,k k k kk k2所以B 中的每个元素应有奇数个 1,所以B 中的元素只可能为(上下对应的两个元素称之为互补元素):(1 ,0,0,0 ) 、 (0 ,1,0, 0) 、 (0 ,0,1, 0) 、 (0 ,0,0,1) ,(0 ,1,1,1) 、 (1 ,0,1,1) 、 (1 ,1,0,1) 、 (1 ,1,1, 0) ,对于任意两个只有 1 个 1 的元素,都满足是偶数,M (,)所以四元集合B {(1 ,0,0, 0) 、 (0 ,1,0, 0) 、 (0 ,0,1, 0) 、 (0 ,0,0,1)}满足题意,假设B 中元素个数大于等于 4,就至少有一对互补元素,除了这对互补元素之外还有至少 1 个含有 3 个 1 的元素,则互补元素中含有 1 个 1 的元素与之满足M (,) 1不合题意,故B 中元素个数的最大值为 4.第3页(共8页)(Ⅲ)B {(0,0,0,0), (1 ,0, 0, 0) , (0 ,1,0,0), (0 ,0,10),(0 ,0,0,,1)},此时中有个元素,下证其为最大.B n 1对于任意两个不同的元素,,满足,则,中相同位置上的数字不能同时为 1,M (,) 0假设存在有多于个元素,由于,0,0,,与任意元素都有,B n 1 (0 0) M (,) 0所以除 (0 ,0,0,, 0) 外至少有n 1 个元素含有 1,根据元素的互异性,至少存在一对,满足,此时不满足题意,x y l M (,) (1)i i故B 中最多有n 1 个元素.【点评】本题主要考查集合的含义与表示、集合的运算以及集合之间的关系.综合性较强,难度较大.2 2 22.(2016 春•北京校级月考)已知a ,b R,求证 a b …(a b) (用分析法证明)22 2 2【分析】分析法证明不等式,寻找使 a b …(a b) 成立的充分条件,直到使不等式成立的条件显然具备为2止.2 2 2【解答】证明:要证 a b …(a b) ,22 2 1 2只要证( ) ,a b … a b2即证明,2(a b )…a 2ab b2 2 2 2也就是证明,(a b) 02此式显然成立,故要证的不等式成立.【点评】本题考查不等式的证明,着重考查分析法的应用,考查推理能力,体现了转化的数学思想,属于中档题.3 .(2014 •朝阳区二模)已知,x 是函数 f (x ) x 2 mx t 的两个零点,其中常数m ,t Z ,设x1 2.nT x x (nN )n r r *Tx x (n N )n 1 2r0(1)用m ,t 表示T ,T ;1 2(2)求证:T mT tT ;5 4 3(3)求证:对任意的,.n N* T Znn【分析】( 1 )依题意,知,,利用( ) ,易知T x x m ,x x m x x t T x n r x r n N*1 2 1 2 n 1 2 1 1 2r0;2T x 2r x r x 2 x x x 2 (x x )2 x x m2 t2 1 2 1 1 2 2 1 2 1 2r0第4页(共8页)k(2)由,可得;x x T x T x mT tTk r r 51 2 5 1 4 2 4 3r0(3)利用数学归纳法证明即可.【解答】解:(1)x x m ,x x t .1 2 1 2n因为( ) ,所以,T x x n N T x x mn r r *n 1 2 1 1 2r0分2T x x x x x x x x x x m t2 r r 2 2 2 2( ) 32 1 2 1 1 2 2 1 2 1 2r0k 5 4(2)由x x ,得T x x x x x x x Tx .k r r 5 r r 4 r r 5 51 2 5 1 2 1 1 2 2 1 4 2r0 r0 r0即.T x T x55 1 4 2所以.x T x x T x 52 4 1 23 2所以 5 1 4 ( 2 4 1 2 3 )( 1 2 ) 4 1 2 3 4 3 8分T x T x T x x T x x T x x T mT tT(3)①当n 1,2 时,由(1)知T 是整数,结论成立.k②假设当 1 ,时结论成立,即T ,T k 都是整数.n k n k(k… 2)k 1k k 1 k由,得T x x x x x x ,T x k r x rk 1r r k r r k 1 k 1 2 k 1 1 2 1 1 2 2r0 r0 r0即,T x T xk 1 k 1 1 k 2所以,,T x T x k x T x x T xk 1k 1 k 1 2 2 k 1 2 k 1 2所以T 1 x1T (x2T x1x2T 1) (x1 x2 )T x1x2T 1 .k k k k k k即.T mT tTk 1 k k 1由T ,T k 都是整数,且m ,t Z 知,T 也是整数,即n k 1时,结论也成立.k 1 k 1由①②可知,对于一切,分n N* T Z13n【点评】本题考查综合法证明不等式,突出考查数学归纳法的应用,考查抽象思维、逻辑思维的综合应用,考查推理证明的能力,属于难题.4.(2014•北京校级模拟)(1)求证:7 6 5 2 ;x x 2(2)已知函数f (x) e ,用反证法证明方程f (x) 0 没有负数根.x 1【分析】(1)采用分析法来证,要证7 6 5 2 ,只需两边平方,整理后得到一恒成立的不等式即可.(2)对于否定性命题的证明,可用反证法,先假设方程f (x) 0 有负数根,经过层层推理,最后推出一个矛盾的结论.第5页(共8页)【解答】证明:(1)要证7 6 5 2只需证( 7 6) ( 5 2)2 2只需证即证13 2 42 9 4 5 2 2 5 42 只需证24 8 5 42只需证即证4 5 9 80 81上式显然成立,命题得证.x x (2)设存在x 0 0(x 0 1) ,使,则e 0f x( ) 0xx 12由于得 0 1,解得x 2 ,0 e x 1 0x 1 20 21与已知矛盾,因此方程没有负数根.x 0 0 f (x ) 0【点评】(1)本题主要考查不等式的证明,证明用到了分析法,分析法是从要证明的结论出发,一步步向前推,得到一个恒成立的不等式,或明显成立的结论即可.(2)本题考查了函数的零点问题与方程的根的问题.方程的根,就是指使方程成立的未知数的值.对于结论是否定形式的命题,往往反证法证明.a b b 1 b5.(2019 秋•大兴区期中)①已知0 ,求证:.a 1 a②已知,当取什么值时,x 的值最小?最小值是多少?x 1x x 91【分析】①作差法证明即可;②利用基本不等式判断即可.b 1 b ab a ab b a b【解答】解:①证明:a b 0 ,0 ,a 1 a (a 1)a a(a 1)b 1 b故;a 1 a②当时,,,x 1 x 1 x 1 x x 1 0 9 1 9 1 2 ( 1)( 9 ) 1 51 y x x (x)当且仅当,即时,取等号,x 1 3 x 2故当 2 时,x 值最小,最小为 5.x 9x 1【点评】考查了作差法和基本不等式法的应用,基础题.6.(2019 秋•西城区校级期中)已知a ,b 0 ,证明:a3 b3…a2b ab2 .【分析】作差,因式分解,即可得到结论.【解答】证明:(a3 b3 ) (a2b ab2 ) a2 (a b) b2 (b a)第6页(共8页)(a b)(a b ) (a b) (a b)2 2 2Q a 0 b 0,,(a b)2 0a b 0 ,,(a b)2 (a b) 0,则有.a3 b3…a2b b2a【点评】本题考查不等式的证明,重点考查作差法的运用,考查学生分析解决问题的能力,属于基础题.a a a11 12 1na a a7.(2019•东城区二模)若行列的数表…满足:a {0 , 1}(i ,j 1,2,,n) ,n n ( )(n 2)21 22 2nM M Mija a an1 n2 nnn nn 0 m n) ( )a m(i 1,2,,,,| a a | 0 (i, j 1, 2,,n,i j) ,记这样的一个数表为Am .对于ik ik jk nk 1 k 1nk 1A (m) ,记集合T n m a a …i j…n i j N* .|T(n,m) | 表示集合T(n,m) 中元素的个数.( , ) ,1 , ,n ij ij ik jk1 1 0(Ⅰ)已知,写出ij i j i j N 的值;A (1…… 3 , , * )(2) (0 1 1)31 0 1(Ⅱ)是否存在数表A (2)满足|T(4, 2) |1?若存在,求出A (2),若不存在,说明理由;4 4n(Ⅲ)对于数表( )(0 , ) ,求证:.A m m n m N* |T(n,m) |…n2【分析】(Ⅰ)根据题意计算、和的值;12 13 23(Ⅱ)不存在数表A (2),使得|T(4, 2) |1,说明理由即可;4(Ⅲ)在数表A (m) 中,将换成,得出,根据题意计算,得出,,,从1 A (n m) |T(n m) ||T(n nm) | n ij ij n ijn而得出.|T |…(n,m)2【解答】解:(Ⅰ)根据题意,计算12 13 23 1;(3 分)(Ⅱ)不存在数表A (2),使得|T(4, 2) |1.理由如下:41 1 0 0a a a a假设存在A (2),使得|T(4, 2) |1.不妨设A (2) ( 21 22 23 24 ) ,的可能值为 0,1.4 4 ija a a a31 32 33 34a a a a41 42 43 44当ij i j 时,经验证这样的A (2)不存在.0 (1……4)4第7页(共8页)a a 121 22当1(1 4) 时,有,这说明此方程组至少有两个方程的解相同,ij …i j… a a 131 32a a 141 421 1 0 0a a 10 1 a a23 24不妨设,所以有 a a1,A (2) ( 23 24 )4 33 340 1 a a33 34a a 143 441 0 a a43 44这也说明此方程组至少有两个方程的解相同,1 1 0 0 1 1 0 00 1 0 1 0 1 0 1这样的A (2)只能为 ( ) 或 ( ) ,40 1 0 1 0 1 1 01 0 1 0 1 0 0 1这两种情况都与矛盾,|T(4, 2) | 1即不存在数表A (2),使得|T(4, 2) |1.(8 分)4(Ⅲ)在数表A m 中,将换成1 ,这将形成,( ) A (nm) n ij ij n由于,ij a i a j a i a j a in a jn1 12 2可得 (1 a )(1 a ) (1 a )(1 a ) (1 a )(1 a ) n m m ,i1 j1 i2 j2 in jn ij从而,,.|T(n m) ||T(n n m) |nn……当m…时,由于| a a | 0(0 i j n,i, j N* ) ,it jt2t 1n所以任两行相同位置的 1 的个数…1.2nn又由于… 0 ,而从 1 到1的整数个数…,ij2 2n从而| ( , ) | ;T n m …2n从而当 0 m n 时,都有|T |….(13 分)(n,m)2【点评】本题考查了不等式的性质与应用问题,也考查了矩阵乘法的性质应用问题,是难题.第8页(共8页)。

不等式证明方法专项+典型例题

不等式证明方法专项+典型例题

不等式证明方法专项+典型例题不等式的证明是数学证题中的难点,其原因是证明无固定的程序可循,方法多样,技巧性强。

1、比较法(作差法)在比较两个实数a 和b 的大小时,可借助b a -的符号来判断。

步骤一般为:作差——变形——判断(正号、负号、零)。

变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。

例1、已知:0>a ,0>b ,求证:ab b a ≥+。

2、分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。

例2、求证:15175+>+。

3、综合法证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。

例3、已知:a ,b 同号,求证:2≥+b a 。

4、作商法(作比法)在证题时,一般在a ,b 均为正数时,借助1>b a 或1<ba 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。

例4、设0>>b a ,求证:a b b a b a b a >。

a b b a b a b a >。

5、反证法先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。

例5、已知0>>b a ,n 是大于1的整数,求证:n n b a >。

6、迭合法(降元法)把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。

例6、已知:122221=+++n a a a ,122221=+++n b b b ,求证:12211≤+++n n b a b a b a 。

证明:因为122221=+++n a a a ,122221=+++n b b b ,所以原不等式获证。

不等式的证明典型例题

不等式的证明典型例题

不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*)∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1 ∴|x|2≥b.。

不等式的证明方法经典例题

不等式的证明方法经典例题

不等式的证明方法经典例题第一篇:不等式的证明方法经典例题不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

a2+b2a+b注意a+b≥2ab的变式应用。

常用(其中a,b∈R+)来解决有≥2222关根式不等式的问题。

一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1、已知a,b,c均为正数,求证:111111++≥++ 2a2b2ca+bb+cc+a二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2、a、b、c∈(0,+∞),a+b+c=1,求证:4a2+b2+c2≥44133、设a、b、c是互不相等的正数,求证:a+b+c>abc(a+b+c)4、知a,b,c∈R,求证:a2+b+2b2+c+2c2+a≥2(a+b+c)211(1+)(1+)≥9xy5、x、y∈(0,+∞)且x+y=1,证:。

6、已知a,b∈R,a+b=1求证: 1++⎛⎝1⎫⎛1⎫1⎪1+⎪≥.a⎭⎝b⎭9三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a、b、c为正数,求证:2(a+ba+b+c3-ab)≤3(-abc)238、a、b、c∈(0,+∞)且a+b+c=1,求证a+b+c≤3。

四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

9、b<1,求证:ab+(1-a2)(1-b2)≤1。

22x+y=1,求证:-2≤x+y≤210、114+≥.a-bb-ca-c1222212、已知1≤x+y≤2,求证:≤x-xy+y≤3.211、已知a>b>c,求证:13、已知x-2xy+y≤2,求证:| x+y |≤10.14、解不等式5-x-221x+1>2215、-1≤1-x-x≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a>b>c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a,b∈R,且a+b = 1,求证:(a+2)+(b+2)≥六、利用“1”的代换型2225.2111已知a,b,c∈R+,且a+b+c=1,求证:++≥9.abc17、七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

证明不等式的基本方法练习题(基础、经典、好用)

证明不等式的基本方法练习题(基础、经典、好用)

证明不等式的基本方法一、选择题1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( )A .s ≥tB .s >tC .s ≤tD .s <t2.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( ) A .a B .b C .c D .无法判断3.设a 、b ∈(0,+∞),且ab -a -b =1,则有( )A .a +b ≥2(2+1)B .a +b ≤2+1C .a +b <2+1D .a +b >2(2+1)4.已知a 、b 、c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为( )A .5B .7C .9D .115.(2012·湖北高考)设a ,b ,c ,x ,y ,z 均为正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +c x +y +z 等于( ) A.14 B.13C.12D.34 二、填空题6.设a >b >0,m =a -b ,n =a -b ,则m 与n 的大小关系是________.7.以下三个命题:①若|a -b |<1,则|a |<|b |+1;②若a 、b ∈R ,则|a +b |-2|a |≤|a -b |;③若|x |<2,|y |>3,则|x y |<23,其中正确命题的序号是________.8.若x +y +z =1,且x ,y ,z ∈R ,则x 2+y 2+z 2与13的大小关系为________.三、解答题9.设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.10.(2013·深圳调研)已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x +x 21-x(0<x <1)的最小值.11.(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y +xy .(2)1≤a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .解析及答案一、选择题1.【解析】 ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .【答案】 A2.【解析】 ∵0<x <1,∴1+x >2x =4x >2x , ∴只需比较1+x 与11-x的大小, ∵1+x -11-x =1-x 2-11-x =-x 21-x<0, ∴1+x <11-x. 因此c =11-x 最大. 【答案】 C3.【解析】 ∵ab -a -b =1,∴1+a +b =ab ≤(a +b 2)2.令a +b =t (t >0),则1+t ≤t 24(t >0).解得t ≥2(2+1),则a +b ≥2(2+1).【答案】 A4.【解析】 把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.【答案】 C5.【解析】 由题意可得x 2+y 2+z 2=2ax +2by +2cz , 又a 2+b 2+c 2=10相加可得(x -a )2+(y -b )2+(z -c )2=10,所以不妨令⎩⎨⎧x -a =a ,y -b =b ,z -c =c (或⎩⎨⎧x -a =b ,y -b =c ,z -c =a), 则x +y +z =2(a +b +c ),∴a +b +c x +y +z =12. 【答案】 C二、填空题6.【解析】 ∵a >b >0,∴m =a -b >0,n =a -b >0.∵m 2-n 2=(a +b -2ab )-(a -b )=2b -2ab =2b (b -a )<0,∴m 2<n 2,从而m <n .【答案】 m <n7.【解析】 ①|a |-|b |≤|a -b |<1,所以|a |<|b |+1; ②|a +b |-|a -b |≤|(a +b )+(a -b )|=|2a |, 所以|a +b |-2|a |≤|a -b |;③|x |<2,|y |>3,所以1|y |<13,因此|x ||y |<23.∴①②③均正确.【答案】 ①②③8.【解析】 ∵(x +y +z )2=1,∴x 2+y 2+z 2+2(xy +yz +zx )=1,又2(xy +yz +zx )≤2(x 2+y 2+z 2),∴3(x 2+y 2+z 2)≥1,则x 2+y 2+z 2≥13.【答案】 x 2+y 2+z 2≥13三、解答题9.【证明】 ∵a >0,b >0,a +b =1, ∴2ab ≤a +b =1.因此ab≤12,1ab≥4.则1a+1b+1ab=(a+b)(1a+1b)+1ab≥2ab·2 1ab+4=8.故1a+1b+1ab≥8成立.10.【解】(1)证明∵a2b+b2a-(a+b)=a3+b3-a2b-ab2ab=a2(a-b)-b2(a-b)ab=(a-b)2(a+b)ab.又∵a>0,b>0,∴(a-b)2(a+b)ab≥0,当且仅当a=b时等号成立.∴a2b+b2a≥a+b.(2)∵0<x<1,∴1-x>0,由(1)的结论,函数y=(1-x)2x+x21-x≥(1-x)+x=1.当且仅当1-x=x即x=12时等号成立.∴函数y=(1-x)2x+x21-x(0<x<1)的最小值为1.11.【证明】(1)由于x≥1,y≥1,则x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2,将上式中右式减左式得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1),由x≥1,y≥1易知(xy-1)(x-1)(y-1)≥0,即原不等式成立.(2)设log a b=x,log b c=y,由对数换底公式得log c a=1xy,log b a=1x,log c b=1y,log a c=xy,则所证不等式可化为x+y+1xy≤1x+1y+xy,由1≤a≤b≤c知x=log a b≥1,y=log b c≥1,由(1)知所证不等式成立.。

高中不等式证明例题(一题多解)

高中不等式证明例题(一题多解)

多种方法证明高中不等式例1证明不等式n n2131211<++++(n ∈N *)证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立.综合(1)、(2)得:当n ∈N *时,都有1+n13121+++ <2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n n k k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值. 解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.例3 已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα例4.已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6证明:(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ]=31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.例5.已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]例6 .证明下列不等式:(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz , 则zyx y x z x z y +++++≥2(z y x 111++))()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z yx y x z x z y z y x zx yz xy z c b a y b a c x a c b x a c z c a z c b y b c y b a x a b zx x a cz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.例7.已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m i i m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C nn m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA in>n iA i m (1<i ≤m ),而C i m=!A C ,!A i i i ni n i m =∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.例8.若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1. 证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0 ① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232-② 将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3=(a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。

高中数学竞赛专题精讲14不等式的证明(含答案)

高中数学竞赛专题精讲14不等式的证明(含答案)

14不等式的证明不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下:不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性) (2)c b c a b a +>+⇔>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>(4)*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ (2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式).(4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.例题讲解1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++2.0,,>c b a ,求证:.)(3c b a cb a abc c b a ++≥3.:.222,,,333222222abc ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤++∈+求证4.设*21,,,N a a a n ∈ ,且各不相同,求证:.32131211223221n a a a a n n ++++≤++++ .5.利用基本不等式证明.222ca bc ab c b a ++≥++6.已知,0,,1≥=+b a b a 求证:.8144≥+b a7.利用排序不等式证明n n A G ≤8.证明:对于任意正整数R ,有.)111()11(1+++<+n n n n9.n 为正整数,证明:.)1(131211]1)1[(111----<++++<-+n nn n n nn n课后练习1.选择题(1)方程x2-y2=105的正整数解有( ).(A)一组(B)二组(C)三组(D)四组(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有(). (A)3个(B)4个(C)5个(D)6个2.填空题(1)的个位数分别为_________及_________.(2)满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值________.(3)已知整数y被7除余数为5,那么y3被7除时余数为________.(4)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.3.求三个正整数x、y、z满足.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为l 厘米、m 厘米,斜边长为n 厘米,且l ,m ,n 均为正整数,l 为质数.证明:2(l+m+n )是完全平方数.9.如果p 、q 、、都是整数,并且p >1,q >1,试求p+q 的值.课后练习答案1.D.C.2.(1)9及1. (2)9. (3)4.(4)原方程可变形为x 2=(7y+1)2+2y(y-7),令y=7可得x=50.3.不妨设x≤y≤z,则,故x≤3.又有故x≥2.若x=2,则,故y≤6.又有,故y≥4.若y=4,则z=20.若y=5,则z=10.若y=6,则z 无整数解.若x=3,类似可以确定3≤y≤4,y=3或4,z 都不能是整数. 4.可仿例2解.5. 分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法. 略解:ca a c bc c b ab b a 2,2,2223222≥+≥+≥+同理;三式相加再除以2即得证. 评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.如n n x x x x x x x x x +++≥+++ 2112322221,可在不等式两边同时加上.132x x x x n ++++再如证)0,,(256)())(1)(1(32233>≥++++c b a c b a c b c a b a 时,可连续使用基本不等式.(2)基本不等式有各种变式 如2)2(222b a b a +≤+等.但其本质特征不等式两边的次数及系数是相等的.如上式左右两边次数均为2,系数和为1.6.8888≡8(mod37),∴88882222≡82(mod37).7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而82+73=407,37|407,∴37|N.7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≥0及y为整数可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.例题答案:1. 证明:abc a c ca c b bc b a ab 6)()()(-+++++)()()()2()2()2(222222222≥-+-+-=-++-++-+=b a c a c b c b a ab b a c ac c a b bc c b a.6)()()(abc a c ca c b bc b a ab ≥+++++∴评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明ca bc ab c b a ++≥++222时,可将22b a +)(ca bc ab ++-配方为])()()[(21222a c c b b a -+-+-,亦可利用,222ab b a ≥+ca a c bc c b 2,22222≥+≥+,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于c b a ,,对称,不妨+∈---≥≥R c a c b b a c b a ,,,则,且cb b a ,, ca都大于等于1..1)()()()(3333333333232323≥⋅⋅=⋅⋅⋅⋅⋅==---------------++c a c b b a b c a c c b a b c a b a b a c c a b c b a c b a cb a ca cb b a ccbbaacbaabc c b a评述:(1)证明对称不等式时,不妨假定n 个字母的大小顺序,可方便解题. (2)本题可作如下推广:若≥=>na naai a a a n i a 2121),,,2,1(0则.)(2121na a a n na a a +++(3)本题还可用其他方法得证。

高考数学二轮复习考点知识讲解与练习72---不等式的证明

高考数学二轮复习考点知识讲解与练习72---不等式的证明

高考数学二轮复习考点知识讲解与练习第72讲不等式的证明考点知识:通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知识梳理1.基本不等式定理1:如果a,b∈R,那么a2+b2≥2ab,当且仅当a=b时,等号成立.定理2:如果a,b>0,那么a+b2≥ab,当且仅当a=b时,等号成立,即两个正数的算数平均不小于(即大于或等于)它们的几何平均.定理3:如果a,b,c∈(0,+∞),那么a+b+c3≥3abc,当且仅当a=b=c时,等号成立.2.不等式的证明(1)比较法①作差法(a,b∈R):a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.②作商法(a>0,b>0):ab>1⇔a>b;ab<1⇔a<b;ab=1⇔a=b.(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等.3.几个重要不等式(1)ba+ab≥2(a,b同号);(2)a2+b2+c2≥ab+bc+ca.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )答案(1)×(2)√(3)×(4)×解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.2.若a>b>1,x=a+1a,y=b+1b,则x与y的大小关系是( )A.x>y B.x<y C.x≥y D.x≤y 答案 A解析x-y=a+1a-⎝⎛⎭⎪⎫b+1b=a-b+b-aab=(a-b)(ab-1)ab.由a>b>1得ab>1,a-b>0,所以(a-b)(ab-1)ab>0,即x-y>0,所以x>y.3.已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.答案M≥N解析M-N=2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b,即M≥N.4.已知a+b+c>0,ab+bc+ac>0,abc>0,用反证法求证a>0,b>0,c>0时的假设为( ) A.a<0,b<0,c<0 B.a≤0,b>0,c>0C.a,b,c不全是正数 D.abc<0答案 C5.(2021·聊城模拟)下列四个不等式:①log x10+lg x≥2(x>1);②|a-b|<|a|+|b|;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确;ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确.6.(2021·西安调研)已知a >0,b >0且ln(a +b )=0,则1a +1b的最小值是________.答案 4解析 由ln(a +b )=0,得a +b =1.又a >0,b >0,∴1a +1b =a +b a +a +b b =2+b a +ab≥2+2b a ·a b =4.当且仅当a =b =12时,等号成立.故1a +1b的最小值为4.考点一 比较法证明不等式【例1】 设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. (1)证明 设f (x )=|x -1|-|x +2|=⎩⎨⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12.因此集合M =⎝ ⎛⎭⎪⎫-12,12,则|a |<12,|b |<12.所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14.(2)解 由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=16a 2b 2-4a 2-4b 2+1=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |. 感悟升华 比较法证明不等式的方法与步骤 (1)作差比较法:作差、变形、判号、下结论. (2)作商比较法:作商、变形、 判断、下结论.提醒 ①当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法. ②当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法. 【训练1】 设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是________. 答案s ≥t解析 s -t =a +b 2+1-(a +2b )=b 2-2b +1=(b -1)2≥0,∴s ≥t . 考点二 综合法证明不等式【例2】(2022·全国Ⅲ卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34. 证明 (1)由题设可知,a ,b ,c 均不为零, 所以ab +bc +ca =12[(a +b +c )2-(a 2+b 2+c 2)]=-12(a 2+b 2+c 2)<0. (2)不妨设max{a ,b ,c }=a .因为abc =1,a =-(b +c ),所以a >0,b <0,c <0.由bc ≤(b +c )24,可得abc ≤a 34,当且仅当b =c =-a2时取等号,故a ≥34,所以max{a ,b ,c }≥34.感悟升华 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】 已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc=1a+1b+1c.当且仅当a=b=c=1时,等号成立.所以1a+1b+1c≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥33(a+b)3(b+c)3(c+a)3=3(a+b)(b+c)(c+a)≥3×(2ab)×(2bc)×(2ca)=24.当且仅当a=b=c=1时,等号成立,所以(a+b)3+(b+c)3+(c+a)3≥24.考点三分析法证明不等式【例3】(2021·哈尔滨一模)设a,b,c>0,且ab+bc+ca=1. 求证:(1)a+b+c≥3;(2)abc+bac+cab≥3(a+b+c).证明(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3,又ab+bc+ca=1,故需证明a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca),即证a2+b2+c2≥ab+bc+ca.又易知ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立),∴原不等式成立.(2)abc+bac+cab=a+b+cabc.由于(1)中已证a+b+c≥3,因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.又a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ca2,∴a bc+b ac+c ab≤ab+bc+ca(a=b=c=33时等号成立).∴原不等式成立.感悟升华 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件【训练3】已知a>b>c,且a+b+c=0,求证:b2-ac<3a. 证明要证b2-ac<3a,只需证b2-ac<3a2.因为a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.因为a>b>c,所以a-b>0,a-c>0,所以(a-b)(a-c)>0显然成立,故原不等式成立.1.(2021·江西协作体联考)(1)已知x,y是实数,求证:x2+y2≥2x+2y-2;(2)用分析法证明:6+7>22+ 5.证明(1)(x2+y2)-(2x+2y-2)=(x2-2x+1)+(y2-2y+1)=(x-1)2+(y-1)2,而(x -1)2≥0,(y-1)2≥0,∴(x2+y2)-(2x+2y-2)≥0,∴x2+y2≥2x+2y-2.(2)要证6+7>22+5,只需证(6+7)2>(22+5)2成立,即证13+242>13+240成立,即证42>40成立,即证42>40成立,因为42>40显然成立,所以原不等式成立.2.(2022·兰州诊断)函数f(x)=x2-2x+1+24-4x+x2.(1)求f(x)的值域;(2)若关于x的不等式f(x)-m<0有解,求证:3m+2m-1>7.解f(x)=x2-2x+1+24-4x+x2=|x-1|+2|x-2|.(1)当x ≥2时,f (x )=3x -5≥1; 当1<x <2时,f (x )=3-x,1<f (x )<2; 当x ≤1时,f (x )=5-3x ≥2. 综上可得,函数的值域为[1,+∞). (2)证明 若关于x 的不等式f (x )-m <0有解, 则f (x )<m 有解,故只需m >f (x )min ,即m >1, ∴3m +2m -1=3(m -1)+2m -1+3≥26+3>7,原式得证. 3.(2021·沈阳五校协作体联考)已知a ,b ,c ,d 均为正实数. (1)求证:(a 2+b 2)(c 2+d 2)≥(ac +bd )2; (2)若a +b =1,求证:a 21+a+b 21+b ≥13. 证明 (1)(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2≥a 2c 2+2abcd +b 2d 2=(ac +bd )2. 当且仅当ad =bc 时取等号.(2)3⎝ ⎛⎭⎪⎫a 21+a +b 21+b =⎝ ⎛⎭⎪⎫a 21+a +b 21+b (1+a +1+b )=a 2+1+b 1+a ·a 2+1+a 1+b ·b 2+b 2≥a 2+2ab+b 2=(a +b )2=1,当且仅当a =b =12时取等号,所以a 21+a+b 21+b ≥13. 4.(2021·西安质检)已知a >0,b >0,c >0,且a +b +c =1. (1)求证:a 2+b 2+c 2≥13;(2)求证:a 2b +b 2c +c 2a≥1.证明(1)∵a2+b2≥2ab(当且仅当a=b时,取“=”),b2+c2≥2bc(当且仅当b=c时,取“=”),c2+a2≥2ca(当且仅当a=c时,取“=”),∴a2+b2+c2≥ab+bc+ca,∵(a+b+c)2=1,∴a2+b2+c2+2ab+2bc+2ca=1,∴3(a2+b2+c2)≥1,即a2+b2+c2≥1 3 .(2)∵a2b+b≥2a(当且仅当a=b时,取“=”),b2c+c≥2b(当且仅当b=c时,取“=”),c2a+a≥2c(当且仅当a=c时,取“=”),∴a2b+b2c+c2a+(a+b+c)≥2(a+b+c),即a2b+b2c+c2a≥a+b+c,∵a+b+c=1,∴a2b+b2c+c2a≥1.5.(2021·开封一模)已知a,b,c为一个三角形的三边长.证明:(1)ba+cb+ac≥3;(2)(a+b+c)2a+b+c>2.证明(1)因为a,b,c为一个三角形的三边长,所以ba+cb+ac≥33ba·cb·ac=3⎝⎛⎭⎪⎫当且仅当ba=cb=ac时,取等号,所以不等式得证.(2)由于a ,b ,c 为一个三角形的三边长,则有 (b +c )2=b +c +2bc >a ,即b +c >a , 所以ab +ac =a (b +c )>a , 同理,ab +bc >b ,ac +bc >c ,三式相加得2ac +2bc +2ab >a +b +c ,左右两边同加a +b +c 得(a +b +c )2>2(a +b +c ), 所以(a +b +c )2a +b +c>2,不等式得证. 6.(2022·贵阳诊断)∀a ∈R ,|a +1|+|a -1|的最小值为M .(1)若三个正数x ,y ,z 满足x +y +z =M ,证明:x 2y +y 2z +z 2x≥2; (2)若三个正数x ,y ,z 满足x +y +z =M ,且(x -2)2+(y -1)2+(z +m )2≥13恒成立,求实数m 的取值范围.(1)证明 由∀a ∈R ,|a +1|+|a -1|≥|a +1-a +1|=2,当且仅当-1≤a ≤1时取等号,得x +y +z =2,即M =2. 又x ,y ,z >0,所以x 2y +y ≥2x 2y ·y =2x , 同理可得y 2z +z ≥2y ,z 2x +x ≥2z , 三式相加可得,x 2y +y 2z +z 2x≥x +y +z =2, 当且仅当x =y =z =23时,取等号, 所以x 2y +y 2z +z 2x≥2.(2)解(x-2)2+(y-1)2+(z+m)2≥13恒成立,等价于13≤[(x-2)2+(y-1)2+(z+m)2]min,由(12+12+12)[(x-2)2+(y-1)2+(z+m)2]≥(x-2+y-1+z+m)2=(m-1)2,当且仅当x-2=y-1=z+m时取等号,可得13≤13(m-1)2,即|m-1|≥1,解得m≥2或m≤0,即m的取值范围是(-∞,0]∪[2,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式性质的应用不等式的性质是解不等式、证明不等式的基础和依据。

教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。

教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。

只有理解好,才能牢固记忆及正确运用。

1.不等式性质成立的条件运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。

对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。

例1:若0<<b a ,则下列不等关系中不能成立的是( )A .b a 11> B .ab a 11>- C .||||b a > D .22b a > 解:∵0<<b a ,∴0>->-b a 。

由b a -<-11,ba 11>,∴(A )成立。

由0<<b a ,||||b a >,∴(C )成立。

由0>->-b a ,22)()(b a ->-,22b a >,∴(D )成立。

∵0<<b a ,0<-b a ,0<-<b a a ,0>->-a b a ,)(11b a a --<-,ba a ->11,∴(B )不成立。

故应选B 。

例2:判断下列命题是否正确,并说明理由。

(1)若0<<b a ,则0<<b a ;(2)若0<<b a ,则0<<b a ; (3)0<<b a ,0<<b a ,则0<<b a ;(4)若0<<b a ,则0<<b a 。

分析:解决这类问题,主要是根据不等式的性质判定,其实质就是看是否满足性质所需要的条件。

解:(1)错误。

当0=c 时不成立。

(2)正确。

∵02≠c 且02>c ,在22cb c a >两边同乘以2c ,不等式方向不变。

∴b a >。

(3)错误。

ba b a 11<⇔>,成立条件是0>ab 。

(4)错误。

b a >,bd ac d c >⇔>,当a ,b ,c ,d 均为正数时成立。

2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232>-+x x 与0432>-+x x(2)138112++>++x x x 与82>x (3)357354-+>-+x x x 与74>x (4)023>-+xx 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)04322322>-+⇒>-+x x x x 。

(2)482>⇒>x x ,44,1138112>⇒>-≠⇒++>++x x x x x x 。

(3)47357354>⇒-+>-+x x x x 且3≠x ,4774>⇒>x x 。

(4)不等式的解均为}23|{<<-x x∴应选B 。

3.利用不等式性质证明不等式利用不等式的性质及其推论可以证明一些不等式。

解决此类问题一定要在理解的基础上,记准、记熟不等式的八条性质并注意在解题中灵活准确地加以应用。

例4:若0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-。

分析:本题考查学生对不等式性质的掌握及灵活应用。

注意性质的使用条件。

解:∵0<<d c ,0>->-d c ,又0>>b a ∴0>->-d b c a ,故db c a -<-11。

而0<e ,∴db ec a e ->- 4.利用不等式性质求范围利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径。

例5:若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。

解:设c ax x f +=2)((0≠a )。

⎩⎨⎧+=+=c a f c a f 4)2()1(⎪⎪⎩⎪⎪⎨⎧-=-=⇒3)2()1(43)1()2(f f c f f a 3)1(5)2(83)2()1(4)1(3)2(39)3(f f f f f f c a f -=-+-=+= ∵2)1(1≤≤f ,4)2(3≤≤f ,∴10)1(55≤≤f ,32)2(824≤≤f ,27)1(5)2(814≤-≤f f ,∴93)1(5)2(8314≤-≤f f , 即9)3(314≤≤f 。

5.利用不等式性质,探求不等式成立的条件不等式的性质是不等式的基础,包括五个性质定理及三个推论,不等式的性质是解不等式和证明不等式的主要依据,只有正确地理解每条性质的条件和结论,注意条件的变化才能正确地加以运用,利用不等式的性质,寻求命题成立的条件是不等式性质的灵活运用。

例6:已知三个不等式:①0>ab ;②bda c >;③ad bc >。

以其中两个作条件,余下一个作结论,则可组成_____________个正确命题。

解:对命题②作等价变形:0>-⇔>abad bc b d a c 于是,由0>ab ,ad bc >,可得②成立,即①③⇒②;若0>ab ,0>-ab adbc ,则ad bc >,故①②⇒③; 若ad bc >,0>-abadbc ,则0>ab ,故②③⇒①。

∴可组成3个正确命题。

例7:已知b a >,bb a a 11->-同时成立,则ab 应满足的条件是__________。

解:∵ab ab b a b b a a )1)(()1()1(+-=---,由b a >知0)1(>+abab ,从而0)1(>+ab ab ,∴0>ab 或1-<ab 。

不等式的证明不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 222≥+的变式应用。

常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。

1、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1 已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴0)(4)(44)()(14141)(2≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理0)(414141)(2≥+=+-+-c b bc c b c b c b ,0)(414141)(2≥+=+-+-c a ac a c a c a c 三式相加,可得0111212121≥+-+-+-++ac c b b a c b a ∴ac c b b a c b a +++++≥++111212121 2、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2 a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a证:2222)(1)(3c b a c b a ++=≥++⇔∴2222)()(3c b a c b a ++-++0)()()(222222222222≥-+-+-=---++=a c c b b a cabc ab c b a3 设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++证:∵ 22442b a b a >+ 22442c b c b >+ 22442a c a c >+∴ 222222444a c c b b a c b a ++>++∵ c ab c b b a c b b a 22222222222=⋅>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+∴)(222222c b a abc a c c b b a ++>++4 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++证明:∵)(22222222)(22b a b a b a ba ab ab +≥++≥+∴≥+即2)(222b a b a+≥+,两边开平方得)(222222b a b a b a+≥+≥+ 同理可得)(2222c b c b+≥+)(2222a c a c+≥+三式相加,得 )(2222222c b a a cc bb a++≥+++++5),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。

证:)1)(1()11)(11(y y x x y x y x ++++=++)(25)2)(2(y xx y y x x y ++=++=9225=⋅+≥ 6已知.911111,,≥⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121,,2=+∈≤⇒⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式 证明:411,,≤∴=+∈+ab b a R b a 。

.91111.981211111111111 ≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴=+≥+=+++=+++=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+b a ab ab ab b a ab b a b a 而3、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+证:要证:)3(3)2(23abc c b a ab b a -++≤-+只需证:332abc c ab -≤-即:332abc ab c ≥+∵3333abc ab ab c ab ab c =≥++成立∴ 原不等式成立证:3≤++c b a 3)(2≤++⇔c b a 即:2222≤++ac bc ab∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立 4、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

相关文档
最新文档