概率统计公式大全(复习重点)说课讲解
概率统计公式大全

(3) 重复排列和非重复排列(有序)
一 些 常 见 对立事件(至少有一个)
排列
顺序问题
(4) 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
随 机 试 验 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
和 随 机 事 验。
件
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
散型随机变量理论中所起的作用相类似。
设 X 为随机变量, x 是任意实数,则函数
F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14) 独立性
(15) 全概率公 式
若事件 A ,B 相互独立,则可得到 A 与 B , A 与 B , A 与 B 也都相互独
立。
必然事件 和不可能事件Φ 与任何事件都相互独立。
Φ 与任何事件都互斥。
概率论与数理统计 公式(全)
2011-1-1
第 1 章 随机事件及其概率
(1) 排列组合 公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
概率统计各章节知识点总结.ppt

第一章
概率的计算
1)统计定义: fn ( A) n 稳定值 P( A)
2)概率的性质:1~5
3)等可能概型:P(
A)
m n
4)条件概率:P(B
A)
k m
P( AB) P( A)
独立
5)乘法定理: P( AB) P( A)P(B A) P(A)P(B)
1 P(A B)
A AB1 U AB2
1 n
n k 1
Xk
P
p
X1, X 2 , , X n , 相互独立
E( Xk ) 同分布
1
n
n k 1
Xk
P
n
X1 , X 2 , , X n , 相互独立
X k n 近似
同分布E( X k ) D( X k ) 2 k1 n
~ N (0,1)
Xn ~ B(n, p)
Xn np
X ~ N (, 2 ) Th1 X ~ N (, 2 n),
Th2
X1, X 2 , , X n (n 1)S 2 2 ~ 2(n 1) 独立
X , S 2
1n X n i1 X i
S 2
1 n1
n i 1
(Xi
X )2
X ~ t(n 1)
Sn
第六章
常用统计量及抽样分布
2统计量
6)全概率公式:P( A) P(B1 )P( A B1 ) P(B2 )P( A B2 )
7)贝叶斯公式:P(B1
A)
P(B1 )P( A B1 ) P( A)
A
B1
互斥
B2
第二章
随机变量概率分布
离散型随机变量
连续型随机变量
概率统计公式大全

概率统计公式大全第1章随机事件及其概率P(A) =P(B 1)P(A| B 1) P(B 2)P(A| B 2)P(B n )P(A|B n )。
我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发 生或A 不发生;n次试验是重复进行的,即A 发生的 概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否公式2°则有nA二B ii -4(16 设事件B 1, 1。
B 1, P(Bi)>0,—, B 2,…, B 2 •… 2 •…B n及A 满足Bn两两互不相贝叶斯 nA B i,且 P(A)公式 (用于 求后验P(B i /A)nP(B i )P (A/Bi),i=1 , 2, •…n o、P(B j)P(A/B j)此公式即为贝叶斯公式。
驴i), (“1, 率 o P( B i/ A), 后验概率 o 的概率规律,并作出了由果溯因”的 推断。
2,…,ni =1 2(17)伯努利第二章随机变量及其分布P k二 1 (1) P k_o ,kT2, (2) k.( 1) 离散型随机变量的 分布X对于连续型随机变量 , F(x) = f(x)dxa4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) =P(X沁)称为随机变量X 的分布函数,本质上是一个累积函数。
P(a XEb) =F(b)—F(a)可以得到X 落入区 间(a,b ]的概率。
分布函数F(x)表示随机变量 落入区间(-X, x ]的概率。
分布函数具有如下性质:1° 2°岂 F (x)乞 1, -二::x ::二; F(x)是单调不减的函数,即-X2时, 有34° 5°F(X 1)二 F (X 2);F(-::)二 Jim F(x) = 0 , F(二)二 JimF(x)二 1 ; 即F(x)是右连续的;F(x 0HF(x), P(X = x) = F(x) _ F(x _0)。
北师大版五年级上册数学《总复习:_统计与概率》说课稿

尊敬的评委、老师们:大家好!我是北师大版五年级上册数学《总复习:统计与概率》的说课人。
今天,我将和大家一起回顾和梳理本册书中的统计与概率知识点,以及我在教学过程中的实践与思考。
一、教材分析北师大版五年级上册数学《总复习:统计与概率》主要包括以下内容:1. 统计:收集、整理、描述数据,学会用图表表示数据,了解不同类型的统计图的特点和作用。
2. 概率:认识概率,学会用概率表示事件发生的可能性,了解随机事件、必然事件和不可能事件的概念,掌握一些基本的概率计算方法。
二、学情分析五年级的学生已经具备了一定的统计和概率基础知识,他们在三年级和四年级的学习中,已经接触过条形统计图、折线统计图和扇形统计图等,对统计图的特点和作用有一定的了解。
同时,他们在四年级学习了可能性,对随机事件、必然事件和不可能事件有了初步的认识。
因此,在学习本册书的内容时,学生可以借助已有的知识经验,更好地理解和掌握统计与概率的知识。
三、教学目标1. 知识与技能:学生能够熟练地收集、整理、描述数据,学会用不同的统计图表示数据,了解统计图的特点和作用。
学生能够理解概率的概念,学会用概率表示事件发生的可能性,掌握一些基本的概率计算方法。
2. 过程与方法:学生通过独立思考、合作交流,学会从实际问题中提出统计和概率问题,提高分析问题和解决问题的能力。
3. 情感态度与价值观:学生体验统计和概率在生活中的应用,感受数学与生活的密切联系,培养对数学的兴趣和好奇心。
四、教学重难点1. 教学重点:学生能够掌握不同类型的统计图的特点和作用,学会用统计图表示数据。
学生能够理解概率的概念,学会用概率表示事件发生的可能性,掌握一些基本的概率计算方法。
2. 教学难点:学生能够从实际问题中提出统计和概率问题,并运用所学知识解决实际问题。
五、教学策略1. 情境导入:通过生活实例,引发学生对统计和概率的兴趣,激发学生的学习动机。
2. 自主探究:引导学生独立思考,培养学生自主学习的能力。
概率统计公式大全汇总

概率统计公式大全汇总概率统计是一门研究随机现象的理论和方法的学科,它包含了许多重要的公式和定理。
在这篇文章中,我将给出一些概率统计的重要公式的概览,以便复习和总结。
1.概率的基本公式概率是指事件发生的可能性,可以通过以下公式计算:P(A)=n(A)/n(S)其中,P(A)是事件A发生的概率,n(A)是事件A的样本空间中有利结果的个数,n(S)是样本空间中所有可能结果的个数。
2.加法准则当事件A和事件B不相容时,其和事件的概率可以通过以下公式计算:P(A∪B)=P(A)+P(B)如果事件A和事件B是相容的,则有:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法准则当事件A和事件B是相互独立的时,其交事件的概率可以通过以下公式计算:P(A∩B)=P(A)*P(B)如果事件A和事件B不是相互独立的,则有:P(A∩B)=P(A)*P(B,A)4.条件概率条件概率是指在已知一些事件发生的条件下,另一个事件发生的概率。
条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)5.全概率公式全概率公式用于计算在多个事件的情况下一些事件的概率。
根据全概率公式,可以将一些事件划分为几个互不相容的子事件,然后分别计算每个子事件的概率,并将其加权求和。
全概率公式如下:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)其中,B1、B2、..、Bn表示将样本空间划分的互不相容的子事件。
6.贝叶斯公式贝叶斯公式描述了在已知B发生的条件下,事件A发生的概率。
根据贝叶斯公式,可以通过条件概率、全概率和边际概率来计算后验概率。
贝叶斯公式如下:P(A,B)=P(B,A)*P(A)/P(B)7.期望值期望值是随机变量的平均值,表示随机变量在每个可能取值上的发生概率乘以对应的取值,并将其加权求和。
期望值可以通过以下公式计算:E(X)=Σ(x*P(X=x))其中,x表示随机变量的取值,P(X=x)表示随机变量取值x的概率。
概率论公式汇总及口诀记忆法

协方差 cov( X , Y ) E( X E ( X ))(Y E (Y ))
E( XY ) E( X ) E(Y )
相关系数
1 D( X Y ) D( X ) D(Y ) 2
XY
cov( X , Y ) D( X ) D(Y )
梅花香自苦寒来,岁月共理想,人生气高飞! 第 6 页 共 6 页
i 1 i i
n
4.随机变量及其分布 分布函数计算
P ( a X b) P ( X b) P ( X a ) F (b) F (a)
5.离散型随机变量 (1) 0 – 1 分布
P( X k ) p k (1 p)1k , k 0,1
(2) 二项分布 B(n, p) 若P ( A ) = p
( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 1 2 2 1 2 2 (1 2 ) 22 1
x , y
9. 二维随机变量的 条件分布
f ( x, y) f X ( x) fY X ( y x) fY ( y ) f X Y ( x y )
(2) 指数分布
E ( )
x e , x 0 f ( x) 其他 0,
x0 0, F ( x) x 1 e , x 0
(3) 正态分布
N ( , 2 )
( x )2 2 2
1 f ( x) e 2
x
F ( x, y)
x
y
f (u, v)dvdu
边缘分布函数与边缘密度函数
FX ( x)
概率与统计学中的关键公式整理

概率与统计学中的关键公式整理在概率与统计学中,有许多重要的公式被广泛应用于数据分析、推断和决策过程中。
这些公式能够帮助我们对数据进行有效的统计分析,并从中获取有用的信息。
本文将对概率与统计学中的关键公式进行整理和介绍,帮助读者更好地理解和运用这些公式。
一、概率公式1. 条件概率公式条件概率是指在给定某个条件下,事件发生的概率。
条件概率可以使用以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
2. 边际概率公式边际概率是指在多个事件中某一个事件发生的概率。
边际概率可以使用以下公式计算:P(A) = ∑ P(A∩Bi)其中,P(A)表示事件A发生的概率;P(A∩Bi)表示事件A和事件Bi同时发生的概率;∑表示对所有可能的事件Bi求和。
3. 联合概率公式联合概率是指多个事件同时发生的概率。
联合概率可以使用以下公式计算:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)其中,P(A∩B)表示事件A和事件B同时发生的概率;P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B)表示事件B发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率。
二、统计学公式1. 期望值公式期望值是指随机变量的平均值,可以用来衡量数据的中心趋势。
期望值可以使用以下公式计算:E(X) = ∑ (xi * P(xi))其中,E(X)表示随机变量X的期望值;xi表示随机变量X可能取的值;P(xi)表示随机变量X取值为xi的概率;∑表示对所有可能的取值xi求和。
2. 方差公式方差是衡量数据的离散程度,可以用来评估数据的分散程度。
方差可以使用以下公式计算:Var(X) = E((X-μ)^2)其中,Var(X)表示随机变量X的方差;E表示期望值;X表示随机变量X的取值;μ表示随机变量X的期望值。
高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。
本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。
一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。
对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。
2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。
对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。
2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。
对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A Y B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
A、B同时发生:A I B,或者AB。
A I B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。
基本事件是互不相容的。
Ω-A称为事件A的逆事件,或称A的对立事件,记为A。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:YI∞=∞==11iiii AABABA IY=,BABA YI=(7)概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件1A,2A,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(iiii APAP Y常称为可列(完全)可加性。
则称P(A)为事件A的概率。
(8)古典概型1°{}nωωωΛ21,=Ω,2°nPPPn1)()()(21===ωωωΛ。
设任一事件A,它是由mωωωΛ21,组成的,则有P(A)={})()()(21mωωωYΛYY =)()()(21mPPPωωω+++Λnm=基本事件总数所包含的基本事件数A=(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。
对任一事件A,)()()(Ω=LALAP。
其中L为几何度量(长度、面积、体积)。
(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当B⊂A时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B)=1- P(B)(12)条件概率定义设A、B是两个事件,且P(A)>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1⇒P(B/A)=1-P(B/A)(13)乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…A n,若P(A1A2…A n-1)>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A。
(14)独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的。
若事件A、B相互独立,且0)(>AP,则有)()()()()()()|(BPAPBPAPAPABPABP===若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。
必然事件Ω和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式设事件n BBB,,,21Λ满足1°n BBB,,,21Λ两两互不相容,),,2,1(0)(niBP iΛ=>,2°Y niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++=Λ。
(16)贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n,2°Y niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n。
此公式即为贝叶斯公式。
)(iBP,(1=i,2,…,n),通常叫先验概率。
)/(ABPi,(1=i,2,…,n),通常称为后验概率。
贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯我们作了n次试验,且满足努利概型◆ 每次试验只有两种可能结果,A 发生或A 不发生; ◆ n 次试验是重复进行的,即A 发生的概率每次均一样; ◆ 每次试验是独立的,即每次试验A 发生与否与其他次试验A发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,k n k kn n q p k P C -=)(,n k ,,2,1,0Λ=。
第二章 随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。