高三数学平面向量知识点与题型总结(文科)

合集下载

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

高中数学平面向量知识点总结及常见题型精编范文

高中数学平面向量知识点总结及常见题型精编范文

平面向量一. 向量的基本概念与基本运算1 向量的概念:①向量:既有大小又有方向的量向量一般用a, b, c来表示,或用有向线段的起点与uuur uuuryj (x, y) 向终点的大写字母表示,如: AB 几何表示法AB ,a;坐标表示法 a xiuuur向量不能比较量的大小即向量的模(长度),记作 | AB | 即向量的大小,记作| a |大小,但向量的模可以比较大小.②零向量:长度为 0 的向量,记为 0 ,其方向是任意的,0 与任意向量平行零向量 a =rr0| a |= 0 由于 0 的方向是任意的,且规定 0 平行于任何向量,(注意与 0 的区别)③单位向量:模为 1 个单位长度的向量向量a0为单位向量|a0|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a∥ b由于向量可以进行任意的平移 (即自由向量 ),平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为a b大小相等,方向相同(x1, y1 )(x2 , y2 ) x1x2y1y2rr⑥相反向量:长度相等方向相反的向量叫做相反向量. a的相反向量记作a .2向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuur设 AB a, BC b ,则 a +b = AB BC =AC(1)0 a aa ;()向量加法满足交换律与结合律;2“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2)三角形法则的特点是“ 首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点3向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量记作 a , 零向量的相反向量仍是零向量关于相反向量有:(i )( a) = a;(ii)a +( a )=(a )+ a =0 ;(iii)若 a 、b是互为相反向量,则a = b , b = a , a +b =0②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 可以表示为从 b 的终点指向a的终点的向量(a、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ) a a ;(Ⅱ)当0 时,λa的方向与a的方向相同;当0 时,λa的方向与a的方向相反;当0 时,a 0,方向是任意的②数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量 b 与非零向量a共线有且只有一个实数,使得 b =a6平面向量的基本定理:如果 e1 ,e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数1 , 2使: a1e12 e2,其中不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底二. 平面向量的坐标表示 1 平面向量的坐标表示:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同. 2 平面向量的坐标运算:(1) r x 1 , y 1 r x 2 , y 2r r x 1 x 2 , y 1 y 2若 a ,b ,则 a b (2) uuur若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1(3) r ,则 r x, y)若 a =(x,y) a =((4) r x 1 , y 1 r x 2 , y 2r r x 1 y 2 x 2 y 1 0若 a ,b ,则 a // b (5) r x 1 , y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a ,b ,则 a br r 0 若 a b ,则 x 1 x 2 y 1 y 2三.平面向量的数量积1两个向量的数量积:r r r r r r已知两个非零向量 a 与 b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cosr r r r y 1 y 2已知两个向量 a ( x 1, y 1 ),b ( x 2 , y 2 ) ,则 a · b = x 1 x 2r r uuur r uuur r , 则∠AOB= ( 0 0 180 0)2向量的夹角:已知两个非零向量 a 与 b ,作 OA = a , OB =brr叫做向量 a 与 b 的夹角rrr r x 1x 2 y 1 y 2cos =cosa ?b =a, br r 2 y 1 2 2 2a ? bx 1 x 2 y 2当且仅当两个非零向量r r 0 r r 0a 与b 同方向时,θ=0 ,当且仅当 a 与 b 反方向时θ =180 . 4向量的模: r r r 2 r 2a a a | a |r x 1, y 1 r x 2 , y 2 ,则 a // b ba x 1 y 2 x 2 y 1 05. 向量平行: 若 a , brr 的夹角为rrrr.向量垂直: 如果 a与 b90则称 a 与 b垂直,记作 a ⊥ b6a ⊥ ba ·b =O x 1x 2 y 1 y 2 0平面向量常见题型题型 1. 基本概念判断正误 :1. 给出下列命题:r r r r ① 若 | a | =| b | ,则 a =b ;uuur uuur② 若 A ,B ,C ,D 是不共线的四点,则 AB DC 是四边形 ABCD 为平行四边形的充要条件;r r r r r r ,③ 若 a =b , b =c ,则 a =cr r r r r r r r r r r r 量的加减运算 ④ a =b 的充要条件是 | a |=| b | 且 a b a b b c a c 1.下列命题中正确的是( ) uuuruuur uuur uuur B uuur 0A . OA OB AB . AB BA uuurr uuur r D uuur uuur uuurC .0 AB 0 . AB BC CD AD r ” r ” r r2. 设 a 表示“向东走b 表示“向北走 则 | a b |.8km , 6km ,uuur uuur uuur uuur uuuur . 3. 化简 (AB MB ) ( BO BC) OM.若菱形 ABCD 的边长为 2 uuur uuur uuur__________.,则 ABCBCD4uuur uuur uuur uuur r uuur r uuur uuur5. 已知 AC 为 AB 与 AD 的和向量,且 ACa, BD b ,则 AB ,AD .已知点 在线段 上,且 uuur 3 uuur uuuruuur uuur uuur 6. C AC AB , 则 AC BC ,AB BC. AB 5题型 3. 向量的数乘运算r r r r1. 计算:( 1) 3(a b) 2( a b)r r r 3( r r r(2) 2(2a 5b 3c ) 2a 3b 2c )r r ( 3,8) ,则 r 1 r.2. 已知 a(1, 4), b3a b2题型 4. 作图法球向量的和r rr1 r r3 r已知向量 a,b ,如下图,请做出向量3a2 b 和 2ab .2题型 5. 根据图形由已知向量求未知向量uuur uuuruuur1. 已知在,ABC 中, D 是 BC 的中点,请用向量AB AC表示 AD .2. uuur r uuur r uuur uuur在平行四边形 ABCD 中,已知AC a, BD b ,求AB和AD .3. 已知向量 a (1,2) , b ( 2,3) , c (4,1) ,若用 a 和 b 表示 c ,则 c =____。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

高中的文科数学平面向量知识点整理 - 副本 (3)

高中的文科数学平面向量知识点整理 - 副本 (3)

高中文科数学平面向量知识点整理1、概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 相反向量:a =-b ⇔b =-a ⇔a+b =0向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =(x,y).向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .( 222222||,||a x y a a x y =+==+。

)零向量:长度为0的向量。

a =O ⇔|a |=O .【例题】1.下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =。

(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______(答:(4)(5))2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____(答:13);2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.baCBAa b C C -=A -AB =B3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.【例题】(1)①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是(答:(9,1))4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.【例题】(1)若M (-3,-2),N (6,-1),且1MP MN 3--→--→=-,则点P 的坐标为_______(答:7(6,)3--);5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。

文科数学高考向量知识点

文科数学高考向量知识点

文科数学高考向量知识点导言在文科数学高考中,向量是一个重要的知识点。

向量具有方向和大小,广泛应用于几何、物理等领域。

掌握好向量的相关知识,不仅可以帮助我们解决各种几何问题,还可提升我们的思维能力和逻辑思维能力。

本文将介绍一些文科数学高考向量的重点知识点。

一、基本概念向量由方向和大小组成,通常用有向线段表示。

常见的表示方法包括箭头表示法和坐标表示法。

在二维平面上,一个向量可以由两个有序实数表示,即坐标。

而在三维空间中,一个向量可以由三个有序实数表示。

需要注意的是,向量是没有具体位置的,只有方向和大小。

二、向量的加法和减法向量相加的结果仍然是一个向量,它的大小等于两个向量大小的和,方向与第一个向量一致。

向量相减的结果也是一个向量,它的大小等于两个向量大小的差,方向与第一个向量相反。

三、向量的数量积向量的数量积也称为点积,是向量的一种重要运算。

两个向量的数量积等于两个向量的模的乘积与它们夹角的余弦值的积。

数量积的结果是一个实数。

需要注意的是,数量积满足交换律和分配律。

四、向量的夹角和正交性两个非零向量的夹角定义为它们之间的最小正角。

两个向量夹角为零时,表示它们的方向相同或相反;夹角为π/2时,表示它们互相垂直或正交。

若两个向量的数量积为零,则它们一定正交。

五、向量的模、单位向量和方向角向量的模表示向量的大小,记作|AB|。

单位向量是模为1的向量,一个向量除以它的模就得到了一个单位向量。

方向角是一个向量与某一坐标轴正向之间的夹角。

需要注意的是,两个相互垂直的单位向量叫做正交单位向量。

六、向量的线性相关与线性无关若存在一组实数使得线性组合等于零向量,则称这组向量线性相关。

若不存在这样的实数,则称这组向量线性无关。

需要注意的是,如果向量组中至少有一个向量是其他向量的倍数,则这组向量线性相关。

七、平面向量的坐标表示平面上的一个向量可以由其两个坐标表示,即(x,y)。

常见的坐标表示法包括向量的分解表示和向量的坐标表示。

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。

向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。

向量的大小即向量的模(长度),记作|AB|或|a|。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。

③单位向量:模为1个单位长度的向量。

向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上。

方向相同或相反的向量,称为平行向量,记作a∥b。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

⑤相等向量:长度相等且方向相同的向量。

相等向量经过平移后总可以重合,记为a b。

大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。

设AB a,BC b,则a+b=AB BC=AC。

1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。

当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。

向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。

3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。

零向量的相反向量仍是零向量。

关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。

高三平面向量的知识点总结

高三平面向量的知识点总结

高三平面向量的知识点总结在高中数学的学习过程中,平面向量是一个重要的内容,它不仅是数学学科的基本工具,也常常涉及到物理学、几何学等其他学科中的问题。

在高三这个关键时期,平面向量的知识点更是需要我们熟练掌握。

本文将对高三平面向量的知识点进行总结,帮助同学们更好地理解和运用。

一、平面向量的概念与表示1. 平面向量的定义:平面上的向量是有方向和大小的有序对。

2. 平面向量的表示:用有向线段来表示向量,向量的起点和终点分别代表向量的起点和终点位置。

二、平面向量的运算1. 平面向量的加法:- 几何法:将两个向量的起点放在一起,并在第一个向量的终点处画出第二个向量,连接起点和终点得到所求的向量。

- 代数法:向量的加法可以通过其坐标分量进行运算。

设向量a =a1a +a2a,向量a =a1a +a2a,则向量a+a = (a1+a1)a +(a2+a2)a。

2. 平面向量的数乘:- 几何法:数乘可以改变向量的大小,并保持其方向不变。

数乘为正时,向量与原向量同向;数乘为负时,向量与原向量反向。

- 代数法:向量的数乘可以通过其坐标分量进行运算。

设向量a =a1a +a2a,数a,则a =a1a +a2a。

三、平面向量的基本性质1. 平面向量的共线性:三个向量共线的充分必要条件是其中两个向量的比例相等。

2. 平面向量的共面性:三个非零向量a,a,a共面的必要条件是a,a,a三个向量线性相关。

四、平面向量的数量关系1. 两个向量的夹角:利用向量的数量积可求得两个向量的夹角a,a满足0°≤a≤180°。

2. 两个向量的垂直关系:两个非零向量a,a垂直的充分必要条件是a,a的数量积为0。

即,a•a=0。

五、平面向量的数量积1. 平面向量的数量积定义:设向量a = (a1, a2),向量a = (a1, a2),则a•a = a1a1 + a2a2。

2. 平面向量数量积的性质:- 交换律:a•a = a•a。

高考文科平面向量知识点

高考文科平面向量知识点

高考文科平面向量知识点高考是对学生多年来所学知识的综合考察,而数学是文科生必考的一门科目。

在数学中,平面向量是一个重要的知识点,也是考试中常常涉及的内容。

下面,将介绍高考文科平面向量的知识点,帮助考生更好地理解和掌握这一部分内容。

一、向量的概念和运算向量是表示有大小和方向的量,常用箭头表示。

在平面上,向量通常用一个有序数对表示,如AB向量可以表示为a = (x, y)。

向量的长度是指从起点到终点的距离,记作|a|。

向量的加法和减法可以通过对应坐标的加减实现,如a + b = (x₁ + x₂, y₁ + y₂)。

二、向量的数量积向量的数量积也称点积,是指两个向量间的乘积结果,记作a·b。

计算公式为:a·b = |a| |b| cosθ。

其中,θ表示两个向量之间的夹角。

数量积的结果为一个实数,具有求模、交换律以及分配律等性质。

三、向量的向量积向量的向量积也称叉积,是指两个向量间的乘积结果,记作a × b。

计算公式为:a × b = |a| |b| sinθ n。

其中,θ表示两个向量之间的夹角,n表示垂直于两个向量所在平面的单位法向量。

向量积的结果为一个向量,其方向遵循右手法则,模长为|a| |b| sinθ。

四、向量的共线与线性运算在平面向量中,如果存在一个实数k,使得a = kb,那么向量a与向量b就是共线的。

共线的向量也叫线性相关向量。

线性运算是指对多个向量进行加法、减法和数量乘法的运算。

线性相关的向量之间可以进行代入消元等操作,进而解出线性方程组。

五、向量的应用平面向量广泛应用于各个学科和职业领域,如物理学、力学、工程、计算机图形学等。

在解决实际问题时,我们可以利用向量进行几何推理、计算机模拟、数据分析等。

例如,在解决运动问题时,可以将速度、加速度等物理量抽象为向量,简化计算过程。

六、习题和应用题为了更好地理解和掌握平面向量的知识,考生可以进行大量的习题和应用题的训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC(1)a a a =+=+00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a的终点的向量(a 、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的方向相反;当0=λ时,0=a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。

2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ 叫做a 与b 的数量积(或内积) 规定0a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a b a a b b±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a与b 的夹角cos θ=cos ,a b a b a b•<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质【练习题】 1、给出下列命题:①两个具有共同终点的向量,一定是共线向量;②若A ,B ,C ,D 是不共线的四点,则AB =DC 是四边形ABCD 为平行四边形的充要条件; ③若a 与b 同向,且|a |>|b |,则a >b ; ④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中假命题的个数为( )A .1B .2C .3D .42.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .33、设两个非零向量a 与b 不共线.(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.4、已知两点A (4,1),B (7,-3),则与AB 同向的单位向量是( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫-35,45 C.⎝⎛⎭⎫-45,35D.⎝⎛⎭⎫45,-35 5、在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为( ) A.12 B.13 C.14D .16、已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.7、已知|a |=1,|b |=2,a 与b 的夹角为120°,a +b +c =0,则a 与c 的夹角为( ) A .150° B .90° C .60°D .30°8、已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________.9、设向量a ,b 满足|a |=1,|a -b |=3,a ·(a -b )=0,则|2a +b |=( ) A .2 B .2 3 C .4D .4 310、已知向量a =(sin x,1),b =⎝⎛⎭⎫cos x ,-12. (1)当a ⊥b 时,求|a +b |的值;(2)求函数f (x )=a ·(b -a )的最小正周期.11、已知f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1)(x ∈R ). (1)求f (x )的周期和单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,f (A )=-1,a =7,AB ·AC =3,求边长b 和c 的值(b >c ).12、如图,在ABC ∆中,OA =a ,OB =b,M 为OB 的中点,N 为AB 的中点,P 为ON 、AM 的交点,则AP 等( )A 23a 13- bB 23-a 13-bC 13a 23-bD 13-a 23+ b13.△ABC 中,AB 边的高为CD ,若CB =a ,CA =b ,a ·b =0, |a |=1,|b |=2,则AD =( ) A.13a -13b B.23a -23b C.35a -35bD.45a -45b 14.(2012·郑州质检)若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .2 3 C .3 2D .615.(2012·山西省四校联考)在△OAB (O 为原点)中,OA =(2cos α,2sin α),OB =(5cos β,5sin β),若OA ·OB =-5,则△OAB 的面积S =( ) A. 3 B.32C .5 3D.532AO MNPB16、若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ). A .2-1 B .1 C. 2 D .217、已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-32,则λ=( ). A.12 B.1±22 C.1±102 D.-3±22218如图,已知平行四边形ABCD 的顶点A (0,0),B (4,1),C (6,8).(1)求顶点D 的坐标;(2)若DE =2EC ,F 为AD 的中点,求AE 与BF 的交点I 的坐标. .【课后练习题】1.下列等式:①0-a =-a ;②-(-a )=a ;③a +(-a )=0;④a +0=a ;⑤a -b =a +(-b ).正确的个数是( )A .2B .3C .4D .5解析:选C2.(2012·福州模拟)若a +b +c =0,则a ,b ,c ( ) A .都是非零向量时也可能无法构成一个三角形 B .一定不可能构成三角形 C .都是非零向量时能构成三角形 D .一定可构成三角形 解析:选A3.(2012·威海质检)已知平面上不共线的四点O ,A ,B ,C .若OA +2OC =3OB ,则|BC ||AB |的值为( )A.12B.13C.14D.16解析:选A4.(2012·海淀期末)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点(靠近B ),那么EF =( )A.12 AB -13AD B.14 AB +12AD C.13 AB +12DAD.12 AB -23AD 解析:选D5.(2013·揭阳模拟)已知点O 为△ABC 外接圆的圆心,且OA +OB +CO =0,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120° 解析:选A6.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA +PB +PC =AB ,则点P 与△ABC 的关系为( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点 解析:选D7.(2012·郑州五校联考)设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC |=|AB-AC |,则|AM |=________.答案:28.(2013·大庆模拟)已知O 为四边形ABCD 所在平面内一点,且向量OA ,OB ,OC ,OD 满足等式OA +OC =OB +OD ,则四边形ABCD 的形状为________.答案:平行四边形9.设向量e 1,e 2不共线,AB =3(e 1+e 2),CB =e 2-e 1,CD =2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.答案:④10.设i ,j 分别是平面直角坐标系Ox ,Oy 正方向上的单位向量,且OA =-2i +m j ,OB =n i +j ,OC =5i -j ,若点A ,B ,C 在同一条直线上,且m =2n ,求实数m ,n 的值.⎩⎪⎨⎪⎧m =6,n =3,或⎩⎪⎨⎪⎧m =3,n =32.7.已知向量a =⎝⎛⎭⎫8,x2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =________. 答案:48. P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.答案:{}(-13,-23)9.已知向量OA =(1,-3),OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.答案:k ≠110.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB ,求点C 的坐标.(5,-3).11.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?方向相反.12.已知O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB . (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.8.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 答案:3 29.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN 的模为________.答案:8 210.已知a =(1,2),b =(-2,n ),a 与b 的夹角是45°. (1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c . c =12b =(-1,3). 11.已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b )?即k =-7时,a +2b 与k a -b 垂直.12.设在平面上有两个向量a =(cos α,sin α)(0°≤α<360°),b =⎝⎛⎭⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.α=30°或α=210°.。

相关文档
最新文档