大学物理学上册习题解答

合集下载

大学物理学上册习题解答

大学物理学上册习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理(上册)参考答案

大学物理(上册)参考答案

第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t = 2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即βωR R =2亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv -==0d d R bt v R v a btv a n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t = 2 s时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)⎰⎰---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d, 同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大学物理课后习题答案(上册)

大学物理课后习题答案(上册)
解:假设墙壁对小球的压力为N1,木板对小球的压力为N2。
由受力分析图可知:
所以当所以 增大,小球对木板的压力为N2将减小;
同时:
所以 增大,小球对墙壁的压力 也减小。
2-2. 质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为多少?
解:(1)轨道方程为
这是一条空间螺旋线。
在O 平面上的投影为圆心在原点,半径为R的圆,螺距为h
(2)
(3)
思考题1
1-1. 质点作曲线运动,其瞬时速度为 ,瞬时速率为 ,平均速度为 ,平均速率为 ,则它们之间的下列四种关系中哪一种是正确的?
(1) ;(2) ;(3) ;(4)
答: (3)
1-2. 质点的 关系如图,图中 , , 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小?
解:在绳子中距离转轴为r处取一小段绳子,假设其质量为dm,可知: ,分析这dm的绳子的受力情况,因为它做的是圆周运动,所以我们可列出: 。
距转轴为r处绳中的张力T(r)将提供的是r以外的绳子转动的向心力,所以两边积分:
2-3. 已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离 的平方成反比,即 , 是比例常数.设质点在 时的速度为零,求质点在 处的速度的大小。
解:由题意和牛顿第二定律可得:
再采取分离变量法可得: ,
两边同时取积分,则:
所以:
2-4. 一质量为 的质点,在 平面上运动,受到外力 (SI)的作用, 时,它的初速度为 (SI),求 时质点的速度及受到的法向力 .

大学物理教材上册1-12习题解答

大学物理教材上册1-12习题解答
1
10s 内走过路程 s = 30m, 而其速度增为 n = 5 倍.试证加速度为 a
2(n 1) s . (n 1)t 2
并由上述数据求出量值. [证明]依题意得 vt = nvo, 根据速度公式 vt = vo + at,得 a = (n – 1)vo/t, (1) 2 根据速度与位移的关系式 vt = vo2 + 2as,得 a = (n2 – 1)vo2/2s,(2) (1)平方之后除以(2)式证得
大学物理习题解答
湖南大学物理与微电子科学学院
第一章 质点运动学
P23. 1.1 一质点沿直线运动,运动方程为 x(t) = 6t2 - 2t3.试求: (1)第 2s 内的位移和平均速度; (2)1s 末及 2s 末的瞬时速度,第 2s 内的路程; (3) 1s 末的瞬时加速度和第 2s 内的平 均加速度. [解答](1)质点在第 1s 末的位移大小 为 x(1) = 6×12 - 2×13 = 4(m). 在第 2s 末的位移大小为 x(2) = 6×22 - 2×23 = 8(m). 在第 2s 内的位移大小为 Δ x = x(2) – x(1) = 4(m), 经过的时间为 Δ t = 1s,所以平均速度大小 为 s-1). v =Δ x/Δ t = 4(m· (2)质点的瞬时速度大小为 v(t) = dx/dt = 12t - 6t2, 因此 v(1) = 12×1 - 6×12 = 6(m· s-1), v(2) = 12×2 - 6×22 = 0, 质点在第 2s 内的路程等于其位移的大小, 即 Δ s = Δ x = 4m. (3)质点的瞬时加速度大小为 a(t) = dv/dt = 12 - 12t, 因此 1s 末的瞬时加速度为 a(1) = 12 - 12×1 = 0, 第 2s 内的平均加速度为 a = [v(2) - v(1)]/Δ t = [0 – 6]/1 = -6(m· s-2). [ 注意 ] 第几秒内的平均速度和平均加 速度的时间间隔都是 1 秒. 1.2 一质点作匀加速直线运动,在 t =

(完整版)大学物理学上下册习题与答案

(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。

《大学物理习题集》(上)习题解答

《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。

【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。

3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。

5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。

设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。

6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。

当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。

大学物理练习册(上册)答案

大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

大学物理学上册习题解答完整版

大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:0(/)2ave x v m s t ∆===∆t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22avev v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

1.3 质点作直线运动,初速度为零,初始加速度为0a ,质点出发后,每经过τ时间,加速度均匀增加b 。

求经过t 时间后,质点的速度和位移。

解: 由题意知,加速度和时间的关系为 利用dv adt =,并取积分得000vtb dv a t dv τ⎛⎫=+ ⎪⎝⎭⎰⎰,202b v a t t τ=+ 再利用dx vdt =,并取积分[设0t=时00x =]得xtx dx vdt =⎰⎰,230126b x a t t τ∆=+ 1.4 一质点从位矢为(0)4r j =rr的位置以初速度(0)4v i =rr开始运动,其加速度与时间的关系为(3)2a t i j =-r r r.所有的长度以米计,时间以秒计.求:(1)经过多长时间质点到达x 轴; (2)到达x 轴时的位置。

解: 203()(0)()4(2)2t v t v a t dt t i t j ⎛⎫=+=+- ⎪⎝⎭⎰r r r r r(1) 当240t -=,即2t s =时,到达x 轴。

(2)2t s =时到达x 轴的位矢为 :(2)12r i =rr即质点到达x 轴时的位置为12,0x m y ==。

1.5 一质点沿x 轴运动,其加速度与坐标的关系为2a x ω=-,式中ω为常数,设0=t时刻的质点坐标为0x 、速度为0v ,求质点的速度与坐标的关系。

解:按题意 222d x x dtω=-由此有 dx dvv dt dx dx dv dt dv dtx d x ====-222ω, 即 xdx vdv 2ω-=, 两边取积分 ⎰⎰-=xx vv xdx vdv 02ω,得2022122212021221x x v v ωω+-=-由此给出v =±,20202x v A +⎪⎭⎫ ⎝⎛=ω1.6 一质点的运动方程为k t j t i t r ϖϖϖϖ++=24)(,式中r ,t 分别以m 、s 为单位。

试求: (1) 质点的速度与加速度;(2) 质点的轨迹方程。

解:(1) 速度和加速度分别为: (8)drv t j k dt ==+v v v v , j dtv d a ϖϖ8==(2) 令k z j y i x t r ϖϖϖϖ++=)(,与所给条件比较可知 1=x ,24t y =,t z =所以轨迹方程为:21,4x y z ==。

1.7 已知质点作直线运动,其速度为213()v t t ms -=-,求质点在0~4s 时间内的路程。

解: 在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运动出现往返。

如果计算积分40vdt ⎰,则求出的是位移而不是路程。

求路程应当计算积分4v dt ⎰。

令230v t t =-=,解得3t s =。

由此可知:3t <s 时,0v >,v v =; 3t =s 时,0v =;而3t >s 时,0v <,v v =-。

因而质点在0~4s 时间内的路程为34232303313116()23233t t t t m ⎡⎤⎡⎤=---=⎢⎥⎢⎥⎣⎦⎣⎦。

1.8 在离船的高度为h 的岸边,一人以恒定的速率0v 收绳,求当船头与岸的水平距离为x 时,船的速度和加速度。

解: 建立坐标系如题1.8图所示,船沿X 轴方向作直线运动,欲求速度,应先建立运动方程,由图题1.8,可得出习题1.8图两边求微分,则有 船速为按题意0drv dt=-(负号表示绳随时间t 缩短),所以船速为 负号表明船速与x 轴正向反向,船速与x 有关,说明船作变速运动。

将上式对时间求导,可得船的加速度为负号表明船的加速度与x 轴正方向相反,与船速方向相同,加速度与x 有关,说明船作变加速运动。

1.9 一质点沿半径为10cm 的圆周运动,其角坐标θ(以弧度rad 计)可用下式表示 其中t 的单位是秒(s )试问:(1)在2t s =时,它的法向加速度和切向加速度各是多少? (2)当θ等于多少时其总加速度与半径成45o 角 ? 解:(1) 利用324t θ=+,2/12d dt t ωθ==,/24d dt t αω==,得到法向加速度和切向加速度的表达式24144n a r rt ω==,24t a r rt α==在2t s =时,法向加速度和切向加速度为:4421441440.12230.4()n a rt m s -==⨯⨯=⋅,(2) 要使总加速度与半径成45o 角,必须有n t a a =,即414424rt rt =解得 31/6t =,此时67.2423=+=t θrad1.10 甲乙两船,甲以10/km h 的速度向东行驶,乙以15/km h 的速度向南行驶。

问坐在乙船上的人看来,甲船的速度如何?坐在甲船上的人看来乙船的速度又如何? 解:以地球为参照系,设i ϖ、j ϖ分别代表正东和正北方向,则甲乙两船速度分别为 h km i v /101ϖϖ=,h km j v /152ϖϖ-=根据伽利略变换,当以乙船为参照物时,甲船速度为h km v /1.18151022=+=ϖ,ο31.561015==arctg θ即在乙船上看,甲船速度为18.1/km h ,方向为东偏北ο31.56同理,在甲船上看,乙船速度为18.1/km h ,方向为西偏南ο31.56。

1.11 有一水平飞行的飞机,速率为0v ,在飞机上安置一门大炮,炮弹以水平速度v 向前射击。

略去空气阻力,(1) 以地球为参照系,求炮弹的轨迹方程; (2) 以飞机为参照系,求炮弹的轨迹方程; (3) 以炮弹为参照系,飞机的轨迹如何?解:(1) 以地球为参照系时,炮弹的初速度为01v v v +=,而t v x 1=,25.0gt y -=消去时间参数t ,得到轨迹方程为:202)(2v v gx y +-=(若以竖直向下为y 轴正方向,则负号去掉,下同) (2) 以飞机为参照系时,炮弹的初速度为v ,同上可得轨迹方程为222vgx y -= (3) 以炮弹为参照系,只需在(2)的求解过程中用x -代替x ,y -代替y ,可得 222v gx y =.1.12如题1.12图,一条船平行于平直的海岸线航行,离岸的距离为D ,速率为v ,一艘速率为u v <的海上警卫快艇从一港口出去拦截这条船。

试证明:如果快艇在尽可能最迟的时刻出发,那么快艇出发时这条船到海岸线的垂线与港口的距离为x u =;快艇截住这条船所需的时间为t =港口习题1.12图证明:在如图所示的坐标系中,船与快艇的运动方程分别为11x vty D =⎧⎨=⎩ 和 22cos sin x x u ty u tθθ=+⋅⎧⎨=⋅⎩ 拦截条件为:⎩⎨⎧==2121y y x x 即 cos sin vt x u tD u t θθ=+⋅⎧⎨=⋅⎩所以()cos sin D v u x u θθ-=,x 取最大值的条件为:0/=θd dx ,由此得到cos /u v θ=,相应地sin θ=。

因此x 的最大值为x 取最大值时对应的出发时间最迟。

快艇截住这条船所需的时间为sin D t u θ==习题二答案 习题二2.1 简要回答下列问题:(1) 有人说:牛顿第一定律只是牛顿第二定律在合外力等于零情况下的一个特例,因而它是多余的.你的看法如何?(2) 物体的运动方向与合外力方向是否一定相同? (3) 物体受到了几个力的作用,是否一定产生加速度? (4) 物体运动的速率不变,所受合外力是否一定为零? (5) 物体速度很大,所受到的合外力是否也很大?(6) 为什么重力势能有正负,弹性势能只有正值,而引力势能只有负值?(7) 合外力对物体所做的功等于物体动能的增量,而其中某一分力做的功,能否大于物体动能的增量? (8)质点的动量和动能是否与惯性系的选取有关?功是否与惯性系有关?质点的动量定理与动能定理是否与惯性系有关?请举例说明. (9)判断下列说法是否正确,并说明理由:x(a)不受外力作用的系统,它的动量和机械能都守恒.(b)内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒. (c)只有保守内力作用而没有外力作用的系统,它的动量和机械能都守恒.(10) 在弹性碰撞中,有哪些量保持不变,在非弹性碰撞中,又有哪些量保持不变?(11) 放焰火时,一朵五彩缤纷的焰火质心运动轨迹如何?为什么在空中焰火总是以球形逐渐扩大?(忽略空气阻力)2.2 质量为m 质点在流体中作直线运动,受与速度成正比的阻力F kv =-(k 为常数)作用,0t =时质点的速度为0v ,证明: (1)t 时刻的速度为0kt v v e-=;(2)由0到t 的时间内经过的距离为0()[1]kt mx mv k e -=⋅-;(3)停止运动前经过的距离为0mv k 。

相关文档
最新文档