(完整版)初一几何线段的计算专题

合集下载

2021年人教版数学七年级上册期末复习《线段有关的计算》专题练习(含答案)

2021年人教版数学七年级上册期末复习《线段有关的计算》专题练习(含答案)

2021年人教版数学七年级上册期末复习《线段有关的计算》专题练习一、选择题1.如图,如果点C是线段AB的中点,那么:①AB=2AC;②2BC=AB;③AC=BC;④AC+BC=AB.上述四个式子中,正确的有( )A.1个B.2个C.3个D.4个2.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是( )A.2cmB.3cmC.4cmD.6cm3.如图,AB=18,点M是AB的中点,点N将AB分成MN:NB=2:1,则AN的长度是___A.12B.14C.15D.164.如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,MN=5.4cm,那么线段AB的长等于( )A.7.6cm B.7.8cm C.8cm D.8.2cm5.如图,O是线段AC中点,B是AC上任意一点,M、N分别是AB、BC的中点,下列四个等式中,不成立的是( )A.MN=OCB.MO=(AC-BC)C.ON=(AC-BC)D.MN=(AC-BC)6.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm或22cmD.4cm或44cm7.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .318.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是( )A .8B .9C .8或9D .无法确定二、填空题9.如图,M ,N 在线段AB 上,且MB=4cm ,NB=16cm ,且点N 是AM 的中点,则AB=______cm.10.如图,已知线段AB=16cm,点M 在AB 上,AM:BM=1:3,P,Q 分别为AM,AB 的中点,则PQ 的长为 .11.如图,点M ,N ,P 是线段AB 的四等分点,则BM 是AM 的 倍.12.如图,AB ∶BC ∶CD=2∶3∶4,AB 的中点M 与CD 的中点N 的距离是3 cm ,则BC =__13.已知线段AB=1 996 cm ,P 、Q 是线段AB 上的两个点,线段AQ=1 200 cm ,线段BP=1 050 cm ,则线段PQ=___________.14.如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10 cm,BC=4 cm,则AD 的长等于 .15.已知A ,B ,C ,D 是同一条直线上从左到右的四个点,且AB ∶BC ∶CD=1∶2∶3,若BD=15cm ,则AC=______cm ,_______是线段AD 的中点.16.如图,数轴上A ,B 两点表示的数分别为和6,数轴上的点C 满足,点D 在线段AC 的延长线上,若,则BD= ,点D 表示的数为 .A B D C三、解答题17.已知数轴上有A,B,C三点,它们所表示的数分别是2,-4,x.(1)求线段AB的长度;(2)若AC=5,求x的值.18.如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.19.如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.20.如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB 的中点,求线段EF的长.21.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AC +CB=acm ,其他条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在AB 的延长线上,且满足AC -CB=bcm ,其他条件不变,MN 的长度为_________.(直接写出答案)22.如图,点A 、B 、C 在数轴上,点O 为原点.线段AB 的长为12,BO=12AB ,CA=13AB.(1)求线段BC 的长;(2)求数轴上点C 表示的数;(3)若点D 在数轴上,且使DA=23AB ,求点D 表示的数.23.如图,AB=30cm ,点P 从点A 出发,沿AB 以3cm/s 的速度匀速向终点B 运动;同时点Q 从点B 出发,沿BA 以5cm/s 的速度匀速向终点A 运动,设运动时间为t.(1)填空:PA= cm ;BQ= cm(用含t 的代数式表示);(2)当P 、Q 两点相遇时,求t 的值;(3)直接写出P 、Q 两点相距6cm 时,t 的值 为 .24.如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.参考答案1.D2.B3.C4.B5.D6.C ;7.B8.C9.答案为:2810.答案为:6cm11.答案为:312.答案为:1.5cm .13.答案为:254 cm.14.答案为:3cm.15.答案为:9 点C ;16.答案为:2,417.解:(1)AB=2-(-4)=6;(2)2-x=5,x=-3或x -2=5,x=7.18.解:∵线段AB=8cm ,E 为线段AB 的中点,∴BE4cm ,∴BC=BE ﹣EC=4﹣3=1cm ,∴AC=AB ﹣BC=8﹣1=7cm ,∵点D 为线段AC 的中点,∴CD=3.5cm ,∴DE=CD ﹣EC=3.5﹣3=0.5cm .19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB ﹣PB=40﹣28=1220.解:∵F 为线段AB 的中点,∴BF=AB=16,∵AC=BC ,∴BC=AB=24, ∵E 为线段BC 的中点,∴BE=12,∴EF=BF ﹣BE=16﹣12=4.21.解:(1)因为点M 、N 分别是AC 、BC 的中点,所以MC=12AC=12×8=4cm ,CN=12CB=12×6=3cm ,MN=MC +CN=4+3=7cm.(2)因为点M 、N 分别是AC 、BC 的中点,所以MC=12AC ,CN=12CB ,MN=MC +CN=12AC +12CB=12(AC +CB)=a 2cm. (3)b 2cm 22.解:(1)答案为:8.(2)答案为:-2.(3)答案为:-14或2.23.解:(1)3t ;5t ;(2)3t+5t=30,t=;(3)相遇前相距6个单位:5t+3t+6=30,t=3;相遇后相距6个单位:5t-3t+6=30,t=4.5;24.解:。

七年级数学线段计算知识点

七年级数学线段计算知识点

七年级数学线段计算知识点在数学中,线段是我们非常常见的一类图形,在我们的生活和学习中也经常使用到。

我们需要了解线段的基本概念以及如何使用它进行计算。

下面就来详细介绍一下七年级数学线段计算的知识点。

一、线段的定义与表示线段是一条封闭的直线,在数学中我们通常用两个点来表示线段。

如图所示,AB就是一条线段,它由点A和点B所确定。

二、线段的长度计算在数学中,我们通常用线段的长度来表达长短,线段长度的计算方法也是非常简单的,我们只需要用线段的两个端点之间的距离(也就是两点之间的距离)来计算。

线段AB的长度可以用以下公式进行计算:AB = √[(XB - XA)² + (YB - YA)²]其中,XA、XB、YA、YB分别为点A和点B的横坐标和纵坐标。

三、线段的中点与坐标在线段中,有一点特殊的位置,它恰好处于线段的正中间,这个位置就叫做线段的中点。

我们可以通过求出线段两个端点坐标的平均值来求线段的中点坐标。

具体的公式如下:中点的横坐标:(XA + XB)/2中点的纵坐标:(YA + YB)/2例如,点A(2,4)和点B(6,8)所构成的线段AB的中点的坐标为:(2+6)/2 = 4,(4+8)/2 = 6,所以中点为(4,6)。

四、线段的垂直平分线线段的垂直平分线是指在线段中垂直于线的一条直线,并且它将线段一分为二。

垂直平分线的长度等于线段长度的一半。

垂直平分线的方程可以表示为:y = kx + b其中,k为线段的斜率,b为垂直平分线与x轴的交点。

线段垂直平分线的斜率可以用以下公式来计算:k = -1/k1其中,k1为线段的斜率。

五、线段的夹角计算在线段的计算中,角度也是一个重要的概念。

如果线段AB和线段CD相交,它们之间形成的角度可以用以下公式进行计算:cosα = (AB·CD)/(|AB|·|CD|)其中,cosα为AB和CD夹角的余弦值,|AB|和|CD|为AB和CD的长度,AB·CD为AB向量和CD向量的点积。

(2021年整理)七年级数学线段计算题

(2021年整理)七年级数学线段计算题

七年级数学线段计算题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学线段计算题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学线段计算题的全部内容。

[例1]已知:如图,C是线段AB上一点,M、N分别是线段AC、BC 的中点,AB=11,求MN.[例2]已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE=4,,求线段AB的长。

[例3]如图,线段AB 上有C、D两点,点C将AB分成两部分,点D将线段AB分成两部分,若,求AB。

[例4] 已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。

[例5] 已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。

[例6] 如图:,F是BC的中点,,求EF。

[例7]如图:E、F是线段AC、AB的中点,且,求线段EF的长。

[例8]已知A、B、C、D为直线上四点且满足,M、N 分别为AB和CD的中点,,求AB、AC、AD。

【模拟试题】(答题时间:30分钟)2。

如图,已知,CD的长为10cm,求AB的长.3。

如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。

4。

如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。

5。

一条直线上顺次有A、B、C、D四点,且C为AD中点,,求的值。

6. 已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。

7. 已知线段,点C在直线AB上,点M、N分别是AC、BC 的中点,求MN的长度.8. 同一直线上A、B、C、D四点,已知,且,求AB的长。

七年级数学人教版(上册)小专题(十四)线段的计算

七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算

初一数学线段题及解析

初一数学线段题及解析

初一数学线段题及解析1.题目:已知线段AB的长度是5cm,线段BC的长度是3cm,求线段AC的长度。

解析:根据题目已知条件,我们可以将线段AB和线段BC的长度相加得到线段AC的长度。

即AC = AB + BC = 5cm + 3cm = 8cm。

所以线段AC的长度是8cm。

2.题目:已知线段AB的长度是8cm,线段BC的长度是3cm,线段AC的长度是5cm,求线段BD的长度。

解析:我们可以利用线段的相等关系来求解。

根据题目已知条件,线段AC的长度等于线段AB的长度加上线段BC的长度,即AC = AB + BC。

将已知值代入得到5cm = 8cm + 3cm,即5cm = 11cm。

这个等式显然不成立,因此无法确定线段BD的长度。

3.题目:已知线段AB的长度是12cm,线段BC的长度是7cm,线段AC的长度是15cm,求线段BD的长度。

解析:我们可以利用线段的相等关系来求解。

根据题目已知条件,线段AC的长度等于线段AB的长度加上线段BC的长度,即AC = AB + BC。

将已知值代入得到15cm = 12cm + 7cm,即15cm = 19cm。

这个等式显然不成立,因此无法确定线段BD 的长度。

4.题目:已知线段AB的长度是10cm,线段BC的长度是6cm,线段AC的长度是8cm,求线段BD的长度。

解析:我们可以利用线段的相等关系来求解。

根据题目已知条件,线段AC的长度等于线段AB的长度加上线段BC的长度,即AC = AB + BC。

将已知值代入得到8cm = 10cm + 6cm,即8cm = 16cm。

这个等式显然不成立。

因此,无法确定线段BD的长度。

七年级线段的计算(基础)

七年级线段的计算(基础)

七年级线段的计算(基础)1、已知线段AB长度为8cm,点C是AB的中点,点D在CB上且DC=1.5cm,求线段BD的长度。

答案:BD=5.5cm。

2、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若BD=6cm,求AB的长度。

答案:AB=12cm。

3、已知线段AD被点B、C分成2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长度。

答案:CM=4cm,AD=24cm。

4、已知AB=7,BC=3,点D为线段AC的中点,求线段DB的长度。

答案:DB=2cm。

5、已知M是线段AB的中点,点C在线段AB上,N是AC的中点,且AN=2cm,CM=1cm,求线段AB的长度。

答案:AB=6cm。

6、已知D是AB的中点,E是BC的中点,AC=2cm,BE=求线段DE的长度。

答案:DE=2cm。

7、已知AB=16cm,C是AB上的一点,且AC=10cm,D是AC的中点,E是BC的中点,求线段DE的长度。

答案:DE=8cm。

8、已知点C、D是线段AB上两点,D是AC的中点,若BC=6厘米,BD=10厘米,求线段AB的长度。

答案:AB=22cm。

9、已知点C、D为线段AB的三等分点,点E为线段AC 的中点,若ED=9,求线段AB的长度。

答案:AB=27cm。

10、已知线段AD被点B、C分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长度。

答案:CM=4cm,AD=24cm。

11、已知线段AC=6cm,线段BC=15cm,点M是AC 的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长。

答案:MN=5cm。

12、已知线段AB和CD的公共部分BD=,求AB,CD 的长度。

AB=CD,线段AB、CD的中点E、F之间距离是10cm。

答案:AB=CD=20cm。

13、已知A、B、C在同一条线段上,M是线段AC的中点,N是线段BC的中点,且AM=5cm,CN=3cm,求线段AB的长度。

七年级数学线段计算题

七年级数学线段计算题

[例1]已知:如图,C是线段AB上一点,M、N分别是线段AC、BC的中点,AB=11,求MN。

[例2]已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE
=4,,求线段AB的长。

[例3]如图,线段AB上有C、D两点,点C将AB分成两部分,点D将线段AB 分成两部分,若,求AB。

[例4] 已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。

[例5] 已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。

[例6]如图:,F是BC的中点,,求EF。

[例7] 如图:E、F是线段AC、AB的中点,且,求线段EF的长。

[例8] 已知A、B、C、D为直线上四点且满足,M、N分别为AB和CD的中点,,求AB、AC、AD。

【模拟试题】(答题时间:30分钟)
2.如图,已知,CD的长为10cm,求AB的长。

3. 如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。

4.如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。

5. 一条直线上顺次有A、B、C、D四点,且C为AD中点,,求
的值。

6.已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。

7. 已知线段,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。

8.同一直线上A、B、C、D四点,已知,且,求AB的长。

人教版七年级数学上册 第四章 几何图形初步 线段的计算 专项训练 课件 (共25张PPT)

人教版七年级数学上册  第四章 几何图形初步    线段的计算  专项训练 课件 (共25张PPT)
(2)画出的图形如图,因为点 C,D 分别是线段 OA,OB 的中点,所以 OC=12OA,OD=12OB,所以 CD=OC-OD=12OA-12OB=12(OA-OB)=12AB =2
17.如图,已知C,D是线段AB上的两个点,点M,N分别为AC,BD的中点.
(1)若AB=10 cm,CD=4 cm,求AC+BD的长及M,N的距离; (2)如果AB=a,CD=b,用含a,b的式子表示MN的长.
,图①)
,图②)
类型五 动态问题 20.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1 个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度 的速度沿数轴正方向运动,设运动时间为t秒.
(1)当0<t<5时,用含t的式子填空:BP=5_-__t_,AQ=1_0_-__2;t (2)当t=2时,求PQ的值; (3)当PQ=AB时,求t的值.
14.如图,B,C两点把线段AD分成2∶5∶3三部分,M为AD的中点,BM=6 cm,求CM 和AD的长.
解:设 AB=2x cm,BC=5x cm,CD=3x cm,
所以 AD=AB+BC+CD=10x cm
因为 M 是 AD 的中点,所以 AM=MD=
-2x=3x cm.因为 BM=6 cm,所以 3x=6,x=2,
21.如图,M是线段AB上一点,且AB=10 cm,C,D两点分别从M,B同时出发以1 cm/s,3 cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在 线段BM上). (1)当点C,D运动了2 s,求这时AC+MD的值. (2)若点C,D运动时,总有MD=3AC,求AM的长.
解:(1)因为 AB=13 cm,BC=9 cm, 所以 AC=AB-BC=13-9=4 (cm) (2)因为 M 是线段 AC 的中点, 所以 MC=12AC=12×4=2 (cm). 因为 NB=2CN,所以 CN=13BC=3(cm). 所以 MN=MC+NC=2+3=5 (cm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F A
专题:线段的计算
一、方程思想(数形结合)
1.如图所示,P 是线段AB 上一点,M ,N 分别是线段AB ,AP 的中点,若AB=16,BP=6,求线段MN 的长.
举一反三:
1.如图,AB=24cm ,C 、D 点在线段AB 上,且CD=10cm ,M 、N 分别是AC 、BD 的中点,求线段MN 的长。

2.如图,E 、F 分别是线段AC 、AB 的中点,若EF=20cm ,求BC 的长。

3.如图,已知AB=20,C 为AB 的中点,D 为CB 上一点,E 为BD 的中点,且EB=3,求CD 的长。

4.如图,C 、D 、E 将线段分成2:3:4:5四部分,M 、P 、Q 、N 分别是线段AC 、CD 、DE 、EB 的中点,且
MN=21,求PQ 的长。

5.如图,延长线段AB 到C ,使BC=2AB ,若AC=6cm ,且AD=DB ,
BE :EF :FC=1:1:3,求DE 、DF 的长。

B
E D C
A 第3题
Q
N
C
A
D
第4题
C
第5题
6、如图,同一直线上有A 、B 、C 、D 四点,已知,2
5
,32CB AC AD DB ==CD=4cm ,求AB 的长。

7、如图,B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 中点,CD=8,
求MC 的长.
二、分类思想
线段AB 、BC 均在直线l 上,若AB=12cm ,AC=4cm ,M 、N 分别是AB 、AC 的中点,则MN 的长为_______.
举一反三:
1、 已知线段AB=8,在直线AB 上画线段BC ,使它等于3,求线段AC 的长
2、 已知,点A 在数轴上的点为-10,点B 在数轴上的点为14,点C 在数轴上,且AC :BC=1:5,求点C 对应的

3、 P 是定长线段AB 的三等分点,Q 是直线AB 上一点,且AQ-BQ=PQ,求PQ:AB 的值
4、 已知,线段AB=10,C 、D 为直线AB 上的两点,且AC=6,BD=8,求线段CD 的长
三、动态问题
1、如图,直线AB 上有一点P ,点M 、N 分别为线段PA 、PB 的中点,AB=14.
(1) 若点P 在线段AB 上,且AP=8,求线段MN 的长度。

N M B
A P
A
B
C
D
M .
. .
. A
B
C D
(2) 若点P 在直线AB 上,使说明线段MN 的长度与点P 在AB 上的位置无关 (3) 如图,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:

PA PB PC -的值不变;②PA PB
PC
+的值不变。

请选择一个正确的结论并其值。

C B A
P
2、如图,线段AB=24,动点P 从A 出发,以2个单位/秒的速度沿射线AB 运动,M 为AP 的中点。

M P A B
(1) 出发多少秒后,PB=2AM
(2) 当P 在线段AB 上运动时,试说明2BM-BP 为定值
(3) 当P 在AB 延长线上运动,N 为BP 的中点,下列两个结论:
①MN 长度不变;②MN+PN 的值不变。

选择一个正确的结论,并求出其值。

四、“电子蚂蚁问题”
1、如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。

⑴现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;
⑵若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。

2、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。

⑴若点P到点A、点B的距离相等,求点P对应的数;
⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。

若不存在,请说明理由?
⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?
3、数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;
(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数;
-5
(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由。

4、已知数轴上有顺次三点A, B, C。

其中A的坐标为-20.C点坐标为40,一电子蚂蚁甲从C点出发,以每秒2个单位的速度向左移动。

(1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少?
(2)这只电子蚂蚁甲由D点走到BA的中点E 处时,需要几秒钟?
(3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标。

相关文档
最新文档