风洞设计
实验风洞方案的设计

气体在风洞中工作段流动是均匀场,即模拟了自然风场,气体流过“膜”表面,由于粗糙度不同,流场分布也变化,由于设备优良程度不同,对同一膜表面流场分布也变化。
通过查阅大量有关风洞实验装置的文献,现设计出了两种实验方案如下:
表1 两种方案性能表
方案阻力压力梯度流速、流场使用方法阻力特性备注
风洞无0 均匀场,稳定
流速
放在流场中间
基本上绝
对值
有阻塞
效应
双纽线传感器有有
流量场,平均
流速
贴在管壁上相对值
无阻塞
效应
两种方案的共同点:
1、都可以无级调速(不允许通过节流装置等改变机械尺寸方法);
2、都是测量差压(计量标准);
3、都可以获得低湍流稳定流场;
4、都需要进行温度、湿度、流速分布系数,阻塞系数,干扰系数的修正;
5、两种方案测出结果都是标准状态;
6、结构上有共同点,装置的左边不同,右边大致相同。
针对以上两种方案的自制风洞装置图如下所示:
②紊流网 ⑥工作段
③稳定段 ⑦扩散段
④集气段 ⑧风机
方案 A
① 双纽线式传感器
② 工作段
③ 扩散段
④ 风 机
方案 B
图1 风洞装置设计简图。
风洞试验设计规范要求及模型制作

风洞试验设计规范要求及模型制作风洞试验是航空航天、汽车、建筑等领域中非常重要的一项测试方法,能够模拟真实环境下的空气流动情况,为产品设计和性能优化提供参考。
在进行风洞试验之前,必须遵循一定的设计规范要求,并且制作出符合实际的模型。
本文将详细介绍风洞试验的设计规范要求以及模型制作的步骤和技巧。
一、风洞试验设计规范要求1. 流体力学参数:风洞试验的设计必须考虑流体力学参数,包括速度、密度、动力粘度等。
根据具体的试验需求,确定合适的流体力学参数,并在设计过程中予以合理控制。
2. 尺寸比例:风洞模型的尺寸应符合比例关系,通常采用代表比例进行缩放。
例如,在航空领域的风洞试验中,常用的尺寸比例为1:200或1:100。
3. 材料选择:模型制作所选材料应具有良好的耐高温、耐高压、耐腐蚀等性能,以确保试验过程的安全和可靠性。
4. 模型加工:模型的加工应精细、精确、耐用。
常见的制作方法包括切割、粘接、数控加工等,确保模型表面光滑,没有毛刺或凹凸不平的情况。
5. 测试参数设置:在风洞试验中,需要合理设置测试参数,包括风速、气压、温度等。
测试参数的设置应与实际使用环境相匹配,并符合试验要求。
二、模型制作步骤和技巧1. 设计模型:根据试验需求和设计规范要求,利用计算机辅助设计软件进行模型的三维建模,确保模型的准确性和符合要求。
2. 选择合适材料:根据试验要求和模型设计,选择相应的材料。
常见的风洞模型材料包括铝合金、聚合物、玻璃纤维等。
需要根据具体情况考虑材料的强度、重量和成本等因素。
3. 模型制作:利用数控机床或其他加工设备对模型进行加工。
根据设计要求,通过切割、钻孔、打磨等工艺,将模型制作出来。
制作过程中需要严格按照设计尺寸和比例进行操作,保证模型的精度和准确性。
4. 模型组装:将加工好的零部件进行组装,确保模型的完整性和稳定性。
组装过程中要注意零部件的相互匹配和连接,避免出现松动或失配的情况。
5. 表面处理:对模型表面进行光滑处理,去除毛刺和凹凸不平的部分。
风洞施工方案

风洞施工方案1. 引言风洞是一种用于进行气动性能测试和风力工程研究的设备,主要用于模拟真实空气流动情况,尤其是在飞行器设计和空气动力学研究中扮演着重要角色。
本文档将介绍风洞施工方案,包括风洞的设计、施工过程、材料选用和安全措施等。
2. 设计风洞的设计要考虑到以下几个方面:2.1 尺寸风洞的尺寸取决于测试对象的尺寸和测试需求。
通常情况下,风洞的尺寸应能容纳测试对象,并具有足够的空间进行流动分析和测量。
2.2 进口和出口风洞需要设计进口和出口,以确保气流能够顺畅进入和流出。
进口和出口应具有合适的尺寸和形状,以减小气流的扰动,并且要考虑到安全性和便捷性。
2.3 气流管道风洞的气流管道需要具备低阻力和高稳定性的特点。
为了实现这个目标,可以采用光滑内壁的材料,并适当设计管道的曲率和直径。
此外,还需要考虑管道的长度和密封性。
2.4 测量设备风洞应配备适当的测量设备,以便对气流速度、压力、温度等参数进行准确的测量。
测量设备的选择应根据测试需求和预算来确定,并且需要定期校准。
3. 施工过程风洞的施工过程主要包括以下几个步骤:3.1 土建工程风洞的土建工程包括平整地基、打地基、搭建建筑结构等。
建筑结构的稳定性和密封性对于风洞的正常运行非常重要。
3.2 气流管道安装在土建工程完成后,需要安装气流管道。
气流管道的安装要注意避免内部有锐边、死角或突起物,以减小气流的扰动。
3.3 电力供应和控制系统风洞需要稳定的电力供应和控制系统,以确保风洞的安全性和可控性。
电力供应和控制系统的设计和安装要符合相关标准和规范。
3.4 测量设备安装在风洞施工的最后阶段,需要安装和调试测量设备。
测量设备的安装和调试要严格按照制造商的指南进行。
4. 材料选用风洞施工中的材料选用对于风洞的运行和性能有着重要的影响。
以下是一些常用的材料选用建议:4.1 气流管道气流管道可以选择光滑内壁的材料,如不锈钢、铝合金等。
这些材料具有优异的耐腐蚀性和流体动力学特性。
风洞设计

低速风洞气动特性设计(2)一、课程设计目的综合运用在流体力学实验技术和其它课程中所学习的知识,完成简化了的低速风洞气动特性设计项目,达到培养和提高独立完成设计工作的能力。
二、课程设计要求能正确运用有关学科的基本理论解决工程实际问题。
图纸符合规范,清楚,整洁。
设计说明书中文字、数字和插图表达清晰正确。
设计中对工艺性、经济性作了考虑。
工作态度认真负责,按时、独立完成指定的设计任务。
三、设计风洞任务要求 1) 风洞实验段要求:开口2) 实验段进口截面形状:椭圆形 3) 实验段进口截面尺寸:1.5m4) 实验段进口截面最大风速:50m/s 5) 收缩段的收缩比:5四、风洞设计说明书根据实验段进口截面尺寸判断:我们小组所设计风洞为小型风洞1、实验段设计实验段是整个风洞的中心,模型装在此处进行实验。
衡量风洞气动力设计及施工的质量主要从两方面来看:实验段气流的流场品质;风洞工作的效率。
实验段的气流品质是风洞各部分工作的集中体现。
实验段截面形状选择选择剖面形状的原则是在满足实验要求下最有效地利用全部气流切面积,因而可以减少风洞的驱动功率。
实验段截面形状有圆形、方形、八角形、椭圆形及长方形等。
在相似的稳定段情况和相同的收缩比下,椭圆形截面的气流最为均匀,即均匀区所占的比例最大,圆形次之,长方形再次之;从洞壁干扰的情况来看,对于相同的模型展长洞宽比,椭圆形的升力干扰最小,长方形次之,圆形再次之。
因此,我们所设计实验段椭圆形截面有流场均匀、气流品质好、洞壁干扰小的优点。
但,从施工和安装来讲,椭圆形不方便,这也是弊端所在。
实验段截面尺寸选择椭圆截面按照长轴短轴比3:2设计,则长轴长1.5m ,短轴长1m 。
设长半轴为a ,短半轴为b ,则a=0.75m,b=0.5m定义椭圆截面水力直径椭圆椭圆C S D ⨯=40,且)(4b 2,b a C ab S -+==ππ椭圆椭圆求得:m D 14.10=实验段开口式、闭口式的选择本实验任务要求采用开口式,优点在于:安装模型及进行实验方便;在相同的模型和风洞尺寸关系下,开口实验段的边界层干扰要小得多。
气动力学在风洞设计中的应用研究

气动力学在风洞设计中的应用研究风洞是模拟空气动力学环境的设备,通过风洞测试能够模拟飞行器在空气中的运动状态,评估飞行器设计在不同大气条件下的飞行性能,是航空航天领域不可或缺的工具。
而风洞的设计与制造,需要运用到各种工程技术和理论知识,其中气动力学是不可或缺的一部分。
本文将从气动力学在风洞设计中的应用入手,探讨风洞设计的一些基本原理与实现方法。
一、气动力学基础气动力学是研究空气动力学现象和规律的一门学科,其研究对象是空气动力学现象,如流动、力学特性,以及与之相关的控制、稳定、安定性等。
风洞是气动力学的应用之一,因此对气动力学的基础知识了解是风洞设计的基石。
1.流动的特征流动是气动力学的研究对象之一,因此了解流动的概念与原理是必要的。
流动的特征有速度、密度、温度、压力等,不同条件下流动的特征也会发生变化。
这些特征构成了理解流动的本质条件。
例如,在低速条件下,空气流动时所产生的阻力比高速条件下更为显著,因此在考虑制造低速的风洞时,需对流动特征进行深入研究。
2.流动的分类在气动力学中,流动一般分为稳定流动和非稳定流动,稳定流动中的流速和流量都是常数,而非稳定流动多为脉动流动,流速和流量都是变化的。
这些不同类型的流动对风洞设计与实现中都会有一定的影响,需要在风洞设计前对其进行分析研究。
3.翼型翼型是飞行器设计中的一个重要部分,其形态与气动力学性能密切相关。
不同的翼型能够在不同速度和气压下产生不同的升力和阻力,因此在风洞设计中,对于不同类型的翼型的性能研究也是必要的。
二、风洞设计与实现在对气动力学基础知识有一定了解后,可以开始进行风洞的设计与实现。
一般来讲,风洞的设计包括风道、流速控制、模拟环境与数据采集等多个部分。
1.风道设计风道是风洞的核心部分,其形状和尺寸都会影响到模拟的气动力学环境。
在设计风道时,需考虑其长度、横截面尺寸和形状、进口和出口等因素,这些因素会影响到流动的分布和流速分布。
而在风洞实现中,除了实际制造的风道外,一些软件也可以辅助进行风道设计的模拟与分析。
低速风洞设计说明书

流体力学实验技术课程设计学院:航空宇航学院学生姓名:杨馨学号:011210833二〇一六年十二月低速风洞设计课程设计报告1、实验段设计该风洞设计最大风速为100米每秒,预设功能为做全机模型低速气动特性测量试验,一般的迎角在负20度到正30度之间,采用回流式。
○1实验段截面形状选择实验段截面形状有圆形、方形、八角形、椭圆形及矩形等。
选择剖面形状的原则是在满足实验要求下最有效地利用全部气流切面积,因而可以减少风洞的驱动功率。
综合考虑气流均匀度和洞壁干扰等因素,选取矩形截面。
○2实验段截面尺寸选择为使雷诺数达到2.5*10^6,根据风速100米每秒,再取平均展弦比为6,并且要求模型展长不超过风洞宽度的0.7倍,估算得实验段宽度约为3.7米,取实际宽度为4米;由于迎角不太大,对于实验段高度要求不大,取为3米。
○3实验段开口式、闭口式的选择为保证实验段气流均匀度以及减少可能的能量损失,采用闭口式实验段。
○4实验段长度确定模型应置于实验段的均匀流场中。
模型头部至实验段入口应保持一定距离,以l1表示,假设实验段相当直径为D0,则L1大致为0.25~0.50 D0;模型的长度以l2表示,大约为0.75~1.25 D0,各种类型飞机的模型是不相同的;模型尾部至扩压段进口也应保持一定距离,以l3表示,一方面保证模型的尾流不过多影响扩压段效率,另一方面也不使扩压段的流动影响模型尾部,这个距离大约为0.75~1.25 D0。
因此,实验段长度应保持在1.75~3.0 D0的范围内。
经计算,D0约等于3.9米,取实验段长度为8米。
2、收缩段设计○1收缩段作用加速气流,使其达到实验所需要的速度。
收缩段应满足以下要求:(1)气流沿收缩段流动时,洞壁上不出现分离;(2)收缩段出口的气流要求均匀、平直而且稳定;(3)收缩段不宜过长。
○2收缩段长度L2收缩比取为10,收缩段出口尺寸根据试验段尺寸取R2为2米,根据收缩比计算得进口尺寸R1约为6.32米,收缩段长度一般采用进口直径的0.5~1.0倍,取L为8米。
风洞设计管理一体化平台研发

风洞设计管理一体化平台研发风洞是航空、车辆、建筑等领域中非常重要的测试设备,可以模拟复杂的机械环境和气流流动特性,评估和测试各种设计方案的性能和安全性。
在风洞测试中,设计和管理是非常关键的环节,如何提高设计和管理效率、降低成本和错误率是所有风洞相关企业和机构的迫切需求。
为此,研发一款风洞设计管理一体化平台具有重要意义。
风洞设计管理一体化平台是一款基于互联网技术和云计算平台的应用软件,旨在为风洞设计者和管理者提供集成、协同、智能化的解决方案,包括设计、仿真、优化、数据管理、安全管控、交流等功能。
平台的核心特点如下:一、集成多种设计工具和算法风洞设计需要依靠多种设计工具和计算算法进行,如CAD、CAM、CAE、CFD、FEM、优化算法等。
平台可以集成多种设计工具和算法,支持数据的相互转换和共享,提高协同设计和优化效率。
设计人员可以直接在平台上通过简单的拖拽和点击操作,快速构建模型、设定计算参数、运行仿真等。
平台还可以集成智能优化算法,实现自动化设计和优化。
二、可视化设计和仿真平台支持三维可视化设计和仿真,可以直观地展现模型的几何形状、流场分布、应力分布等信息。
设计人员可以在可视化界面中直接对模型进行编辑和调整,随时进行仿真分析和评估。
同时,平台还支持多种可视化输出格式,如动画、图表、报表等,方便数据分析和交流。
三、数据安全与管理风洞测试涉及到大量的数据和信息,如设计图纸、计算结果、测试记录等。
平台可以提供一个完整的数据管理系统,包括数据的存储、备份、共享、权限控制等功能,确保数据的安全性和可靠性。
平台还可以支持多种数据格式和标准,方便数据的导入和输出。
四、智能化管理和协同工作风洞测试需要多人协同工作,设计和管理人员需要及时交流信息、共享资源、进行调度和监控。
平台可以提供智能化的管理和协同工作功能,如任务分配、进度监控、沟通协作、绩效评估等,提高团队工作效率和成果质量。
五、交流和培训平台平台还可以提供交流和培训平台,以便设计和管理人员与行业专家和同行进行交流和学习。
桥梁结构的风洞测试与设计优化

桥梁结构的风洞测试与设计优化桥梁是现代社会不可或缺的基础设施之一,而桥梁的结构设计和建造对于保证其安全稳定至关重要。
在桥梁结构设计中,风荷载是一个重要的考虑因素,因为风力可能对桥梁产生很大的影响。
为了确保桥梁的可靠性和安全性,风洞测试成为一种重要的手段。
风洞测试是通过模拟真实风场环境来评估桥梁结构在风荷载下的性能的一种方法。
普通的风洞测试通常包括两个阶段:风洞模型制作和模型测试。
首先,根据实际桥梁结构的设计图纸,将其按照比例制作为风洞模型。
然后,将该风洞模型放置在风洞测试装置中,通过模拟风场的风速、风向等参数进行模型测试,获得风洞试验数据。
风洞测试的主要目的是通过测量桥梁结构在不同风速下的应力和变形情况,检验其在风荷载作用下的承载性能。
通过分析风洞试验数据,可以了解桥梁结构在不同风荷载下的响应特性,比如应力分布、位移响应等。
这些数据和分析结果可以为设计优化提供有效的参考。
设计优化是指通过改进结构设计来提高桥梁的性能。
根据风洞测试的数据和分析结果,可以发现桥梁结构中的一些不足和问题,比如在某些区域应力集中、某些构件受力过大等。
基于这些问题,我们可以采取一些设计优化措施,如增加结构强度、改善结构刚度等,以提高桥梁的抗风荷载能力和减小变形。
在设计优化中,结构材料的选用也是一个重要的方面。
不同的材料具有不同的特性,如强度、刚度等。
通过选用适当的材料,可以使桥梁结构更加坚固耐用,有利于提高其风荷载下的性能。
除了风洞测试和设计优化,考虑桥梁的施工因素也是不可忽视的。
在桥梁的施工过程中,需要考虑风荷载对施工的影响,特别是在悬索桥等大跨度桥梁的施工过程中,风力可能会对施工造成很大的干扰。
因此,在工程建设中,需要采取一些风险控制措施,如增加临时支撑、采用先进的施工技术等,以确保桥梁的安全施工。
综上所述,风洞测试和设计优化对于保证桥梁结构的安全稳定具有非常重要的意义。
通过风洞测试可以模拟真实的风场环境,评估桥梁结构在风荷载下的性能;设计优化则是根据风洞试验的数据和分析结果,改进桥梁结构设计,提高其抗风能力和减小变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低速风洞内气流速度较低,可按不可压缩流动来设计计算,设计的主要问题是合理组合收缩比与整流装置,使风洞具有高的能量比,低的湍流度,低的造价;设计高效率的风扇装置;设计没有气流分离的的收缩曲线以保证流动品质。
可遵循现有的性能良好的风洞所建立的准则进行设计。
相似准则:一个在静止空气中运动的物体或者在气流中保持静止的物体,其受到的空气动力R 取决于一系列有关气流与物体的参数,即R=f (L 、v 、ρ、h 、α、β、E 、n s 、m 、P 、μ、2v 、Cp 、Cv 、λ、V )L ——物体的特性长度(m )V ——物体的运动速度(m/s )ρ——空气的密度(kg/m 3)h ——物体表面粗燥度的特性尺寸(m )α——运动的迎角(°)β——运动的偏航角(°) E ——模型的体积弹性系数,V V p E /∆=(Pa )n s ——运动部件的频率或转数(1/s )m ——物体单位长度的质量(kg/m )P ——空气的压力(Pa )μ——空气的粘性系数(Pa ∙s )2v ——空气平均脉动速度的平方(m 2/s 2)Cp ——空气的定压比热(J/(kg ∙K ))Cv ——空气的定容比热(J/(kg ∙K ))λ——空气的热传导系数(W/(kg ∙K ))V ——物体体积(m 3)以上影响气动力的参数共15个,根据量纲理论,由于这15个参数的单位中包括4个基本单位,则气动力系数C R (2221L v R C R ρ-=)将取决于12个无量纲参数,这些无量纲参数就称为相似准则。
)k e a m a (2P F R M S L C F C R 、、、、、、、、、、、ερβ∆=∆——物体表面相对粗糙度,L h =∆C ——表征物体弹性形变的相似准则,2v EC ρ=S ——斯特罗哈数,L n v S s =Ma ——马赫数,a v Ma =Re ——雷诺数,μρvL =Reε——湍流度,v v 2=εF ——佛劳德数,gL v F 2= K ——比热比,v p C C K =P r ——普朗特数,λμpr C P =a ——声速,m/s事实上,在一定的速度范围内,对于一定的研究对象,影响风洞实验的一般只有一二个主要的相似准则,即便是对于这些主要的相似准则,有的情况也不需要完全满足,只要达到一定的程度,再通过必要的修正就可以得到相当可靠的实验数据。
一:提高风洞雷诺数:雷诺数的物理意义是物体在静止空气中运动时所受到的惯性力与粘性力只比。
1、增大模型的特性尺寸2、提高试验速度来提高雷诺数是很不经济的3、改变风洞气流介质,大致有两个途径:其一是提高空气的压力,其二是采用比空气密度大的其他气体。
4、降低粘性系数也可以提高雷诺数。
粘性系数是温度的函数,粘性系数随温度降低而减小。
而降低温度的同时,密度增加(若压力保持不变,)因而雷诺数增加很快,随着温度降低,声速也减小了,因此在给定马赫数条件下,速度降低,因而动压及风洞驱动功率都减小了,有利于试验模型的设计和节省功率。
二:马赫数:马赫数的物理意义在于它表明了物体所受空气的惯性力与弹性力之比,由于弹性力反映了空气的压缩性,所以马赫数也体现了压缩性的影响。
对可压缩流动来说,马赫数是最主要的相似准则,马赫数对物体的气动特性的影响非常明显。
为了保持两个可压缩流场之间的相似关系,马赫数是必须满足的相似准则。
三:湍流度湍流度实质上是气流中三个方向的脉动气流速度的方根平均值与主流平均速度之比。
流体微团的无规则运动是形成脉动的原因。
高空静止大气的湍流度越为0.03%。
湍流度对某些气动特性,尤其是与边界层或分离有关的特性,有比较明显的影响。
风洞气流湍流度应该与真实飞行时的大气湍流度相同或相近,若相差很大,会引起试验结果不准确。
在风洞中减小湍流度的有效措施是加大风洞的收缩比,在稳定段安装蜂窝器及整流网。
四:比热比空气在常温常压下的比热比(k )值保持为1.4,只要温度和压力变化不大,空气可以看作理想气体时,k 值保持1.4不变。
但是一般只在高速风洞中才会出现k 值是否相同的问题。
五:普朗特数普朗特数反映了气流的粘性作用和热传导之间的关系。
由于粘性的存在,气流在物体表面形成边界层。
在边界层内,气体的分子或微团之间有动量交换。
有关超声速飞行的热交换需要满足普朗特数。
六:斯特罗哈数斯特罗哈数反映了有周期性变化的流动的相似性。
对于带螺旋桨或涡轮风扇的飞机模型试验来说,必须满足斯特罗哈数。
七:佛劳德数表示流体惯性力与重力之比的相似准则。
对于大气中的飞行器来说,如果大气的重力作用可以忽略,佛劳德数也就无关紧要了。
但是,如果空气或其它流体的重力(即作用于物体的静浮力)与惯性力相比不可忽略时,就必须满足佛劳德数。
八:表示物体弹性形变的相似准则和表示物体质量分布的相似准则。
九:模型表面粗燥度。
十:α和β准则在风洞试验时,迎角α和偏航角β的准确性是由模型安装和变角度机构(α机构及β机构)的运动来保证的。
常规低速风洞气动设计:低速风洞所涉及的是“压缩性可忽略”的范畴。
航空飞行器模型在常规低速风洞中进行试验时,诸如边界层流态、气动阻力、分离流与失速特性等飞行器模型的气动特性,均与粘性有关,因此雷诺数是常规低速风洞最重要的相似参数。
试验段风速要求,主要是与雷诺数的要求有关。
通常常规低速风洞试验段的最大风速V max ≤130m/s 。
当试验段风速大于80m/s 时,闭口回流式风洞内气流的温升增加很快,必须设置冷却器及相应的冷却系统,以保证风洞达到国军标提出的温度控制标准。
常规低速风洞试验段气流品质的基本要求:在没有天平支架和模型的空试验段内,在其边界层以外的理想的流场应该是:气流稳定均匀。
气流方向均匀和没有湍流。
但在实际上,在风洞试验段中获得这样好的流场是不可能的。
因此,问题变成了在一个合理的风洞性能和造价的条件下,什么样的流场品质是可以接受的。
国军标的规定,在试验段模型区(闭口试验段取试验段高度、宽度、长度的75%;开口试验段取试验段高度、宽度、和长度的70%),气流品质的基本要求如下。
⑴动压场动压场用动压系数表示:1-=q q i i μ式中,i μ=第i 点的动压场系数 i q =第i 点的动压,Paq =模型区内各测点动压的平均值,Pa国军标规定,模型区内动压场系数i μ应达到的合格指标是i μ≤0.5%;先进指标是i μ≤0.2%或者用速度场来表示,试验段的速度变化值是平均速度的0.2%~0.3%⑵方向场国军标规定,模型区内各测点的局部气流偏角应达到的合格指标是:︒≤∆︒≤∆5.0,5.0βα,先进指标是︒≤∆︒≤∆1.0,1.0βα。
试验段平均气流偏角应该达到︒≤∆︒≤∆2.0,2.0βα。
⑶轴向静压梯度 国军标规定,在模型区内,轴向静压梯度dx dC p应该达到:005.0≤⨯dx dC L p ,L 为模型区长度。
轴向静压梯度,是指试验段静压沿中心轴向变化。
⑷气流的温度国军标规定,风洞在常用动压下,气流的温升每个小时不超过15℃,最高温度不应该超过45℃.⑸气流湍流度国军标规定。
模型区中心的湍流度ε应达到:%2.0≤ε常规风洞气动总体方案的确定: 长度低速风洞气动总体方案要确定以下内容:①风洞型式,采用回流式还是直流式风洞方案。
②试验段型式,闭口试验段还是开口射流试验段、或是开、闭口两用试验段。
③试验段截面形状和尺寸。
④风洞收缩比及稳定段内整流装置(蜂窝器和阻尼网)。
⑤是否采用大角度扩散角。
⑥风扇段直径及风扇段位置,⑦回流式风洞的冷却方案,当试验段内气流速度v ≥80m/s 时,必须对回流式风洞进行冷却。
⑧风洞回流道内各段截面形状。
上述内容确定后,绘出风洞气动轮廓图,并进行风洞各部段的损失和风洞运行功率的估算。
试验段:1、试验段口径试验雷诺数的要求这里的试验雷诺数是指基于飞机模型机翼平均几何弦长计算的雷诺数。
当代先进风洞,多以A 1.0(A 为试验段截面积)来表示该弦长。
2、防止过大的洞壁干扰。
做试验时需要考虑的。
3、试验段截面形状:扁矩形截面,截面宽大于高,有利于大展弦比飞机模型试验。
高矩形截面,截面高大于宽,有利于二元模型试验。
应该是扁矩形截面。
4、试验段的长度闭口试验段的长度:试验段的长度L ,通常是根据试验要求而定。
标准的常规低速风洞,其闭口试验段的长度可取为L=2.5D 0 。
D 0 为试验段入口截面的水力直径,即:试验段截面周长试验段截面积⨯=40D开口试验段的长度开口风洞试验段的损失,要比闭口时严重的多,有时开口试验段的损失可达到风洞总损失的一半左右;另一方面,顺开口试验段自由射流方向各截面的均匀区范围将随射流的长度的增加而减小。
因此,为了保证试验模型区气流的流场指标,节省风洞的运行功率,开口试验段的长度通常取L ≤1.5D 0 ,而一般的设计长度范围为L=(1.0~1.5)D 0 。
闭口试验段的边界层影响沿闭口试验段顺气流方向,壁面的边界层厚度是逐渐增加的。
这就使得闭口试验段顺气流方向的位流截面逐渐减小,从而使闭口试验段沿轴向产生一个负的静压梯度,这就使得试验模型受到了一个在大气飞行时所没有的附加阻力。
因此,在试验段设计时应该注意消除或减少轴向静压梯度。
为此,可根据边界层理论预测出沿壁面边界层的发展。
为此可以根据边界层理论预测出沿壁面边界层的发展,由于在不同风速下,位移厚度的增加率不是一个,这就要求洞壁的扩散角应随风速变化。
这在工程设计上显然会使其结构变得比较复杂,而且也很不方便,因此通常采用固定扩散角,即以风洞常用风速范围定出一个综合的扩散角。
根据国内外风洞的运转实践,可将试验段上下壁各扩散约0.5°。
对于方形或矩形截面这样的试验段,还可以通过沿轴向逐渐截面的切角来达到这个目的,这样可保持试验段的上下壁和左右壁都是平行的。
根据开口回流风洞产生振动的机理,可以采取相应的减震措施。
低速开口风洞的设计和使用经验表明,尽管减振措施各种各样,但归纳起来,最基本的减振措施是采用扰流片、减振孔和减振环。
3-8图。
稳定段1、稳定段直径和收缩比、稳定段直径直径关系到风洞的收缩比C 。
常规低速风洞的收缩比C ,是指稳定段截面积与试验段截面之比。
气流在通过收缩后,其速度大幅度增加,湍流度则明显下降。
理论早已表明,在低速不可压缩流中,收缩后气流的湍流度2ε与收缩前的湍流度1ε之比12εε与收缩比的平方成反比。
但实际上,实测到的湍流度的降低,远不如上述理论所预示的值,而是与按收缩比缩减的关系非常一致。
国外经过大量统计之后认为,收缩比C 对团流动纵向分量的减少为C m m 112=εε;而对横向分量的减少为C v v 112=εε。
常规低速风洞收缩比对风洞运转功率也有较大的影响,因为随收缩比C 的增大,气流在稳定段的流速将明显降低,使得气流在通过稳定段内各整流装置(蜂窝器、阻尼网)以及冷却器时的压降也相应降低。