数学:4.3.3《余角和补角(1)》学案(人教版七年级上)

合集下载

最新人教版七年级数学上册 4.3.3 余角和补角教案 新人教版(1)

最新人教版七年级数学上册 4.3.3 余角和补角教案 新人教版(1)

余角与补角一、教学目标1.知识与技能:(1)在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质;(2)能够运用余角和补角的定义及性质解决相关问题;2.过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3.情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

二、教学重点与难点重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点;难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点;三、教学方法采用情境式和问题式教学模式,结合多媒体和学案实施教学.四、学法指导通过动口、动手、动脑等活动,主动探索、发现问题、互动合作、归纳概括、解决问题. 五、教学准备教师:多媒体课件、学案、直尺等;学生:预习课题内容;六、教学过程1、创设情境、进入新课:【多媒体展示】问题 1.比萨斜塔位于意大利比萨城的奇迹广场上,是建筑史上的一座重要建筑,目前已知其倾斜角达到12°,你能求出斜塔与底面所成的锐角的度数吗?教师运用多媒体进行展示,引导学生求出锐角的度数。

教师总结出余角的概念:互为余角(互余):如果两个角的和是90°,那么这两个角叫做互为余角,其中一个角是另一个角的余角。

即若∠1+∠2=90°,则∠1是∠2的余角(或∠2是∠1的余角)【多媒体展示】针对问题:1.已知∠A的度数为30度,则∠A的余角为_____度.2.已知某角是其余角的2倍,则此角为________度.学生自主作答,教师订正答案。

【多媒体展示】若比萨斜塔与底面所成的最小锐角度数为78°,请问斜塔与底面所成的最大钝角的度数是多少?想一想!教师运用多媒体进行展示,引导学生求出锐角的度数。

教师总结出补角的概念:互为补角(互补):如果两个角的和是180°,那么这两个角叫做互为补角,其中一个角是另一个角的补角。

人教版七年级数学上册4.3.3余角与补角教学设计

人教版七年级数学上册4.3.3余角与补角教学设计
2.结合生活实际,找出自家的剪刀、直角三角板等物品,测量并计算其中角度的余角与补角。
"将课堂知识运用到生活中,你会发现数学其实无处不在。请同学们找一找家里的剪刀、直角三角板等物品,测量并计算它们的角度关系,感受余角与补角的实际应用。"
3.小组合作,共同探讨以下问题:在几何图形中,如何利用余角与补角的性质解决角度问题?
(二)过程与方法
1.培养学生的观察能力,让学生在实际情境中发现余角与补角的存在,理解其概念。
2.培养学生的逻辑思维能力,让学生通过分析、归纳、总结余角与补角的性质,形成系统的知识体系。
3.培养学生的动手操作能力,让学生在实际操作中掌握余角与补角的计算方法,提高解决问题的能力。
4.培养学生的团队协作能力,让学生在小组合作中学会倾听、交流、互助,共同完成学习任务。
(二)讲授新知
1.教师详细讲解余角与补角的定义,并通过图示和实际例子加深学生理解。
“余角指的是两个角的和等于180度的两个角,而补角指的是两个角的和等于90度的两个角。请看这个图示,角A和角B就是一对余角,因为它们的和等于180度;角C和角D就是一对补角,因为它们的和等于90度。”
2.引导学生总结余角与补角的性质,如:同角(等角)的余角相等,同角(等角)的补角相等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生的学习积极性。
2.培养学生勇于探究、积极思考的学习态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生的空间观念,让学生认识到几何图形在实际生活中的应用,提高学生的应用意识。
4.培养学生遵守数学规则,严谨、踏实的科学态度,为学生今后的学习打下坚实基础。
“同学们,你们发现没有,如果一个图形中有两个角是余角或补角,它们之间有一些什么共同的特点呢?”

人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。

本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。

教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。

但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。

因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。

三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。

四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。

2.教学难点:理解余角和补角的概念,能够运用到实际问题中。

五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。

2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。

六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。

2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。

例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。

人教版七年级数学上册:4.3.3余角和补角优秀教学案例

人教版七年级数学上册:4.3.3余角和补角优秀教学案例
1.将学生分成若干小组,每组选定一个研究主题,如探究余角和补角的性质;
2.各小组通过讨论、实验、观察等方法,共同完成研究任务,并展示研究成果;
3.鼓励小组成员相互评价、交流心得,培养学生的合作意识和团队精神。
(四)反思与评价
1.教师在课后及时反思教学过程,关注学生的学习效果,针对存在的问题调整教学策略;
4.小组合作:组织学生进行小组讨论,共同探究余角和补角的性质及应用;
5.总结提升:对本节课的主要内容进行总结,强调余角和补角在实际问题中的应用价值;
6.课后作业:布置适量作业,巩固学生对余角和补角的理解和运用。
五、教学反思
本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对余角和补角的掌握程度。同时,关注学生在学习过程中的情感态度与价值观的培养,确保学生全面发展。
2.组织学生进行自我评价,让学生认识到自己的优点和不足,明确改进方向;
3.鼓励学生积极参与课堂评价,提出宝贵意见和建议,促进教学相长。
四、教学内容与过程
(一)导入新课
1.利用校园里的景观,如花园、篮球场等,引导学生关注角度的概念,提出问题:“你能找出校园里的一些特殊角度吗?”;
2.学生思考后,教师揭示本节课的主题:“今天我们将学习一种特殊的角——余角和补角。”
(二)讲授新知
1.教师通过多媒体展示余角和补角的定义,让学生直观地理解这两个概念;
2.讲解余角和补角的性质,如互为余角的两个角的和为90度,互为补角的两个角的和为180度;
3.举例说明如何运用余角和补角的性质解决实际问题,如在几何图形中找出所有的互为余角或补角的对。
(三)学生小组讨论
1.教师提出讨论任务:“请你们小组合作,探究余角和补角的性质,并尝试找出生活中的实例。”;

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角;【重点难点】正确求出一个角的余角和补角。

【导学指导】一、知识链接思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。

(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。

二、自主探究1.互为余角的定义:思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2图 1 90° 1 2 图 2 1 2 A O B 图 41 2 图 3 C O DO E D C B A2.互为补角的定义:问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。

例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上(1)写出∠COE 的余角,∠AOE 的补角;(2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少 20,求这个角的度数。

2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。

【总结反思】:。

人教版七年级数学上册4.3.3余角和补角优秀教学案例

人教版七年级数学上册4.3.3余角和补角优秀教学案例
3.小组代表发言:选定小组代表进行发言,分享小组的研究成果,其他小组成员可进行补充和评价。
(四)总结归纳
1.学生总结:引导学生对自己所学知识进行总结,加深他们对余角和补角概念及求解方法的理解。
2.教师补充:教师对学生的总结进行点评和补充,确保学生对知识点的掌握。
3.总结规律:引导学生发现余角和补角的内在联系,总结规律,提高他们的数学思维能力。
2.回顾旧知识:复习与余角和补角相关的基础知识,如角度的分类、互余和互补的概念等,为新课的学习做好铺垫。
3.设疑导入:提出一个与本节课内容相关的问题,如:“如果两个角的和为90度,它们是什么关系?”引起学生的思考,激发他们的探究欲望。
(二)讲授新知
1.余角和补角的定义:通过多媒体展示生动有趣的动画,直观地展示余角和补角的概念,引导学生理解和掌握。
在案例中,我以生活实际为例,引导学生认识余角和补角,通过观察、思考、交流、探讨等环节,让学生在实践中掌握求解余角和补角的方法。同时,注重培养学生的团队协作能力和思维品质,使他们在掌握知识的同时,提高自身综合素质。
在教学过程中,我充分尊重学生的主体地位,关注学生的个体差异,引导他们主动探究、积极思考,从而激发他们的学习兴趣,提高课堂效果。此外,我还设计了一系列具有针对性的练习题,帮助学生巩固所学知识,提高解决问题的能力。
在教学过程中,我注重关注每一个学生的个体差异,引导他们主动参与课堂,发挥自己的潜能。同时,通过设置富有挑战性的问题,激发学生的思维,让他们在解决问题的过程中感受到数学的乐趣。此外,我还注重培养学生的团队协作精神,使他们学会与他人共同分析问题、探讨问题,从而提高解决问题的能力。
在教学过程中,我始终坚持以学生为本,关注学生的情感需求,尊重他们的个性。通过创设轻松、愉快的学习氛围,使学生在愉悦的情感状态下学习,从而提高他们的学习兴趣。同时,我还注重培养学生的综合素质,使他们不仅具备扎实的数学知识,还能运用所学知识解决实际问题。

人教版七年级上册数学4.3.3余角、补角的概念与性质教案

人教版七年级上册数学4.3.3余角、补角的概念与性质教案

4.3.3 余角和补角教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角.(2).掌握余角和补角的性质.2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.教学重点:认识角的互余、互补关系及其性质.教学难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备:三角板、多媒体设备.教学过程一、引入新课1.(图片引入)比萨斜塔,从数学角度来看比萨斜塔最奇特的地方在于本应于地面垂直的塔身变倾斜了,图中的∠1与∠2有什么关系?二、新授1. 在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?学生活动:独立思考,小组交流,得出结论:都是90°.板书:如果两个角的和等于90°,那么这两个角叫做互为余角,其中一个角是另一个角的余角。

2.观察图形,类比互余,得出互补的概念.如果两个角的和等于180°,那么这两个角叫做互为补角,其中一个角是另一个角的补角。

3.问题讨论问题1:以上定义中的“互为”是什么意思?问题2:若∠1+∠2+∠3 =180°,那么∠1、∠2、∠3互为补角吗?问题3:互为余角、互为补角的两个角是否一定有公共顶点?小结:互余、互补是两角之间的数量关系,只与他们的度数和有关,与位置无关。

互余、互补概念中的角是成对出现的。

三、试炼考验试炼1::余角与补角.试炼2:例1:一个角的补角是它的余角的4倍,求这个角的余角是多少度?教师活动:巡视学生完成练习的情况,并给予适当的评价.四、余角与补角的性质.1. 利用三角尺,只画一条线,画出∠1的余角同角的余角相等∵∠1+∠2=90°,∠1+∠3=90°∴∠2=∠32. 已知∠1与∠2互为余角,∠3与∠4互为余角,若∠1=∠3则∠2与∠4是什么关系?等角的余角相等∵∠1与∠2互余,∠3与∠4互余又∵∠1=∠3∴∠2=∠4 同(等)角的余角相等3. 师生互动:类比余角的性质,得出补角的性质:同(等)角的补角相等五、挑战大挑战1.如图,直线CD经过点O,且OC平分∠AOB。

人教版数学七年级上册4.3.3余角和补角优秀教学案例

人教版数学七年级上册4.3.3余角和补角优秀教学案例
3.鼓励学生进行自我评价,培养他们的自我管理能力。例如,让学生定期进行自我评价,反思自己的学习进展和问题,并制定相应的改进计划。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入余角和补角的概念。展示一幅道路上的交通标志图,让学生观察并解释直角、锐角和钝角在实际生活中的应用。引导学生思考:除了这些角之外,还有哪些角是我们需要了解的呢?
(四)总结归纳
1.引导学生进行总结归纳,巩固所学知识。例如,让学生回顾并总结余角和补角的概念、性质以及求解方法。
2.讲解求解余角和补角的方法。引导学生运用数余角和补角。
(三)学生小组讨论
1.设计小组讨论活动,鼓励学生相互交流、分享想法。例如,将学生分成小组,让他们讨论并解释余角和补角的概念,以及它们在实际问题中的应用。
2.组织小组合作项目,让学生共同解决实际问题。例如,让学生分组设计一个游戏,其中一个游戏目标是找到特定角度的余角和补角。
3.利用多媒体手段,如PPT、视频等,为学生提供丰富的学习资源。通过展示不同形状的物体,让学生观察并找出它们的余角和补角。
(二)问题导向
1.引导学生提出问题,激发他们的探究欲望。例如,鼓励学生思考:余角和补角之间有什么关系?它们在实际问题中有何作用?
2.设计具有挑战性的数学题目,让学生独立思考并解决问题。例如,给出一个实际问题:一个三角形的两个角分别是30度和60度,求第三个角的度数。引导学生运用余角和补角的知识解决问题。
(二)过程与方法
1.通过生活实例引入余角和补角的概念,让学生感受数学与生活的紧密联系。
2.采用启发式教学,引导学生主动探索、发现和解决问题。
3.设计小组讨论、互动交流等活动,激发学生的学习兴趣,提高他们的合作意识和团队精神。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)
【学习目标】在具体的现实情境中,认识一个角的余角和补角;文档设计者: 设计时间 : 文档类型:
文库精品文档,欢迎下载使用。

Word 精品文档,可以编辑修改,放心下载
【重点难点】正确求出一个角的余角和补角。

【导学指导】
一、知识链接
思考:
(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?
(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。

(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。

二、自主探究
1.互为余角的定义:
思考:
(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=
(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=
2
图 1 90° 1 2 图 2 1 2 1
2 C O D
O E
D C B A
2.互为补角的定义:
问题1:以上定义中的“互为”是什么意思?
问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?
3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。

例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上
(1)写出∠COE 的余角,∠AOE 的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
【要点归纳】:
【拓展训练】:
1、一个角的余角比它的补角的
3
1还少︒20,求这个角的度数。

2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。

【总结反思】:
可以编辑的试卷(可以删除)。

相关文档
最新文档