高中数学-学生-轨迹方程的求法
高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
人教版数学高二-备课资料轨迹方程的求法

轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.本文结合具体实例对求曲线的轨迹方程的常用方法作一归纳。
一.直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.例1.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ . ∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |.∴x 2+y 2=a |y |, 即 x 2+(y ±2a )2=(2a )2.轨迹是分别以CO 、OD 为直径的两个圆. 二.定义法 如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.例2.某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r,则|PA|+|PO|=1+r+1.5-r=2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r=73)1412()149(2322=+-,故所求圆柱的直径为76 cm. 三.代入法 如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.例3.如图所示,已知P(4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x,y),则在Rt △ABP 中,|AR|=|PR|.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR|2=|AO|2-|OR|2=36O y A BP Q M N C D-(x 2+y 2) 又|AR|=|PR|=22)4(y x +-,所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q(x,y),R(x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.点评:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.四.参数法 如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.例4.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y=k (x -1),代入y 2=4x ,得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点,∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2), 根据韦达定理,有x 1+x 2=22)2(2k k +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),则12120303x x x y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,消去k ,得x=32+34(43y )2, ∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x - 98, 因此所求轨迹C 的方程为y 2=34x -98. 五.交轨法 所求动点是两条动直线(或动曲线)的交点且两动直(曲)线能用同一参数表示。
高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法在高考数学中,轨迹方程的求法是一个比较常见但也较为复杂的难点。
在解决这类问题时,我们需要考虑几个关键因素,如何确定相关点、如何利用已知条件及使用适当的数学知识等。
一、确定相关点对于轨迹方程的求法,首先需要明确或确定一些与所求轨迹相关的点。
这些点可以从已知条件中得出,如一个点的坐标、两个点的距离、特定点到直线的距离等。
这些已知条件将成为我们解题的基础。
二、利用已知条件在确定了相关的点之后,我们需要利用已知条件来求解轨迹方程。
对于不同的条件,我们可以使用不同的数学知识和方法来解决问题。
下面是一些常见的已知条件及相应的解决思路:1.已知点的坐标:如果已知轨迹上的其中一点的坐标,我们可以将这个点的坐标代入轨迹方程中,得到一个等式,并根据这个等式求解出其他未知量,从而得到轨迹方程。
例如,已知轨迹上的点的坐标满足$x^2+y^2=1$,则这是一个以原点为中心、半径为1的圆的轨迹方程。
2.已知点到另一点的距离:如果已知轨迹上的其中一点到另一点的距离等于一定值,我们可以根据距离公式来求解轨迹方程。
例如,已知轨迹上的点到点$(2,1)$的距离等于2,则可以列出方程$\sqrt{(x-2)^2 + (y-1)^2} = 2$,进而求解出轨迹方程。
3.已知点到直线的距离:如果已知轨迹上的其中一点到直线的距离等于一定值,我们可以利用距离公式和直线方程来求解轨迹方程。
例如,已知轨迹上的点到直线$2x+ 3y = 6$的距离等于3,则可以列出方程$\frac{,2x + 3y -6,}{\sqrt{2^2 + 3^2}} = 3$,进一步求解出轨迹方程。
三、使用适当的数学知识在解决轨迹方程的问题中,我们可能需要应用到一些特定的数学知识,如圆的性质、直线的性质、二次曲线方程等。
我们需要结合问题的具体情况,合理地选择和应用这些知识来解决问题。
总结起来,要解决轨迹方程的问题,我们需要明确相关点、利用已知条件和适当应用数学知识。
高中数学求轨迹方程的六种常用技法

练习:1.平面内动点到点的距离与到直线的距离之比为2,则点的轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足的点,求点的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A.直线B.椭圆C.抛物线D.双曲线
, 又因为所以
化简得点的轨迹方程
6.先用点差法求出,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
7.解:设,则
由
即 所以点的轨迹是以为圆心,以3为半径的圆。
∵点是点关于直线的对称点。
∴动点的轨迹是一个以为圆心,半径为3的圆,其中是点关于直线的对称点,即直线过的中点,且与垂直,于是有
得, 即交点的轨迹方程为
解2: (利用角作参数)设,则
所以 ,两式相乘消去
即可得所求的点的轨迹方程为 。
练习:10.两条直线和的交点的轨迹方程是_________。
总结归纳
1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2.定义法
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.xx的两顶点,和两边上的中线长之和是,则的重心轨迹方程是_______________。
求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
轨迹方程的求法自己的

轨迹方程的求法轨迹方程是描述一个物体运动路径的数学方程。
在物理学、数学和工程学等领域广泛应用。
本文将介绍几种常见的轨迹方程求法,并对其原理进行简要解释。
一、直线轨迹直线轨迹是最简单的一种轨迹形式,也是最容易求解的。
一个物体在直线运动时,其轨迹方程可以表示为 y = kx + b,其中 k 为斜率,b 为截距。
根据物体的初始位置和运动方向,可以通过给定的初始条件求解出 k 和 b,从而得到物体的轨迹方程。
二、抛物线轨迹抛物线轨迹是一种常见的自由落体运动轨迹。
当物体在水平方向上具有匀速运动时,在竖直方向上受到重力的影响,其轨迹可以表示为 y = ax^2 + bx + c,其中 a、b 和c 都是常数。
根据物体的初始位置和速度,可以通过给定的初始条件求解出a、b 和 c,从而得到物体的轨迹方程。
三、圆轨迹圆轨迹描述了物体在一个圆形路径上的运动。
圆轨迹的方程可以表示为 (x -a)^2 + (y - b)^2 = r^2,其中 (a, b) 是圆心坐标,r 是半径。
根据物体的初始位置和速度,可以求解出圆心坐标和半径,从而得到物体的轨迹方程。
四、椭圆轨迹椭圆轨迹是物体在一个椭圆形路径上的运动。
椭圆轨迹的方程可以表示为 (x - a)^2 / a^2 + (y - b)^2 / b^2 = 1,其中 (a, b) 是椭圆中心坐标。
根据物体的初始位置和速度,可以求解出椭圆中心坐标,从而得到物体的轨迹方程。
五、其他轨迹形式除了上述几种常见的轨迹形式外,还有许多其他的轨迹方程形式。
例如,两个物体之间的相对运动轨迹可以通过解析几何的方法求解。
同时,还有一些特殊的轨迹方程,如双曲线、螺旋线等,可以通过相应的数学方法求解。
求解轨迹方程是物理学、数学和工程学等领域的重要问题。
本文简要介绍了几种常见的轨迹方程求法,并对其原理进行了解释。
在实际应用中,根据具体情况选择适合的轨迹方程求解方法,可以精确地描述物体的运动轨迹。
求轨迹方程的常用方法

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发 ______ 动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x, y 与该参数t的函数关系x = f (t),y= g (t),进而通过消参化为轨迹的普通方程F (x, y)= 0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x, y),用(x , y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC 的顶点A , B 的坐标分别为(-4 , 0), (4, 0), C 为 动点,且满足5sin B sin A sin C, 求点C 的轨迹。
4【变式】:已知圆(呂+知°4■护=2于的圆心为M ,圆価一4尸斗尸=1的圆心为M ,—动圆与 这两个圆外切,求动圆圆心 P 的轨迹方程。
的比等于2(即储2)'求动点P 的轨迹方程? 三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为 普通方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.已知中心在原点,焦点在 轴上的椭圆的焦距等于 ,它的一条弦所在的直线方程是 ,若此弦的中点坐标为 ,求椭圆的方程。
例2已知点 动点 满足条件 ,记动点 的轨迹为 。(1)求 的方程。(2)若 是 上的不同两点, 是坐标原点,求 的最小值。
例3如图,矩形ABCD中, ,以AB边所在的直线为x轴,AB的中点为原点建立直角坐标系,P是x轴上方一点,使PC、PD与线段AB分别交于 、 两点,且 成等比数列,求动点P的轨迹方程
(1)求 两点的横坐标之积和坐标之积;(2)求证:直线 过定点;
(3)求弦 中点 的轨迹方程;(4)求 面积的最小值。
4.设过点 的直线分别与 轴和 轴的正半轴交于 两点,点 与点 关于 轴对称。若 ,且 ,求点 的轨迹方程。
巩固练习
1.已知抛物线 的内接三角形 的垂心在此抛物线的焦点 上, 的面积等于 ,求此抛物线的方程。
(3)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
2.已知双曲线C的两条渐近线经过原点,并且与圆 相切,双曲线 的一个顶点 的坐标是
(1)求双曲线 的方程;
(2)已知直线 ,在双曲线 的上支求点 ,使点 与直线 的距离等于 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。
4.已知顶点在原点、对称轴在 轴上的抛物线 被直线 截得的弦 的长为 ,求抛物线 的方程。
例4设双曲线 的两个焦点分别是F1和F2,A、B分别是双曲线两条渐近线上的动点,且 ,求线段AB中点的轨迹方程
例5以抛物线y= x2的弦AB为直径的圆经过原点O,过点O作OM⊥AB,M为垂足,求点M的轨迹方程
精解名题
例1已知圆 和圆 ,动圆 与圆 外切,同时与圆 相内切。(1)求动圆圆心 的轨迹方程。(2)过点 作直线 与点 的轨迹交于 两点,且线段 的中点到 轴的距离为 ,求直线 的方程。
例2以抛物线y= x2的弦AB为直径的圆经过原点O,过点O作OM⊥AB,M为垂足,求点M的轨迹方程
例3 是抛物线 上的两点,且
热身练习
1.已知 两点分别在 轴, 轴上移动,求 中点 的轨迹方程。
2.若 的两个顶点为 点 在曲线 上运动。求 的重心轨迹方程。
3.已知 的半径为3,直线 与 相切,一动圆与 相切,并与 相交的公共弦恰为 的直径,求动圆圆心的轨迹方程。
4.动圆P与定圆 相内切且过点 求动圆圆心 的轨迹方程。
5 已知抛物线y=x2-1上一定点B(-1,0)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的横坐标的取值范围是_________
教学内容
知Hale Waihona Puke 精要求轨迹的常用方法:(1)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;
(2)代入求轨法(坐标平移法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;