八年级上册数学-命题与证明(一)

合集下载

湘教版数学八年级上册_《命题与证明(1)》参考教案1

湘教版数学八年级上册_《命题与证明(1)》参考教案1

2.2命题与证明第1课时定义与命题教学目标:1、了解命题、定义的含义;2、对命题的概念有正确的理解;3、区分命题的条件和结论。

教学重点:找出命题的条件(题设)和结论。

教学难点:命题概念的理解。

教学过程:一、回顾已知引入新课1、填空:(1)三角形的任意两边之和第三边;(2)三角形内角和等于;(3)三角形中,连接一个顶点和它对边中点的连线叫做;(4)三角形三条中线相交于一点,这三条中线的交点叫做。

2、(引入课题)像上(3)(4)这样,对一个概念加以描述说明或作出明确规定的语句叫做这个概念的定义。

二、自主学习探究新知1、师生共同探究第50面的“说一说”和“议一议”。

2、一般地,对某一事情作出判断的语句叫作命题。

我们来看看,下面的语句哪些是命题?(1)如果一个三角形的三个内角都是锐角,那么这个三角形是锐角三角形。

命题通常写成“如果……那么……”的形式,“如果……”就是条件,“那么……”是结论。

(2)在ΔABC中,如果∠A=∠B,那么这个三角形就是等腰三角形;此命题的条件是,结论是。

3、阅读第51面的“观察”,了解命题的一般表述式。

命题也可以不写“如果”、“那么”。

如:直角三角形的一个内角为22°,另外一个锐角为68°.此命题的条件是,结论是。

AB D C三、精讲点拨精练提升1、完成第51面的“做一做”,了解互逆命题。

2、如上图:(命题一)如果AD是ΔABC的中线,那么BD=DC.条件,结论;(命题二)如果BD=DC,那么AD是ΔABC的中线。

条件,结论。

比较命题一和命题二的条件和结论,你发现了什么?3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们就把这样的两个命题称为互逆命题。

其中一个叫作原命题,另一个叫作逆命题。

写一个命题的逆命题,只要将原命题的条件和结论互换就可以得到,所以每个命题都有逆命题。

四、达标检测当堂过关1、说出下列概念的定义:(1)有理数(2)分式方程(3)三角形(4)角平分线2、下列语句哪些是命题:(1)若ab=0,则a=0或b=0;(2)作直线a的平行线b;(3)两直线平行,同位角相等(4)过两点可画几条直线?3、如果ΔABC中∠A=∠B,那么ΔABC是等腰三角形。

华东师大版数学八年级上册1.1命题课件

华东师大版数学八年级上册1.1命题课件

如果两个角是对顶角,那么这两个角相等.
条件
结论
①两直线平行,同位角相等;②直角都相等.
这两个命题,条件和结论分别是什么?
有些命题的条件和结论不明显,可将它经过适当 变形,改写成“如果……,那么……”的情势.
①两直线平行,同位角相等;②直角都相等. ①如果两直线平行,那么同位角相等;
条件
结论
②如果给出的角是直角,那么这些角都相等.
条件成立时,不能保证结论总是正确,也就是 说结论不成立.像这样的命题,称为假命题.
命题的判断方法: 真命题:用演绎推理论证; 假命题: “举反例”.
例题
【例3】判断下列命题是真命题还是假命题. (1)互为补角的两个角相等; (2)若a=b,则a+c=b+c; (3)如果两个长方形的周长相等,那么这两个长 方形的面积相等. 分析:如果是真命题,给出理由即可,如果是 假命题,需要“举反例”.
练习
1.下列语句:①钝角大于90°;②两点之间,线
段最短;③希望明天下雨;④作AD⊥BC;⑤
同旁内角不互补,两直线不平行.其中是命题
的是( B)
A.①②③
B.①②⑤
C.①②④⑤ D.①②④
2.命题“平行于同一条直线的两条直线互相平行” 的
条件是( D )
A.平行
B.两条直线
C.同一条直线 D.两条直线平行于同一条直线
例2中的命题,是正确的吗?
根据等边三角形的判定,我们知道,例2的命题 是正确的. 如果条件成立,那么结论一定成立.像这样的 命题,称为真命题.
思考
内错角相等. 一个钝角和一个锐角的和是平角. 这两个命题是真命题吗?
我们知道,只有两直线平行时形成的内错角才 相等.所以第一个命题不是真命题. 91°和1°的和不是平角,所以第二个命题也不 是真命题.

沪科版度八年级数学上册1.1命题与证明课件

沪科版度八年级数学上册1.1命题与证明课件
那么它就不是命题.例如,下列句子都不是命题:
(1)你喜欢数学吗? (2)作线段AB=CD. ⑶清新的空气; ⑷不许讲话。
将命题“如果p,那么q”中的条件与结 论互换,便得到了一个新命题“如果q ,那么p ”我们把这样的两个命题称为互 逆命题其中一个叫做原命题,另一个就 叫做原命题的逆命题。
下列各语句中,哪些是命题,哪些不是命题?是 命题的,请你先将它改写为“如果p,那么q”的情 势,再指出命题的条件和结论,并说出它的逆命题。
1.相等的两个角是锐角. 2.画一条线段的垂直平分线. 3.两条直线相交,只有一个交点.
4.延长线段AB到C,使AC=2AB
5.同一个角的两个余角相等. 6.两直线平行,同位角相等.
7.当a=b时,有a2=b2. 8.当a2=b2时,有a=b.
1.下列命题的条件是什么?结论是什么? (1)如果两个角相等,那么它们是对顶角; (2)如果a>b,b>c,那么a=c; (3)两角和其中一角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等.
2.上述的命题中,哪些是正确的?哪些是不正确的?你怎么知道 它们是不正确的?与同伴交流.
正确的命题叫做真命题;
错误的命题叫做假命题.
判断下列命题是真命题还是假命题:
1.相等的两个角是锐角. 假命题 3.两条直线相交,只有一个交点.真命题 5.同一个角的两个余角相等. 真命题 6.两直线平行,同位角相等.真命题
7.当a=b时,有a2=b2. 真命题 8.当a2=b2时,有a=b.假命题
一个锐角与一个钝角的和等于180° 假命题
因为30°是锐角,120°是钝角, 而 30°+120°= 150°≠180 °,所以“一个锐角与一个钝角的和等于 180°”是假命题.

【新人教版】2019-2020八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

【新人教版】2019-2020八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

13.2命题与证明第1课时命题与证明◇教学目标◇【知识与技能】1.了解命题、真命题、假命题的意义,了解公理、定理、证明的概念;2.了解原命题、逆命题的意义;3.会判断一个命题的真假,能用举反例的方法判断命题的真假,会写出一个命题的逆命题.【过程与方法】通过一些简单命题的证明,训练学生的逻辑思维.【情感、态度与价值观】通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.让学生积极参与教学活动,对数学定理、命题的由来产生好奇心和求知欲.◇教学重难点◇【教学重点】学习命题的概念和命题、公理、定理的区别.【教学难点】严密完整地写出推理过程.◇教学过程◇一、情境导入上一节课中,我们研究三角形的性质是通过折叠、剪拼或度量得到三角形的内角和为180°的,但这些做法都会出现很多误差,会存在疑问.有没有更准确更严格的方法得出结论呢?二、合作探究问题1:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.例如:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.判断哪些是正确的,哪些是错误的?结论:(1)(2)(4)是正确的,(3)是错误的.问题2:什么叫命题?什么叫真命题?什么叫假命题?结论:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,其中正确的命题称为真命题,错误的命题称为假命题.典例1判断下面语句中哪些是命题?(1)请关上窗户;(2)你明天上学吗?(3)天真冷啊!(4)昨天我们去旅游了。

[解析](4)是命题,(1)(2)(3)不是命题问题3:(1)命题的一般形式是什么?(2)什么叫原命题、逆命题?(3)什么叫反例?结论:(1)命题的一般形式是“如果p,那么q”或“如果p,则q”.(2)将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个就叫做原命题的逆命题.(3)符合命题条件,但不满足命题结论的例子,我们称之为反例.典例2指出下列命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.[解析](1)“两条直线都平行于同一条直线”是条件,“两条直线平行”是结论.(2)“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论.写出下列命题的逆命题,并判断所得逆命题的真假,如果是假命题,请举一个反例:(1)内错角相等,两直线平行;(2)如果a=0,那么ab=0.[解析](1)逆命题是“两直线平行,内错角相等”,是真命题.(2)逆命题是“如果ab=0,那么a=0”,是假命题.反例,当a=1,b=0时,ab=0.典例3已知:如图,直线c与直线a,b相交,且∠1=∠2.求证:a∥b.[解析]∵∠1=∠2,(已知)又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.[解析]∵OE平分∠AOB,OF平分∠BOC,(已知)∴∠1=错误!未找到引用源。

沪科版八年级数学课件:1命题与证明

沪科版八年级数学课件:1命题与证明
写出下列命题的逆命题,并判断它们的真假。
(1)如果a=b,则a2=b2。(2)等角的余角相等。(3)同位角相等,两直线平行。
如果a2=b2 ,则 a=b。
如果两个角的余角相等,那么这两个角也相等。
两直线平行,同位角相等。
思考:原命题是真命题,那么它的逆命题也是真命题吗?
讨论:我们如何判断一个命题的真假?
什么叫做命题:
对某一事物作出正确(真)或者错误(假)判断的语句叫做命题。(也可以说:判断一件事情的语句叫做命题)
判断对错:
即,只要是判断的句子都是命题
命题有真有假
正确的命题叫做真命题
错误的命题叫做假命题


命题的类型
(1)你的作业做完了吗?(2)欢迎前来参观!(3)以点O为圆心,3cm长为半径画弧
判断下列语句是不是命题?是用“√”,不是用“× 表示。
3)不相等的两个角不是对顶角( )
5)相等的两个角是对顶角( )
×

×
×



判断一个句子是不是命题的关键是什么?
命题的结构:任何一个数学命题都是由 两部分组成的. 是 , 是由 , 这种命题常可写成 的情势,“如果”后面的部分是题设,“那么”后面的部分是结论.
问题:(1)上述四个语句是命题吗?(2)它们的题设,结论分别是什么?(3)(1)和(2),(3)和(4)之间,你发现了什么?
把一个命题的题设和结论互换,便可以得到一个新的命题,我们称这样的两个命 题为互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题。
第一个命题的题设是第二个命题的结论
题设和结论
题设
已知事项
结论
已知事项推出的事项
“如果 …那么…”

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

2.2 命题与证明 第1课时 湘教版八年级数学上册教案

2.2 命题与证明 第1课时 湘教版八年级数学上册教案

.知道证明的含义及步骤,能用规范的语言进行证明.知识模块一 探究对命题的证明的步骤延长,则∠ACD、∠B是与它__和△ACD的公共边.求证:∠BDC=∠B+∠C+∠BAC.证明:延长AD于E.∵∠BDE=∠B+∠BAD,∠CDE=∠C+∠CAD.∴∠BDE +∠CDE=∠B+∠C+∠BAD+∠CAD.而∠BDE+∠CDE=∠BDC.∠BAD+∠CAD=∠BAC.即∠BDC=∠B+∠C+∠BAC. 知识模块二 探究反证法的步骤【自主学习】阅读教材P57例2,学习如何运用反证法.【合作探究】用反证法证明:三角形的一个外角等于与它不相邻的两个内角之和.已知:如图,在△ABC中,∠ABD是△ABC的一个外角.求证:∠ABD=∠A+∠C.证明:假设∠ABD≠∠A+∠C.于是就有两种情况:(1)∠ABD>∠A+∠C;由邻补角的定义可知:∠ABD+∠ABC=180°,则∠A+∠C+∠ABC<180°,这与三角形内角和定理相矛盾,所以∠ABD>∠A+∠C不成立;(2)∠ABD<∠A+∠C.由邻补角的定义可知:∠ABD+∠ABC=180°,则∠A+∠C+∠ABC>180°,这与三角形内角和定理相矛盾,所以∠ABD<∠A+∠C不成立.所以三角形的一个外角等于与它不相邻的两个内角之和. 活动1 小组讨论例1 已知:如图,在△ABC中,∠B=∠C,点D在线段BA的延长线上,射线AE平分∠DAC.求证:AE∥BC.证明:因为∠DAC=∠B+∠C,∠B=∠C,所以∠DAC=2∠B.又因为AE平分∠DAC.所以∠DAC=2∠DAE.所以∠DAE=∠B.所以AE∥BC.例2 已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个角大于或等于60°.证明:假设∠A,∠B,∠C中没有一个角大于或等于60°,即∠A<60°,∠B<60°,∠C<60°,则∠A+∠B+∠C<180°.+∠DFE=180°.不止一个交点,不妨假设有两个交点的直线有且只有一条,这与已知两条直线矛盾,假设不成活动3 课堂小结命题的证明{直接证明{(画图)写出已知、求证写出证明过程反证法{反设结论推理导出矛盾证得结论。

八年级数学上册 19.1 命题和证明(第一课时)教案 沪教版五四制

八年级数学上册 19.1 命题和证明(第一课时)教案 沪教版五四制

19.1 命题和证明(第一课时)中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件
命题
组成:
结论

两个命题间的关系:互逆命题
再见!
谢谢指导!

方程:含有未知数的等式叫方程。
三角形的角平分线:在三角形中,一个 角的平分线与这个角的对边相交,这个角 的顶点与交点之间的线段叫三角形的角平 分线。

判断下列语句,是真?还是假? (1)三角形的内角和等于180°; 真 (2)如果︱a︱ =3,那么a=3; 假
(3)1月份有31 天;

(4)做一条线段等于已知线段; 不能判断
条件是: 两直线平行 结论是: 同旁内角互补 改写为: 两条直线被第三条直线所截,如果 两直线平行,那么同旁内角互补。
(1)如果m是自然数,那么m是整数; 条件
结论
结论
(2)如果m是整数,那么m是自然数。
条件
对于两个命题,若把一个命题的条 件与结论互换,即把这各个命题的条件 作为另一个命题的结论,而把这个命题 的结论作为另一个命题的条件,我们把 这样的两个命题称为互逆命题。其中一 个叫作原命题,另一个叫作逆命题。
1.如果a=b且b=c,那么a=c.
2.如果两个角的和等于90°,那么这两个角互余.
条件
结论
它们的叙述方式都是“如果……,那么……”
知识概括:
命题的组成: 1、在“如果…那么…”形式的命题中,“如果” 引出的部分是条件,“那么”引出的部分是结论。
2、命题可看做由条件(题设)和结论两部分组 成。条件是已知事项,结论是由已知事项推出的 事项。即使有些命题表面上不具有“如果…那 么…”的形式,也可以写成这种形式。
练习
说出下列命题的条件和结论,并指出在它们之间你有什 么发现? (1)如果三角形ABC为等边三角形,那么它的每个内角 都为 60
(2)如果三角形ABC的每个内角都为 60 ,那么三角
形ABC是等边三角形 上述两个命题为互逆命题
小结:
定义: 一般地对某件事情作出正确或不正确的判断的
语句(陈述句)叫做命题。
做一做
1.命题:“对顶角相等”
它的条件是
两个角是对顶角,结论是
这两个角相等
.
2.命题:“三角形的一个外角等于它不相邻的两个内角的和” 它的条件是 在三角形中,一个角是这个三角形的外角 结论是 它的度数等于两个不相邻的内角的度数之和. ,
思考:
命题“两直线平行,同旁内角互补”的条件 是什么?结论又是什么?这个命题是否可以写成 “如果…那么…”的形式?
回顾旧知
三角形、三角 形的外角
三角形:不在同一条直线上的三条线段首 尾相接所构成的图形。 三角形的外角:三角形的一边与另一边的 延长线所组成的角。
像这样,对一 个概念的含义加以 描述说明或作出明 确规定的语句叫作 这个概念的定义。
说一说
说出下列概念的定义: (1)方程 (2)三角形的角平分线
(5)一个锐角与一个钝角互补吗? 不能判断
像(1)(2)(3),一般地,对某件事情作出(正确或不 正确的)判断的语句(陈述句)叫做命题。
特点: (1)命题是一个陈述句,而祈使句、疑问句,感叹句 均不是命题。如(4)(5) (2)命题实际就是判断一件事情的句子。
观察:
下列命题的表现形式有什么共同点?
相关文档
最新文档