过程控制课程设计(脱丙烷塔控制系统设计 有图)
双塔脱丙烷

新疆工程学院毕业论文(设计)2010 届题目五彩湾煤生烃潜力的研究专业应用化工技术学生姓名张营娣学号2010231422小组成员指导教师马燕老师完成日期2013-4-11新疆工业高等专科学校教务处印制新疆工程学院毕业论文(设计)任务书班级应化10-5(3)班专业应用化工技术姓名张营娣日期2013-4-111、论文(设计)题目:五彩湾煤生烃潜力的研究2、论文(设计)要求:(1)学生应在教师指导下按时完成所规定的内容和工作量,最好是独立完成。
(2)选题有一定的理论意义与实践价值,必须与所学专业相关。
(3)主题明确,思路清晰。
(4)文献工作扎实,能够较为全面地反映论文研究领域内的成果及其最新进展。
(5)格式规范,严格按系部制定的论文格式模板调整格式。
(6)所有学生必须在4月11日之前交论文初稿。
3、论文(设计)日期:任务下达日期 2013.3.5完成日期 2013.4.114、指导教师签字:新疆工程学院毕业论文(设计)成绩评定报告毕业论文答辩及综合成绩引言乙烯装置顺序分离流程中,最初均采用单塔脱丙烷,脱丙烷塔进料为碳三和碳四以上馏分,现在都用于乙烯装置双塔脱丙烷塔。
工艺对乙烯装置脱丙烷塔操作的基本要求是希望塔内能进行传质过程。
塔顶轻关键组分和塔底重能达到规定的分离纯度。
尽量提高产品的回收率,已获得较高的产量:尽量节约能源,使精馏过程中消耗的能源最少。
为此脱丙烷塔的自动控制也必须满足质量指标,物料平衡及余数条件等制要求。
脱丙烷塔的主要任务是切割C3和C4混合馏分,混合液进入精馏塔内(主要含C3和C4)进料为气态混合物.进料混合馏分经过脱丙烷塔切割分离,塔顶馏分被冷凝器冷凝后送至回流管中影响脱丙烷精馏操作因素有:进料量、成分、进料温度、再沸器加热量。
塔内蒸汽上升速度、回流量、塔顶底的采出量。
可操作变量有进料流量、塔底采出流量及再沸器加热脱丙烷塔所处环境为甲级防暴区域,工艺介质多为混合物、沸点低、易挥发、易爆生产装置处于露天低压导风向由西向东,冬夏季温差较大。
脱丙烷塔施工方案

脱丙烷塔施工方案一、工程概况与目标本工程旨在建设一座脱丙烷塔,以满足日益增长的化工产品需求。
工程位于XX化工厂区内,预计建成后能够有效提升产品质量和生产效率。
本方案明确了工程建设的总体目标、技术标准和施工质量要求,确保施工过程的安全、高效、经济。
二、施工流程与顺序基础施工:包括地基处理、混凝土浇筑等。
塔体安装:按照设计图纸进行塔体组装和安装。
设备安装:安装塔内各类设备,如填料、换热器、再沸器等。
管道安装:连接塔体与周边设备的管道系统。
电气与自控系统安装:包括仪表、控制柜等设备的安装与调试。
系统调试:完成所有设备安装后,进行系统调试,确保运行正常。
三、材料选择与检验所有用于工程建设的材料应符合国家标准和行业规范,具有相应的质量证明文件。
施工过程中应定期进行材料检验,确保材料质量稳定可靠。
四、设备安装与调试设备安装前应进行预检,确保设备完好无损。
安装过程中应遵循操作规程,确保安装质量。
设备安装完成后,应进行系统调试,检查设备运行是否正常,确保系统性能达到预期要求。
五、安全防护与措施施工过程中应严格遵守安全操作规程,采取必要的安全防护措施。
定期对施工现场进行检查,消除安全隐患。
施工人员应佩戴防护用品,确保人身安全。
六、质量监控与验收施工过程中应建立质量监控体系,对施工质量进行全程跟踪和控制。
每个施工环节完成后应进行验收,确保施工质量符合设计要求。
工程整体完成后,应组织专业人员进行综合验收,确保工程质量和性能达标。
七、风险评估与应对针对施工过程中可能出现的风险因素进行评估,制定相应的应对措施。
如天气变化、设备故障等突发情况发生时,应及时调整施工方案,确保施工顺利进行。
八、工程进度与管理制定详细的施工进度计划,明确各阶段的目标和时间节点。
施工过程中应加强进度管理,确保工程按计划推进。
同时,加强施工现场管理,确保施工秩序良好。
通过本施工方案的实施,我们有信心建设一座高质量、高性能的脱丙烷塔,为化工产业的发展做出贡献。
丙烷脱氢装置DCS与SIS一体化设计(评审修改版)

丙烷脱氢装置DCS与SIS一体化设计(评审修改版)丙烷脱氢装置DCS与SIS一体化设计梁亚霖1程兴1陈备跃2浙江中控技术股份有限公司,浙江杭州,310053宁波海越新材料有限公司,浙江宁波,315800摘要:集散控制系统(DCS)和安全仪表系统(SIS)在工业过程控制中的地位都是不可或缺的。
近年来,对于是否将两者系统进行集成实现DCS/SIS一体化控制系统一直是过程控制系统研究领域讨论的热点。
本文以丙烷脱氢项目为例,结合实例阐述了DCS/SIS一体化系统架构的原理,并总结了DCS/SIS一体化实施的过程。
关键词:丙烷脱氢安全仪表系统集散控制系统一体化控制Integration of DCS and SIS for a Propane Dehydrogenation UnitLiang Yalin1Cheng Xing1 Chen Beiyue2Zhejiang SUPCON Co., Ltd., Hangzhou, Zhejiang, 310053Ningbo Haiyue New Material Co., Ltd., Ningbo, Zhejiang 315800Abstract: Distributed Control System (DCS) and Safety Instrumented Systems (SIS) play an important roles in the industrial process control, they’re both essential. In recent years, it is an argument that whether DCS and SIS should be integrated. The control system integration of DCS & SIS is described in detail in various stages of projects implementation and the actual effect in the whole process.Keywords: Propane Dehydrogenation(PDH),Safety Instrumented Systems (SIS), Integration, Distributed Control System(DCS)0 引言宁波海越新材料有限公司60万吨/年丙烷脱氢装置,采用美国Lummus公司的Catofin 工艺,是其C3~C5烷烃脱氢生产单烯烃的改进技术。
任务书3脱丙烷塔

《过程控制工程》课程设计任务书一、设计题目:脱丙烷塔控制系统设计二、设计目的:1、掌握控制系统的基本构成、原理及设计的方法和步骤。
2、掌握控制方案的设计、仪表选型的方法及管道流程图、仪表接线图、仪表安装等图的绘制方法。
3、掌握节流装置和调节阀的计算。
4、了解信号报警及联锁系统的设计和顺序控制系统的设计。
5、了解过程控制设计的设计文件构成及编制。
6、通过理论联系实际,掌握必须的工程知识,加强对学生实践动手能力和协作完成工程设计任务能力的培养。
三、设计所需数据:1、主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是丁二烯。
主要工艺流程如附图1所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力基本恒定在0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
假设该脱丙烷塔控制的主要目标是塔釜关键组分,可以再沸器的减压蒸汽流量为操纵变量构成控制系统,且此时再沸器的减压蒸汽流量是经常出现的扰动。
同时要保持塔进料稳定,以及塔釜液位与塔底A馏出物料均匀缓慢变化。
试设计自动控制,满足质量指标、物料指标、能量平衡及约束条件等要求。
脱丙烷塔所处的环境为甲级防爆区域,工艺介质为多种烃类混合物,沸点低、易挥发、易燃、易爆,生产装置处于露天,低压、低温。
主导风向由西向东。
2、仪表选型说明所选仪表应具有本质安全防爆性能等特点,电动Ⅲ型仪表在安全性、可靠性等方面已能满足要求。
电动仪表信号传送快且距离远,易与计算机配合使用,除控制阀外,可选用电动Ⅲ型仪表或采用数字式控制仪表。
脱戊烷塔塔顶压力自动控制系统设计-化工过程控制工程课程设计报告

《化工过程控制工程课程设计报告》题目:脱戊烷塔塔顶压力自动控制系统设计学院:专业:班级:姓名:指导教师:年月日目录1.课程设计的目的 (1)2.课程设计题目描述和要求 (1)3.课程设计报告内容 (1)3.1工艺简介 (1)3.2控制系统设计 (2)3.3仪表选择 (3)3.3.1压力仪表的选择: (3)3.3.2控制阀的选择: (5)3.3.3电气阀门定位器的选择: (6)3.3.4仪表介绍 (8)3.4控制系统连接 (9)3.5系统投运 (9)参考书目 (11)附录:脱戊烷塔工艺图1.课程设计的目的针对脱戊烷塔顶压力自动控制系统的课题,模拟的进行完整的设计,理论联系实际,运用和巩固在《化工过程控制工程》课程和本专业其他相关课程所学习的知识,培养独立思考、分析和解决实际问题的能力。
通过本次设计使学生熟悉工程设计的思维和步骤,并了解如何进一步根据确定的设计方案合理选择自动化仪表,培养学生查阅资料,独立获取新知识、新信息的能力。
2.课程设计题目描述和要求(1)题目:脱戊烷塔塔顶压力自动控制系统设计(2)要求:1.设计符合要求的合适的控制系统:2.画出控制原理图;3.选择合适的控制、检测仪表;4.进行系统的连接和所选仪表作用方式的正确确定。
3.课程设计报告内容3.1工艺简介蒸汽裂解装置中产生的裂解气经过分离出来的碳五以后的汽油组分作为脱戊烷塔的进料,利用C5馏分与C5以后等重组分沸点不同,在脱戊烷塔中进行气液分离,使C5组分从C5以后的重组分中分离出来。
温度是影响产品质量的重要因素,因此需要设计控制方案加以控制。
只有在一定的压力下温度才能表征分离的效果因此对压力也需进行自动控制,进料从塔中部(第24块塔盘)进入。
塔顶产品为碳五馏分,送出界区,塔底产品为C6-C8汽油馏分,也送去贮罐。
脱戊烷塔压力0.08MPa(G),塔底温度111℃,再沸器采用低压蒸汽进行换热。
脱戊烷塔工艺进料为C5以上组分,塔顶产物为C5,塔底产物为C6-C8。
脱丙烷精馏塔设计

设 , ,查 图得 列下表
表2-3
组分
i
i
n
反
%
1.0
55.0
8.5
15.8
4.8
10.5
1.7
2.7
1
3.6
1.52
1.34
0.675
0.63
0.6
0.52
0.5
1
0.00278
0.3618
0.06343
0.234
0.07762
0.175
脱丙烷塔

工艺设计条件 液相
1 质量流量 2 密度 3 体积流量 4 粘度 5 表面张力 6 体系因子 1 塔径 2 板间距 3 塔截面积 4 开孔区面积 5 开孔率 kg/h kg/m3 m3/h cp dyn/cm / m m m2 m2 % 31736.46 7 质量流量 814.85 38.95 0.55 26.05 0.50 2.04 0.6096 3.2557 2.2218 12.00 8 密度 9 体积流量 10 粘度 11 安全因子 12 充气因子 6 孔数 7 开孔密度 8 溢流程数 9 堰的形式
90%操作
1.1178 1.7481 0.0613 9.3147 14.5671 3.1972 5.0000 23.6844 0.0488 0.0634 0.0234 0.0317 0.0713 0.1030 0.0189 53.1705 0.1727 20.4134 0.0299 0.2027 0.0063 2.9134 3.0000
负荷性能图参数
1 操作点横坐标 2 操作点纵坐标 3 操作上限百分比 4 操作下限百分比 5 5%漏液时漏点动能因子 m3/h 10^3m3/h --m/s(kg/m3)^0.5 38.95 14.56 110.00% 90.00% 5.00
6 10%漏液时漏点动能因子
m/s(kg/m3)^0.5
A
B
A
B
A
B
C
B
单流程塔盘
双流程Y 气相体积流量 10^3*m3/h 0-操作线 1-液相下限线 2-液相上限线 3-漏液线 4-雾沫夹带线 5-液泛线
气相
kg/h kg/m 3 m3/h cp / / # #/m2 / / 35601.41 2.45 14556.42 0.01 0.80 0.50 327.21 147.27 1 平堰
过程控制课程设计(脱丙烷塔控制系统设计有图)资料

成绩:《过程控制工程》课程设计报告题目:脱丙烷塔控制系统设计学院:计算机与电子信息学院班级:自动化姓名:学号:指导教师:起止日期:2012年12月31日~2013年01月4日目录一、设计任务书 (2)二、设计说明书 (5)1、摘要2、基本控制方案的设计与分析3、节流装置的计算4、蒸汽流量控制阀口径的计算三、参考文献 (11)四、附图 (15)一、设计题目:《脱丙烷塔控制系统设计》二、设计目的:1、掌握控制系统的基本构成、原理及设计的方法和步骤。
2、掌握控制方案的设计、仪表选型的方法及管道流程图、仪表接线图、仪表安装等图的绘制方法。
3、掌握节流装置和调节阀的计算。
4、了解信号报警及联锁系统的设计和顺序控制系统的设计。
5、通过理论联系实际,掌握必须的工程知识,加强对学生实践动手能力和独立完成工程设计任务能力的培养。
三、设计所需数据:1、主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是组分丁二烯。
主要工艺流程如图1所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力为0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
脱丙烷塔的自动控制应满足质量指标、物料指标、能量平衡及约束条件等要求。
脱丙烷塔所处的环境为甲级防爆区域,工艺介质为多种烃类混合物,沸点低、易挥发、易燃、易爆,生产装置处于露天,低压、低温。
主导风向由西向东。
2、仪表选型说明所选仪表应具有本质安全防爆性能等特点,电动Ⅲ型仪表在安全性、可靠性等方面已能满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩:《过程控制工程》课程设计报告题目:脱丙烷塔控制系统设计学院:计算机与电子信息学院班级:自动化姓名:学号:指导教师:起止日期:2012年12月31日~2013年01月4日目录一、设计任务书 (2)二、设计说明书 (5)1、摘要2、基本控制方案的设计与分析3、节流装置的计算4、蒸汽流量控制阀口径的计算三、参考文献 (11)四、附图 (15)一、设计题目:《脱丙烷塔控制系统设计》二、设计目的:1、掌握控制系统的基本构成、原理及设计的方法和步骤。
2、掌握控制方案的设计、仪表选型的方法及管道流程图、仪表接线图、仪表安装等图的绘制方法。
3、掌握节流装置和调节阀的计算。
4、了解信号报警及联锁系统的设计和顺序控制系统的设计。
5、通过理论联系实际,掌握必须的工程知识,加强对学生实践动手能力和独立完成工程设计任务能力的培养。
三、设计所需数据:1、主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是组分丁二烯。
主要工艺流程如图1所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力为0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
脱丙烷塔的自动控制应满足质量指标、物料指标、能量平衡及约束条件等要求。
脱丙烷塔所处的环境为甲级防爆区域,工艺介质为多种烃类混合物,沸点低、易挥发、易燃、易爆,生产装置处于露天,低压、低温。
主导风向由西向东。
2、仪表选型说明所选仪表应具有本质安全防爆性能等特点,电动Ⅲ型仪表在安全性、可靠性等方面已能满足要求。
电动仪表信号传送快且距离远,易与计算机配合使用,除控制阀外,最好全部选用电动Ⅲ型仪表。
采用安全栅,可构成本质安全防爆系统。
3、再沸器加热蒸汽流量检测系统环室式标准孔板计算数据:(1)被测流体:饱和水蒸汽(2)流量:Mmax=1350kg/h; Mcom=900kg/h; Mmin=450kg/h(3)工作压力:p1=0.15MPa(绝压); 工作温度:t1=110℃(4)密度:ρs=0.8528kg/m3;粘度η=25×10-6Pa·s(5)允许的压力损失:应尽量小(6)管道内径:D20=200mm(7)管道材质:20#钢,新无缝管4、蒸汽流量控制阀口径计算数据:(1)流体:饱和水蒸汽(2)正常流量条件下:阀前绝压:P1=140kPa阀后绝压:P2=105kPa阀前温度:t1=110℃管道内径:D1= D2=200mm正常流量:MS=900kg/h密度:ρS=0.8528kg/m3(3)稳态最大流量:Mmax=1350kg/h(4)选型:气动单座调节阀,等百分比固有流量特性,流开向型。
型号:ZMAP-1.6K四、主要设计任务1、确定基本控制方案,要带有信号报警系统(设置3个液位报警上、下限:塔釜液位:30%-90%,冷凝器液位:20%-80%,回流罐液位:30%-80%),并按规范绘制带控制点的工艺流程图。
2、对至少一个回路(再沸器加热蒸汽流量控制系统)进行仪表选型。
3、对至少一个回路(再沸器加热蒸汽流量控制系统)的节流装置和调节阀进行计算。
4、分析所用到的复杂控制系统并绘制复杂控制系统的接线图。
5、设计布置控制室并绘制控制室平面布置图。
6、绘制再沸器加热蒸汽流量检测系统标准孔板制造图。
五、需提交的设计文件1、设计说明书2、控制流程图3、自控设备表4、复杂系统仪表接线图5、节流装置及调节阀计算数据表6、标准孔板制造图7、控制室平面布置图其中第1项应包括目录、摘要、正文及参考文献等项;2-7项均应按制图或制表规范来制作,图纸采用3号纸(297×420mm),也可以使用电脑制图,作为附录附在设计说明书后。
参考资料1、《过程控制系统工程设计》.孙洪程,翁唯勤合编.化学工业出版社2、《实用自动控制指南》.[美]M.G安德鲁,H.B威廉斯.化学工业出版社3、《炼油化工自控设计手册》4、《过程控制工程》.王树清等编.化学工业出版社设计说明书一、摘要脱丙烷塔的主要任务是利用混合液中各组分挥发度的不同分离丙烷和丁二烯组分,并达到规定的纯度要求。
塔顶轻组分主要是丙烷,塔低重组分主要是丁二烯。
其中丙烷占 10,丁二烯占 89,其它杂质占 1。
为了满足脱丙烷塔的自动控制的质量指标、物料指标、能量平衡及约束条件等要求。
设计包括提馏段的温度与蒸汽流量的串级控制;塔顶鸭梨为被控变量,气态丙烯与去尾气管线组成分层控制;进料流量的简单均匀控制;回流罐的液位与回流管的回流量组成串级均匀控制;回流量的定制控制;以及进料、回流、塔顶、塔釜的温度检测,塔压检测,回流量的流量检测等。
关键字:串级控制,被控变量,分层控制,均匀控制,定值控制,检测。
二、基本控制方案的设计与分析1.提馏段的温度与蒸汽质量组成串级控制维持提馏段的温度恒定对此反应装置的是否能顺利进行以及产品的质量是否达标是很重要的。
设计此系统的控制目的主要就是为了维持提馏段内温度得恒定,以保证反应的稳定顺利进行。
由于影响提馏段的一个重要因素是来自减压蒸汽总管的蒸汽流量,而提馏段的温度恒定才是主要控制的目的。
因为加热用的减压蒸汽由来减压蒸汽总管的蒸汽与冷凝水混合制得,所以来自减压总管蒸汽流量的变化作用于提馏段的温度有一定的滞后时间。
因此,设计一串级控制系统,以提馏段的温度为主变量,以来自减压总管的蒸汽量作为副变量,它能快速地消除因蒸汽汽源压力或冷凝压力变化引起的扰动,从而达到较好地控制提馏段的温度恒定的目的。
2.塔顶压力为被控变量,气体丙烯与去尾气管线组成分程控制要保证反应的顺利进行,塔顶的压力恒定也是一个重要的的参数。
影响此压力的是再沸器的气态丙烯流量以及回流灌的压力(由去尾气管线的流量控制)。
为了扩大控制阀的可调范围,改善控制系统的品质,以满足工艺上的要求。
因此设计一分程控制,以塔顶压力恒定为主要控制目的,当投操纵变量气态丙烯流量的改变不足于控制断控制压力时,调解去尾气管线上的流量,以达到控制塔顶的压力的目的。
3.回流罐的液位与回流管的回流量串级均匀为保证回流量的稳定,以及使回流罐不流空,设计此液位一流量串级控制系统。
4.塔釜的液位与塔釜流出的流量的串级均匀控制同上一控制系统相似,由于变量间的相互关联、为保证塔内的液位恒定,去脱丁烷塔管线的流量稳定,设计此串级控制系统,以达到控制塔内液位与流出量的稳定。
5.为保证反应的稳定进行,设计一进料流量的均匀控制6.报警系统为保证塔釜、回流罐、冷凝器的液位不超过可控范围,可分别设计一液位报警系统——当塔釜液位偏离30%-90%时,冷凝器液位偏离20%-80%时,回流罐液位偏离30%-80%时,报警提示。
为了保证塔压的变化不超过允许值,分别在塔顶与塔底安装了一个具有温度上限报警的温度检测仪表。
为了保证塔压的变化不超过允许值,在位于塔上部的地方装一带压力上限报警系统的压力检测仪表7.除了上述控制装置外,还设计有对进料、塔底采出、不凝气体排出、回流物温度检测。
具体见附图:脱丙烷塔工艺流程图。
8.控制室平面布置图绘制说明由于生产装置处于露天,工艺介质易燃、易爆,且主导风向由西向东,因此设计此控制室位子生产装置的西边,且门跟窗都向着生产装置。
控制盘背向生产装置,以利于电缆进入与之连接。
具体见控制室平面布置图。
三、节流装置计算:1、己知条件:(1)被测流体:饱和水蒸汽(2)流量:Mmax=1350 kg/hMcom=900 kg/hMmin=450 kg/h(3)工作压力:ρ= 0.15Mpa (绝压)(4)工作温度:t1= 110.0(5)允许的压力损失:应尽是小(6)管道内径:D20=200mm(7)仍管道材质:20#钢,新无缝管(8)管道和局部阻力件敷设简图如下所示。
图中LI、L2, LO按设计要求要求设。
(9)要求采用角接取压(环室)标准孔板,配电动差压变送器。
2.辅助计算(本例中的公式右侧标注的页号和图、表号与《国家标准流量测量节流装置》)(1)工作状态下,质量流量标尺上限:M=1600kg/h(2)管道材质的线膨胀系数:∧D=12.12×106- mm/mm·c(3)工作状态下,管道内径:D=D20[1+∧D(t1-20)]=200×[1+12.12×106-×(110-20)]=200.218mm(4)工作状态下,饱和水蒸气的粘度:η=25×106-Pa·s(5)工作状态下,饱和水蒸气的密度:ρs=0.8528kg/m3(6) 工作状态下,饱和水蒸气的等熵指数: χ=1.29(7)管道粗糙度: K=0.10(8)管径与粗糙度之比: D/K=200.218/0.10=2002.18>100 (9)求ReD m in 的值: ReD m in =354×103-×ηD M min =354×103-×61025218.200450-⨯⨯ =3.1825×104(10)求ReD com 的值: ReD com =354×103-×ηD Mcom =354×103-×61025218.200900-⨯⨯=6.3651×104(11)根据ReD m in =3.1825×104和角接取压标准孔板的要求,角接取压标准孔板适用的最小雷诺数ReD m in 推荐值可知,在β<0.50的范围内β取任意值时,因流量变化引起的流量系数α0的改变,其附加误差小于0.5%。
(12)由于要求压力损失尽量小,故取β=0.48为确定差压上限的依据。
(13)确定差压上限:a :令γRe =1,R eD =105,β=0.48 取 α0β2=0.14324b:h max =122202)003999.0(ρβαD M =8528.0)218.20014324.0003999.0(1600222⨯⨯⨯ =5693.1 Pa=5.693 kPa 取:h 20=6.0KPa C:验算P2/P1值 P2/P1=(140-6)/140=0.96≥0.75 上述h 20值可用d :选用1151DP-4E22M1B3D2Fa 型电容式差压变送器(14)求h com 20值:h com 20=(Mcom/M )2h 20=(900/1600)2×6.0=1.8984 kPae :计算:(1)令γRe =1, ε=1,根据M com 、1ρ、D 、h com 20,求(α0β2)1值: (α0β2)1=com h DMcom2012003999.0ρ=18988528.0218.200003999.09002⨯⨯=0.1395(2)根据(α0β2)1、ReD com ,求1β值:取接近(α0β2)1=0.1395,ReD com =6.3651×104的β值,查表可得 1β=0.474(3)根据D/K 、1β、ReD com ,求Re γ值: Re γ=(10-γ)1)6Re lg (+D式中 10=γ 得 Re γ=1(4)根据P2/P1,χ、1β,求ε值:P2/P1=0.96,χ=1.29,1β=0.474ε=1-(0.3707+0.3184β2)[1-z P P 112)(]935.0=1-(0.3707+3.84×2474.0)935.029.11])96.0(1[-=0.9849(5)求(α0β2)2的值:(α0β2)2=εγβαRe 120)( =9849.011395.0⨯=0.1416(6)根据(α0β2)2、ReD com ,求β和α的值:D Re =5×410时: '2β=0.476+4769.0)476.0477.0(14103.014166.0=--'0α=6226.0)062246226.0(14103.014166.014141.01416.06224.0=---+D Re =4108⨯时: ''2β=4773.0)6215.06217.0(14141.014205.014141.01416.0477.0=---+''0α=6216.0)6215.06217.0(14141.014205.014141.01416.06215.0=---+D Re =4104386.6⨯时: )4769.04773.0(10)58(10)54386.6(4769.0442-⨯-⨯-+=β=0.4771 )6226.06216.0(10)58(10)54386.6(6226.0440-⨯-⨯-+=α=0.6221 (7)求d 值: d=D •2β=0.4771×200.218=95.5240mm (8)验算:com comh d M20120'003999.0ρεα==4.18988528.0524.959849.06221.0003999.02⨯⨯⨯⨯=899.5932kg/hcomcom com MM M M -='δ×100%=9009005932.899-×100%=-0.045% 上述计算合格。