过程控制系统课程设计

合集下载

过程控制系统课设

过程控制系统课设

过程控制系统课程设计一、设计任务书1. 题目PH控制系统2. 设计要求①设计义某化工过程中废液中和的pH控制系统;②对控制系统稳定性进行分析;③对控制系统的参数进行整定;④控制系统Simulink仿真。

3 . 仪器设备A3000现场控制系统,pH控制系统。

二、基本原理pH控制系统子工业,尤其是化工等行业,应用非常广泛。

利用pH控制可以实现化工过程的正常生产过程、造纸厂等化工厂废液达标排放等。

1. pH的特点PH控制系统的主要方式有:有一种碱(或酸)滴定另一种物质使pH值保持在某一值上;对两种分别呈酸性和碱性物质的流量进行控制使pH值保持在某一值上;控制两种物质使混合溶液保持在一定的pH值上。

PH控制和其他控制参数的不同主要有以下两点:●PH滴定曲线的高度非线性;●滴定过程的测量纯滞后特性。

图01为典型的酸碱滴定特性曲线。

从图01知,溶液的pH值随中和流量非线性变化。

图01 典型的酸碱滴定特性曲线显然在控制系统中将pH值的变化转化为中和反应酸碱的控制流量变化,是根据滴定特性曲线进行的。

将滴定特性曲线转化为酸碱流量变化规律的方法主要有三种:●利用非线性阀补偿过程的非线性;●采用三段式滴定调节器,用三条相接的线性段代替非线性滴定曲线;●采用滴定曲线的非线性调节器精确描述滴定曲线。

随着技术的进步,利用非线性阀补偿滴定曲线非线性用的越来越少;而基于计算机功能元器件或计算机的第二种方法和第三种方法应用越来越多。

对滞后的补偿常采用以下三种方法:●微分Smith补偿方法,由于该方法本身适应能力较差,较少使用;●改进的Smith补偿方法;●自适应方法,应用较多的是增益自适应的Smith法。

为了提高控制系统的误差跟踪能力,pH控制系统经常采用的控制策略是PI或PID,不能采用P调节。

2. 三段式非线性调节器和采用滴定曲线的非线性调节器(1)三段式非线性调节器实际中,酸碱中和后通过pH计测得pH值的大小,控制系统当前pH值大小折算成溶液中酸碱量的多少,并调节系统酸碱流量的大小实现要求的pH值。

过程控制系统课程设计任务书

过程控制系统课程设计任务书
组态的系统能够正常工作,完成设计要求中所提功能。
设计说明书一份(总体设计、硬件组态、相关数据连接、控制程序清单等)
பைடு நூலகம்四、进程安排
周一:硬件模块组态
周二:相关数据的连接与调试
周三:编写控制程序,进行软件调试
周四:撰写设计说明书
周五:答辩
五、主要参考资料
1、吴作明主编,工控组态软件与PLC应用技术,北京航空航天大学出版社
(2)组态的说明。
3.系统程序的设计。
(1)相关数据的连接。
(2)控制程序的编写。
4.完成的控制系统能达到题目的要求。
5.撰写设计说明书。
二、设计原始资料
施仁主编,自动化仪表与过程控制,电子工业出版社。
许志军主编,工业控制组态软件及应用,机械工业出版社。
三、要求的设计成果(课程设计说明书、设计实物、图纸等)
2、潘立登主编,过程控制,机械工业出版社。
3、侯志林主编,过程控制与自动化仪表,机械工业出版社
指导教师(签名):
教研室主任(签名):
过程控制系统课程设计任务书
一、设计题目、内容及要求
设计题目:过程控制系统课程设计
设计内容:
下列设计中其中一项作为设计内容:水箱液位串级控制,水箱液位与进水口流量串级控制,锅炉夹套水温与锅炉内胆水温串级控制。
设计要求:
1、根据题目要求进行控制系统总体设计。
2.完成系统硬件模块的组态。
(1)硬件模块组态。

过程控制系统课程设计

过程控制系统课程设计

过程控制系统课程设计报告书课设小组:第四小组目录摘要 (1)第一章课程设计任务及说明 (2)1.1课程设计题目 (2)1.2 课程设计容 (3)1.2.1 设计前期工作 (3)1.2.2 设计工作 (4)第二章设计过程 (4)2.1符号介绍 (4)2.2水箱液位定制控制系统被控对象动态分析 (6)2.3压力定制控制系统被控对象动态分析 (7)2.4串级控制系统被控对象动态分析 (7)第三章压力 P2 定值调节 (8)3.1 压力定值控制系统原理图 (8)3.2 压力定值控制系统工艺流程图 (8)第四章水箱液位L1定值调节 (9)4.1 水箱液位控制系统原理图 (9)4.2 水箱液位控制系统工艺流程图 (9)第五章锅炉流动水温度T1调节串级出水流量F2调节的流程图 (10)5.1串级控制系统原理图 (10)5.2串级控制系统工艺流程图 (11)第六章控制仪表的选型 (12)6.1 仪表选型表 (12)6.2现场仪表说明 (13)6.3 DCS I/O点位号、注释、量程、单位、报警限及配电设置表 (14)第七章控制回路方框图 (15)总结 (15)参考文献 (16)摘要过程控制课程设计是过程控制课程的一个重要组成部分。

通过实际题目、控制方案的选择、工程图纸的绘制等基础设计和设计的学习,培养学生理论与实践相结合能力、工程设计能力、创新能力,完成工程师基本技能训练。

使学生在深入理解已学的有关过程控制和DCS系统的基本概念、组成结构、工作原理、系统设计方法、系统设计原则的基础上,结合联系实际的课程设计题目,使学生熟悉和掌握DCS控制系统的设计和调试方法,初步掌握控制系统的工程性设计步骤,进一步增强解决实际工程问题的能力。

关键词:过程控制设计DCS第一章课程设计任务及说明1.1课程设计题目:附图为某过程控制实验装置的P&ID图,该图为一示意图,并不完全符合规。

根据该图,请完成以下任务:不完全符合规的P&ID图1、指出该图不符合“自控专业工程设计用图形符号和文字代号(HG/T20637.2)”的地方。

过程控制课程设计

过程控制课程设计

过程控制 课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握其原理和分类。

2. 使学生掌握过程控制系统中常用的数学模型及其应用。

3. 引导学生了解过程控制系统的设计方法和步骤。

技能目标:1. 培养学生运用数学模型分析和解决过程控制问题的能力。

2. 培养学生设计简单过程控制系统的能力,能根据实际需求选择合适的控制策略。

3. 提高学生运用现代工具(如计算机软件)进行过程控制系统仿真的技能。

情感态度价值观目标:1. 培养学生对过程控制学科的兴趣和热情,激发他们探索未知、勇于创新的科学精神。

2. 培养学生具备良好的团队合作意识,学会与他人共同分析问题、解决问题。

3. 引导学生认识到过程控制在工业生产、环境保护等领域的重要作用,增强他们的社会责任感和使命感。

分析课程性质、学生特点和教学要求,本课程目标旨在让学生掌握过程控制的基本知识和技能,培养他们解决实际问题的能力。

通过课程学习,学生将能够:1. 理论联系实际,运用所学知识分析、解决过程控制问题。

2. 掌握过程控制系统的设计方法和步骤,具备一定的控制系统设计能力。

3. 提高自身的科学素养,培养良好的团队合作精神和创新意识。

4. 关注过程控制在社会生产中的应用,为我国工业发展和环境保护做出贡献。

二、教学内容1. 过程控制基本概念:包括过程控制定义、分类、发展历程及其在工业中的应用。

教材章节:第一章 绪论2. 过程控制系统数学模型:介绍控制系统的传递函数、状态空间表达式、方块图及其相互转换。

教材章节:第二章 数学模型3. 过程控制策略:讲解比例、积分、微分控制规律,以及串级、比值、前馈等复合控制策略。

教材章节:第三章 控制策略4. 过程控制系统设计方法:阐述控制系统的设计原则、步骤和方法,包括稳定性分析、性能指标和控制器设计。

教材章节:第四章 系统设计与分析5. 过程控制系统仿真:介绍过程控制系统仿真软件及其应用,通过实例演示仿真过程。

教材章节:第五章 系统仿真与实现6. 过程控制案例分析:分析典型过程控制系统的实际问题,探讨解决方案。

过程控制系统课程设计

过程控制系统课程设计

过程控制系统课程设计1000字作为一种系统工程,过程控制系统对于工业自动化的实现至关重要。

本文将介绍一项过程控制系统课程设计,目的是通过实际操作、编程和调试提高主观能动性,深化理论学习,提升学生对过程控制系统的认识。

1. 实验目的通过本次课程设计的实验,学生将学习并掌握以下内容:1)了解过程控制系统的基本概念,熟悉控制系统的硬件结构和控制器的工作原理;2)掌握模拟信号的采集和处理技术,及其在过程控制系统中的应用;3)理解PID控制器的原理和调节方法,熟悉常用的控制算法;4)学习模拟量信号的传输及数字量信号的传输与控制,深入剖析过程控制系统中各种控制技术的特点及其应用;5)熟悉数据采集与通信技术,主控器的编程、调试和软硬件环境搭建方法。

2. 实验设备与材料本实验所需的设备及材料如下:1)PLC控制器(可使用Siemens S7-200、Schneider Zelio Logic等PLC控制器);2)功率放大器(使用1KW的功率放大器,用于控制实验装置的加热);3)温控器、温度传感器、压力传感器、流量传感器、液位传感器(包括普通型、电容型、毛细管型等);4)人机界面操作器/工控机、旋钮开关、LED、蜂鸣器等交互控制组件;5)驱动器/执行机构,接口电缆、相应的电源和电线等。

3. 实验内容及步骤(1)实验装置的搭建实验装置包括温度控制、压力控制、流量控制、液位控制等构件,以PID控制器为主要控制模式,控制对象为温度、压力、流量和液位,并通过PLC控制器进行控制。

搭建实验平台的具体步骤如下:1)选择和购买控制器和实验箱;2)安装和调试控制器与箱体之间的接口;3)加装驱动器/执行机构;4)安装、连接和调试传感器(温度、压力、流量、液位);5)调试控制器与各传感器、驱动器/执行机构之间的串联关系,确保各根信号电线的接法正确无误。

(2)模拟信号采集与处理本实验将设置4路模拟输入口,通过PLC控制器采集原始信号并处理。

过程控制系统课程设计报告

过程控制系统课程设计报告

1.概述课程设计的目的了解具体过程控制系统设计的基本步骤和方法,加深对过程控制系统基本原理的理解和对S7-300PLC与S7-200PLC编程的实际应用能力,培养运用WINCC组态软件和计算机设计过程控制系统的实际能力。

课程设计的内容用S7-300PLC与S7-200PLC主-从站进行单回路流量过程控制。

要实现的目标(1)明确控制要求,设计出系统结构图、方框图、电气接线图、程序流程图等。

(2)S7-200PLC从站程序设计①采用模块程序设计,控制程序包括主程序OB1、子程序SBR_0和中断程序INT_0。

②流量给定700升。

③采用定时中断SMB35,来调用流量采样定时中断程序INT_0,把实时检测的管路流量反馈到S7-200PLC的模拟量输入口,与流量给定量进行比较算出误差e。

④采用指令系统中的PID控制算法,整定好PID参数,计算出的实时控制量通过S7-200PLC的模拟量输出口输出,来控制电动执行器和阀门的开度。

⑤所有信号要转换为4-20mACD信号,并与流量物理量0-2500升建立对应关系。

⑥采用状态表进行各变量的监视与修改,系统有启动、停止按钮操作功能。

(3)S7-300PLC主站程序设计①要求采用SFC14和SFC15指令进行主-从站的数据交换,通过S7-300PLC 主站进行写操作(如系统启动/停止等),并能读取S7-200PLC从站的参数;S7-200PLC能接受S7-300PLC主站的指令;实现主-从站读/写(接收/发送)操作。

(4)性能指标要求无超调量,稳态误差为3%,加随机扰动能克服掉。

(5)上位监控要求:采用WINCC上位监控软件,设计出单回路流量一阶的上位监控系统,包括建立通讯,数据变库组态、工艺图形组态、数据组态与显示、趋势组态与显示、报表组态与显示等功能。

2.S7-300PLC与200PLC主-从站单回路流量系统硬件设计方案2.1主-从站单回路流量过程控制系统硬件组成原理该实验过程控制系统的控制器选用S7—300PLC作为主站控制器,由电源模块307—1BA00—00AA00、CPU模块315—2AG10—0AB0、模拟量输入模块331—5HF02—0AB0、模拟量输出模块332—5HF02—0AB0、数字量输入/输出模块323—1BH01—0AA0组成,PC机与300PLC采用MPI(CP5611)通讯。

过程控制系统课程设计

过程控制系统课程设计

过程控制系统课程设计过程控制系统课程设计引言:过程控制系统是工程技术中的重要组成部分,它负责对工业过程进行监控与控制,以确保工艺的稳定性和高效性。

在过程控制系统课程设计中,学生将探讨过程控制系统的原理与应用,并通过实践设计一个实际的过程控制系统。

一、绪论过程控制系统又称作工业控制系统,它广泛应用于化工、电力、机械制造等领域。

过程控制系统的主要目标是监控和控制工业过程,以确保产品质量、提高生产效率和降低能源消耗。

通过对传感器的采集和执行器的控制,过程控制系统可以实现自动化的生产。

二、过程控制系统的组成1.传感器与执行器:传感器负责采集工业过程中的各项参数,如温度、压力、流量等。

执行器则负责根据控制系统的指令,对工艺过程进行调节和控制。

2.控制器:控制器是过程控制系统的核心,它根据传感器采集到的数据,通过算法和控制策略进行分析和判断,产生相应的控制信号送往执行器。

3.人机界面:人机界面是人与过程控制系统之间的桥梁,它提供了一个直观、友好的操作界面,使操作人员可以实时地监控和控制生产过程。

三、过程控制系统的设计步骤1.确定系统的目标:在设计过程控制系统前,首先需要明确系统的目标,即要控制的工艺过程中所需达到的标准和要求。

2.收集和分析数据:通过传感器采集工艺过程中的数据,并进行数据分析,了解工艺过程的变化规律和特点。

3.建立模型:根据收集到的数据,建立工艺过程的数学模型,用于后续的控制系统设计。

4.选择控制策略:根据工艺过程的性质和目标要求,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。

5.设计控制算法:根据选择的控制策略,设计相应的控制算法,并将其实现在控制器中。

6.仿真和优化:使用仿真工具对设计好的控制系统进行仿真,并进行调整和优化,以使系统的性能符合要求。

7.实现与调试:根据控制器的设计方案,采购和安装相应的硬件设备,并进行调试和验证。

8.监控与维护:设计好的过程控制系统需要持续地进行监控和维护,以确保系统的稳定性和可靠性。

过程控制系统课程设计

过程控制系统课程设计

过程控制系统课程设计在过程控制系统课程设计中,学生需要综合运用所学的理论和技能,设计一个能够有效控制和监控工业过程的系统。

本文将介绍一个典型的过程控制系统课程设计流程,并着重介绍设计中需要考虑的关键要素和实施步骤。

一、引言过程控制系统是现代工业中必不可少的一部分,它能够监测和控制工业过程中的各种参数,保证生产的高效性和安全性。

因此,对于学习过程控制系统的专业学生而言,掌握设计过程控制系统的能力非常重要。

本课程设计旨在帮助学生深入了解过程控制系统,并通过实践提高他们的设计能力。

二、设计要素在进行过程控制系统的课程设计时,需要考虑以下关键要素:1. 系统需求分析:了解工业过程的特点和需求,明确系统的功能、性能和稳定性要求。

2. 控制策略选择:根据系统需求分析,选择适合的控制策略,如PID控制、最优控制等。

3. 传感器选择与布置:根据需求确定需要监测的参数,并选择合适的传感器进行测量,并合理布置传感器。

4. 控制器选择与配置:选择合适的控制器,并通过配置参数来实现所需的控制策略。

5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。

6. 安全性考虑:确保系统具备安全性,采取相应的防护措施,防止事故的发生。

三、课程设计步骤以下是一个典型的过程控制系统课程设计步骤,供学生参考:1. 系统需求分析:对于一个给定的工业过程,分析其特性和需求,确定系统的功能、性能和稳定性要求。

2. 控制策略选择:根据需求分析,选择适合的控制策略,如PID控制、模糊控制等,并解释其原理和适用范围。

3. 传感器选择与布置:根据需求确定需要监测的参数,选择合适的传感器进行测量,并合理布置传感器,以保证测量的准确性和可靠性。

4. 控制器选择与配置:根据选择的控制策略,选择合适的控制器,并通过配置参数来实现所需的控制策略。

5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。

界面应包括实时数据显示、报警功能等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设计目的与要求:
了解并掌握单回路控制系统的构成和控制原理。

了解PID参数整定的基本方法,如Zieg ler-Nichols整定方法、临界比例度法或衰减曲线法。

学会用matlab中的Simulink仿真系统进行PID参数整定。

二、设计正文:
在热工生产过程中,最简单、最基本且应用最广泛的就是单回路控制系统,其他各种复杂系统都是以单回路控制系统为基础发展起来的。

单回路控制系统的组成方框原理图如图1所示,它是由一个测量变送器、一个控制器和一个执行器(包括调节阀),连同被控对象组成的闭环负反馈控制系统。

图1、单回路控制系统组成原理方框图
控制器的参数整定可分为理论计算法和工程整定法。

理论计算方法是基于一定的性能指标,结合组成系统各环节的动态特性,通过理论计算求得控制器的动态参数设定值。

这种方法较为复杂繁琐,使用不方便,计算也不是很可靠,因此一般仅作为参考;而工程整定法,则是源于理论分析、结合实验、工程实际经验的一套工程上的方法,较为简单,易掌握,而且实用。

常用的工程整定法有经验法、临界比例度法、衰减曲线法、响应曲线法等等,本设计中主要是应用Ziegler-Nichols整定方法来整定控制器的参数。

参数整定的基本要求如下所述:
1、通过整定选择合适的参数,首先要保证系统的稳定,这是最基本的要求。

2、在热工生产过程中,通常要求控制系统有一定的稳定裕度,即要求过程有一定的衰减比,一般要求4:1~10:1。

3、在保证稳定的前提下,要求控制过程有一定的快速性和准确性。

所谓准确性就是要求控制过程的动态偏差和稳态偏差尽量地小,而快速性就是要求控制时间尽可能地短。

总之,以稳定性、快速性、准确性去选择合适的参数。

目前工程上应用最广泛的控制是PID控制,这种控制原理简单,使用方便;适应性强;鲁棒性强,其控制品质对被控对象的变化不太敏感。

(1)比例控制(P控制):G c(s)=Kp=1/δ;
(2)比例积分控制(PI控制):G c(s)=Kp(1+1/TIs)=1/δ(1+1/T I s);
(3)比例积分微分控制(PID控制):Gc(s)=K p(1+1/T I s+T D s)。

Ziegler-Nichols法是一种基于频域设计PID控制器的方法,根据给定对象的瞬态响应来确定PID控制器的参数。

如果单位阶跃响应曲线看起来是一条S形的曲线,则可用如下传递函数近似:
)()(s R s C =1
+-Ts Ke Ls
利用延迟时间L、放大系数K 、和时间常数T,根据表1中的公式确定K p 、T I 、TD 的
例:如图所示的控制系统:

C(s)
系统的开环传递函数G 0(s )=1/(s+1)6
,采用Zieg ler-N icho ls法整定系统P、PI 、PID 控制器的参数,并绘制系统的阶跃响应曲线。

用最小二乘拟合方法求出该传递函数的一阶延迟近似模型,程序如下: func tion [K,L ,T]=get fo ld(G) [y,t]=st ep(G);
fun=inli ne('x(1)*(1-ex p(-(t-x(2))/x(3))).*(t >x(2))','x ','t');
x=ls qcurvefit(fun,[1 1 1],t,y);K =x(1);L =x(2);T=x(3);
在命令窗口输入:
s=tf('s');G =1/(s+1)^6; [K ,L ,T]=getf old (G);
得出:K=1.0542,L=3.1621,T=3.5147;
则系统的一阶延迟模型近似为:G 0(S)=1
5147.30542.11621.3+-s e s
;
继续输入:s=tf('s');G=1/(s+1)^6;
K=1.0542;T=3.5147;L=3.1621;a=K*L/T
Kp=1/a %P 控制 Kp=0.9/a,TI=3*L %PI 控制 Kp =1.2/a,TI=2*L,TD=0.5*L %PID 控制
得:a=0.9484 Kp=1.0544
Kp=0.9489 T I=9.4863
Kp=1.2652 TI=6.3242 TD=1.5811 则,所设计的控制器模型为:
P控制:G C(S)=1.0544
PI控制:G C(S)=0.9489(1+1/9.4863s)
PID控制:G C(S)=1.2652(1+1/6.3242s+1.5811s)。

建立如图所示的Simulink仿真模型:
将Kp值置1,把反馈连线,微分器的输出连线,积分器的输出连线都断开,选定仿真时间,可得出系统开环的单位阶跃响应曲线:
P控制时,将Kp设为1.0544,将反馈连线连上,仿真运行,得到响应曲线:
PI控制时,将Kp设为0.9489,TI设为9.4863,将积分器的输出连线连上,仿真运行得出响应曲线:
PID控制时,将Kp设为1.2652,TI设为6.3242,TD设为1.5811,将微分器的输出连线连上,运行仿真得出响应曲线:
将三种控制下的响应曲线可以看出,P控制和PI控制两者的响应速度基本相同,因为这两种控制的比例系数不同,因此系统稳定的输出值不同,PI控制的超调量比P控制的要小,PID控制比P控制和PI控制的响应速度快,但是超调量大些。

通过变化各项参数的大小可以总结出以下几条基本的PID参数整定规律:
1、增大比例系数一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变差。

2、增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。

3、增大微分时间有利于加快系统的响应速度,使系统的超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。

三、设计心得体会:
通过这次的设计实验,我进一步巩固了书本中所学的单回路控制相关的内容,掌握了有关PID控制的相关知识和内容。

同时学会了用Ziegler-Nichols方法整定PID控制器的各种参数,用Matlab中的Simulink仿真系统求出系统的阶跃响应曲线,收获很大。

四、参考文献:
1、《控制系统计算机辅助设计—MATLAB语言与应用》(第二版);
薛定宇; 清华大学出版社
2、《火电厂热工自动控制技术及应用》;刘禾白焰李新利;中国电力出版社
3、《过程控制与Simulink应用》;王正林郭阳宽;电子工业出版社。

相关文档
最新文档