预应力混凝土智能张拉与智能压浆新工艺应用

合集下载

浅谈预应力智能张拉压浆在高速铁路桥梁施工中的应用

浅谈预应力智能张拉压浆在高速铁路桥梁施工中的应用

浅谈预应力智能张拉压浆在高速铁路桥梁施工中的应用摘要:传统预应力混凝土施工工艺受人因素影响大,难保施工质量。

预应力智能张拉与压浆技术具有实用和经济优势,在桥梁施工中应用可以保障安全、延长寿命。

关键词:桥梁;预应力混凝土;智能张拉;智能压浆;高速铁路施工;0、引言现阶段高速铁路预应力混凝土桥梁施工中,预应力张拉压浆技术已得到广泛应用。

但传统施工技术存在质量问题,影响工程整体质量。

智能张拉系统和智能压浆系统的引入可以通过准确控制张拉力、速率、持荷时间、配合比、稳压时间、压力调节等来提升预梁体预应力质量,实现桥梁结构安全与耐久性提升。

本文结合长岗岭大桥预应力施工实例,分析探讨了智能张拉与压浆技术在高速铁路桥梁建设中的应用。

1、工程概况宜兴铁路长岗岭大桥全长461.31m,正线为(1-24m双线简支梁+7-32m双线简支梁+2-32m双线变宽简支梁+4×32m道岔连续梁(四线变二线),全桥采用梁柱式支架现浇施工。

全桥预应力施工采用一种将机、电、液有效的进行结合,使超高压张拉过程自动化、智能化、信息化管理于一体的智能系统。

2、智能张拉设备优势1)智能张拉设备可实现连续张拉施工操作。

施工前可输入相关机构信息,并通过互联网通信对工程实时监控,协调加强工程质量监控。

2)设备实现了远程监控的功能,可以在操作室对整个操作过程进行查看,还能够观察数据分析,随时进行调整。

监理单位责任工程师可以应用现代信息技术,对实时回传数据报表进行审核和签字确认。

3)智能张拉设备的应用具有高精度的优点,通过电脑智能管控调整,全方位自动控制张拉过程,控制精度高,误差小。

在施工前输入相关机构信息,智能张拉设备可以实现全程实时监控,并提供工程实时监控功能,协调加强对工程质量的监控。

设备通过测量所需伸长量和每个单位的预应力数值,精确控制压力和位移控制精度,从而实现动态精准控制。

在实际操作中,智能张拉系统配备了报警系统,在出现故障或出现结果不合要求的情况下,系统会自动报警,确保施工操作的安全性。

智能张拉和注浆设备在预应力施工中的应用

智能张拉和注浆设备在预应力施工中的应用

智能张拉和注浆设备在预应力施工中的应用概述预应力施工是一种常见的建筑施工技术,通过预先施加荷载来提高混凝土构件的强度和稳定性。

智能张拉和注浆设备在预应力施工中起着重要的作用,其高效、精确的操作可以提高施工效率和工程质量。

智能张拉设备智能张拉设备是一种电子控制设备,可用于预应力钢筋的张拉和锚固。

这种设备采用先进的控制系统和传感器,可以精确地控制张拉的力度、长度和时间等参数。

智能张拉设备的主要特点如下:1. 高精度控制:智能张拉设备采用闭环控制系统,能够实时监测和调节张拉力度,保证预应力钢筋的张拉效果;2. 自动化操作:智能张拉设备可通过预设的参数进行自动化操作,减少人为操作的误差,提高工作效率;3. 数据记录和分析:智能张拉设备能够记录张拉过程中的数据,如张拉力、时间等,方便后续的数据分析和评估。

智能注浆设备智能注浆设备是用于预应力构件注浆的设备,可实现混凝土与预应力钢筋的牢固结合。

智能注浆设备具有以下特点:1. 高效注浆:智能注浆设备通过高压注浆技术,能够迅速将浆液注入混凝土构件中,提高注浆效率;2. 注浆均匀性:智能注浆设备具有优化的注浆管路和喷嘴设计,可以实现注浆均匀分布,提高结构的一致性和稳定性;3. 自动控制:智能注浆设备可通过预设参数实现自动控制,确保注浆过程的稳定性和可靠性。

应用案例智能张拉和注浆设备在预应力施工中已经得到广泛应用。

以下是一些应用案例:1. 桥梁施工:智能张拉设备可用于桥梁的预应力张拉工作,可以实现桥梁的预应力锚固和调节;2. 建筑施工:智能注浆设备可用于建筑中的预应力构件注浆,提高构件的结构强度和稳定性;3. 隧道施工:智能注浆设备可用于隧道的预应力注浆,增加隧道的稳定性和承载能力。

总结智能张拉和注浆设备在预应力施工中的应用具有重要的意义。

它们的高精度、自动化操作和数据记录等特点,可以提高施工效率和工程质量,为建筑工程提供可靠的支撑。

随着科技的不断进步和创新,智能张拉和注浆设备的应用前景将更加广阔。

探讨智能张拉和智能压浆系统在桥梁建设中的应用

探讨智能张拉和智能压浆系统在桥梁建设中的应用

探讨智能张拉和智能压浆系统在桥梁建设中的应用随着我国桥梁建设工程的发展进步,对桥梁建造的质量更加注重,越来越多的先进修筑技术开始广泛的运用于桥梁建设工程当中。

智能张拉和智能压浆系统目前是桥梁工程中的常用系统,它的运用可以保障桥梁整体结构的安全,为高质量的桥梁工程奠定了基础,能进一步推进我国桥梁事业的蓬勃发展。

本文主要分析了智能张拉系统及智能压浆系统的工作原理及在桥梁建设中的具体应用,凸显了这两种系统在桥梁建设中的重要价值。

标签:智能张拉系统、智能压浆系统;桥梁施工在实际的桥梁建设施工中,预制梁是非常关键和重要的施工项目,发挥着及为关键的作用。

由于以往传统的预制梁施工技术存在诸多问题,如施工不够准确、管道压浆不够饱满等,这不仅会直接对桥梁施工进度造成影响,还会最终影响桥梁施工的整体质量。

最近几年,智能张拉和智能压浆技术逐渐开始运用于桥梁建设中,这两项技术表现出了明显的优越性,一方面可以保障桥梁预应力的稳定性,另一方面又可以确保桥梁的稳固性,在桥梁建设中有积极的意义。

在过去,桥梁施工人员往往是相互喊话操作,低于工程质量往往是凭借经验以肉眼进行判断,并做手工记录,不仅效率低下,拖累整个工程进度,还可能导致许多工程质量问题的出现。

而如今桥梁建设充分利用无线传感等新技术,使用计算机全程的对预应力的有效施加进行控制,并控制大循环灌浆,采用智能张拉系统能确保对伸长来个的准确控制,而使用智能压浆系统又能确保注浆时的密度与质量,让桥梁整体结构的安全性提高,更加耐用和稳固。

智能张拉系统是目前比较先进的桥梁施工工艺,主要由计算机进行操作,主要对预应力的整个过程进行控制,影响着桥梁施工的质量;而智能压浆技术主要是确保预应力筋免遭锈蚀,能确保构造物更加的耐用,预应力筋和周边的砼凝固成整体,增强了锚固的牢靠性,使物体的抗裂性和承载能力明显增強。

在过去,因为预应力管道压浆不密实的情况,造成结构耐久性较差,而现在的新技术正好解决这一问题,所以在桥梁建设中运用智能张拉和智能压浆系统确实很有必要。

智能张紧和压浆设备在预应力施工中的应用

智能张紧和压浆设备在预应力施工中的应用

智能张紧和压浆设备在预应力施工中的应用摘要本文介绍了智能张紧和压浆设备在预应力施工中的应用。

通过引入智能化技术,可以提高施工效率,并确保施工质量和工程安全。

本文详细介绍了智能张紧和压浆设备的工作原理和主要特点,并分析了其在预应力施工中的应用场景和优势。

通过了解和掌握这些信息,可以更好地应用智能张紧和压浆设备,提升预应力施工的效果和质量。

1. 引言随着社会的进步和科技的发展,智能化设备在各行各业中的应用越来越广泛。

在预应力施工领域,智能张紧和压浆设备的应用已经得到了越来越多的关注。

智能张紧和压浆设备通过引入自动化、智能化的控制系统,可以对预应力设施进行更加精确的控制和监测,从而提高施工效率和质量。

2. 智能张紧设备的工作原理和特点智能张紧设备主要由张紧机构、测量传感器和控制系统组成。

张紧机构通过施加预设的张紧力,使预应力钢束达到预设的受力状态。

测量传感器可以实时监测预应力钢束的受力情况,并反馈给控制系统。

控制系统根据传感器的反馈信息,实时调整张紧力,以达到预设的施工要求。

智能张紧设备具有以下特点:- 自动化控制:智能张紧设备通过控制系统,实现对张紧力的自动调整和控制,减少了人工操作的误差,提高了施工效率。

- 实时监测:测量传感器可以实时监测预应力钢束的受力情况,并将数据反馈给控制系统,用于调整张紧力。

这样可以及时发现和解决施工中的问题,确保施工质量。

- 数据记录和分析:智能张紧设备可以记录和保存施工过程中的数据,并进行分析和统计。

这对工程的后期评估和施工经验的积累非常重要。

3. 智能压浆设备的工作原理和特点智能压浆设备主要由压浆泵、测量传感器和控制系统组成。

压浆泵通过施加适量的浆液,将浆液压入预应力结构的孔隙中,以提高结构的密实度和耐久性。

测量传感器可以实时监测压浆压力和浆液流量,并反馈给控制系统。

控制系统根据传感器的反馈信息,及时调整压浆过程中的参数,确保浆液的均匀注入。

智能压浆设备具有以下特点:- 自动化控制:智能压浆设备通过控制系统,实现对压浆参数的自动调整和控制,减少了人工操作的误差,提高了施工效率。

现浇箱梁中预应力智能张拉、压浆技术的应用

现浇箱梁中预应力智能张拉、压浆技术的应用

现浇箱梁中预应力智能张拉、压浆技术的应用摘要:智能张拉、压浆技术是目前我国桥梁建筑中的关键技术,具有信息化、自动化、标准化、精细化、施工质量好、效率高等多重优势特点。

文章对于智能张拉与压浆的技术原理、工艺流程、操作要点等方面进行深入分析。

关键词:现浇箱梁;预应力智能张拉;智能压浆1、预应力智能张拉与压浆的工作原理1.1、预应力智能张拉预应力智能张拉系统为软硬件共同组成的完整系统,硬件方面有智能油泵和智能千斤顶等,软件方面配套的是控制系统,具有调控设备的能力。

系统采取双控标准,以应力为主要控制指标,通过伸长量检验张拉情况,在传感技术的支持下及时获取钢绞线的伸长量等具有指导意义的数据,汇总后完整传输给系统主机,经分析后向泵站发出指令,实现对变频电机工作参数的调整,维持油泵电机转速的合理性,张拉全程均处于可控状态。

根据张拉需求预设程序,主机发出指令后可调控各设备,使其做出特定的机械动作,全程均为程序化控制方式,可省去传统人工操作的麻烦,也消除了人为误差,保证了张拉作业的精准性。

压力传感器为重要检测装置,可获取千斤顶油缸的压力值,反馈给主机以便发出调控指令;位移传感器的作用在于采集伸长量信息,同时也将反馈给主机。

1.2、智能压浆智能压浆的实现建立在电脑技术的基础上,通过该技术提供的指导作用,相关设备按特定流程完成压浆上料作业,经过计量称重后将适量的材料转移至制浆机,再利用电机持续性搅拌,满足要求后启用储浆桶,使其保持低速运转的状态,浆料经过阀门后最终汇聚至储浆桶内。

压浆泵的各条管路都连接到位后,即可开启循环模式,使管内的空气与杂质能够被有效清理干净。

若出现压浆管道堵塞现象,此时加大压力冲孔后即可解决。

浆料进出口均配套了高精度传感器,可及时采集压浆的流量与压力信息,经计算机分析后发出调控指令。

各部分组件按照上述流程有序运行,可实现对压浆施工质量的有效控制,在密实度和饱满度方面都有较好的表现2、智能张拉、压浆技术的应用优势(1)其系统工作过程是利用计算机技术进行控制,并运用智能设备开展张拉施工,在张拉施工中完成自动控制工作。

智能张拉设备及压浆设备的应用

智能张拉设备及压浆设备的应用

智能张拉设备及压浆设备的应用摘要:随着工程技术的进步和发展,后张法预应力张拉工艺和压浆工艺被广泛应用于各种大型桥梁构件中,在箱梁、T梁预制工艺中预应力张拉和压浆皆为关键工序,其施工主要运用智能张拉设备和压浆设备。

通过对新型设备的熟悉掌握从而对施工进行精准的控制,大大提升了稳固性,工艺的要点把控重心也体现在设备操作上。

关键词:预制梁智能张拉设备压浆设备0引言在不断的深入研究和具体的实践过程中,后张法预应力张拉和压浆在桥梁预制工艺中有着持续性的改进和创新,目前已采用智能张拉设备和压浆设备进行作业。

相较于以往人工半自动张拉和压浆作业有着明显的生产力提升,通过计算机软件,可以精确的控制张拉的程度,提升工作效率,从根本上解决了人为因素不可控的情况。

但是预应力张拉、压浆施工具有难度大、难点多等特点,因而很有必要进行深入研究。

一、智能张拉设备的应用1智能张拉设备的组成及原理本文借鉴的设备是由河北益铁科技机电有限公司生产、铁科院监制的TYZ/60-Ⅶ/YT型自动张拉系统,该系统主要由4台穿心式千斤顶和4台电动液压油泵、4个穿心式轮辐传感器、4个拉线式高精度位移传感器、4个高精度温度传感器、8个液压控制电磁阀组4套,1套完整的工业可编程控制器(1主3辅)、主机(工业电脑)等组成。

控制系统示意图如下:该设备有1主3辅共4台控制机器,主机设有一套完整编程控制,可通过通讯连接其他三台机器同步进行作业,一键实行全自动化张拉,能够精准有效的控制张拉力力值的大小,保证张拉同步、停顿点、加载速率、持荷时间等张拉过程要素完全符合规范要求,有效确保和提高预应力张拉施工质量。

智能张拉设备可直接通过转换油泵值换算张拉力,通过位移传感器可实时观测预应力筋的伸长量,预应力筋的状态实时反应在主机桌面上,且设有手动操作,可保证现场张拉过程中出现问题随时中断,待解决后继续进行作业。

张拉数据可实时曲线采集并上传至主机内信息库,张拉作业结束后自动生成张拉记录表,可无线传输且误差较小,提升了施工质量且十分方便于信息化管理。

预应力智能张拉技术和大循环智能压浆技术的应用优势

预应力智能张拉技术和大循环智能压浆技术的应用优势

预应力智能张拉技术和大循环智能压浆技术的应用优势郭永刚安徽省路桥工程集团有限责任公司【摘要】预应力钢绞线张拉和孔道压浆施工质量直接影响桥梁的寿命,传统的张拉压浆技术主要依靠人工操作和记录,存在精度低、误差大,收操作人员技术水平影响大,对施工现场的质量管控要求极高。

智能张拉和大循环智能压浆技术很好的客服了传统工艺的弊端,提升现场施工工艺水平的同时大幅提高了张拉和压浆的施工质量,本文介绍了智能张拉及大循环智能压浆施工技术在实际施工中的应用。

【关键词】智能张拉;预应力;大循环智能压浆;优点1 引言智能张拉系统具有施工操作便捷性和质量控制可靠性的显著特点,未来必将在桥梁施工中大范围的推广和应用,注浆工艺从传统的压力注浆工艺到广泛应用的真空注浆工艺,再到目前新的大循环智能注浆工艺,已经从人工控制转变为全数字化的只能控制。

为了对智能张拉系统和大循环智能压浆有更深层次的了解,本文在工作原理的基础上着重对其在实体工程中的应用效果进相应的评价。

本文是并以“安徽省滁州至马鞍山高速公路CM-05标预制T梁钢绞线智能系统张拉及管道大循环压浆技术”在施工中的应用为例进行介绍。

2 工程概况安徽省滁州至马鞍山高速公路CM-05标共有中小桥十座,上部结构预制T梁;桥墩采用柱式墩,桥台采用桩基肋板式桥台,基础均采用桩基础。

全标段共计预制T梁594片,其中13米T梁108片,16米T梁306片,20米T梁180片。

T梁集中预制,统一组织运输安装。

由于现场施工条件好、便于操作,项目部针对预应力钢绞线张拉、水泥压浆采用新工艺、新技术施工。

预应力钢绞线张拉采用智能张拉系统,确保了张拉应力及伸长量的准确度,全数字化操作模块将人工操作误差带来的应力加大或减小降到了最低。

管道压浆打破以前的传统压浆方法,采用大循环压浆技术。

从孔道一端进浆,另一端回浆,通过对浆液指标和压力差的检测确保了压浆饱满,排除了以前由于空气存在压浆不饱满,导致钢绞线生锈腐蚀带来的应力损失而衍生的各种质量诟病。

预应力混凝土结构工程中的张拉与压浆施工工艺

预应力混凝土结构工程中的张拉与压浆施工工艺

预应力混凝土结构工程中的张拉与压浆施工工艺预应力混凝土结构工程是一种先进的建筑技术,它通过在混凝土中引入预应力,使结构具有承载更大荷载和更好的变形性能的能力。

预应力混凝土结构的主要施工过程包括张拉和压浆。

本文将详细介绍预应力混凝土结构工程中的张拉与压浆施工工艺,并探讨其在工程实践中的重要性和影响。

一、张拉施工工艺1. 梁底模板的安装在进行梁底张拉之前,首先需要安装梁底模板。

模板的设计和施工要满足结构设计要求,并保证模板牢固、平整,以确保后续的张拉操作能够正常进行。

2. 预应力钢束的铺设预应力钢束是预应力混凝土结构中承载预应力的重要组成部分。

在张拉施工中,预应力钢束需要沿着梁的轴线进行铺设,并根据设计要求设置钢束的数量和布置方式。

3. 钢束锚固在预应力钢束的两端进行固定,通常采用的锚具有锚板和锚固套管两种形式。

锚板通过焊接或紧固连接到混凝土结构中,锚固套管则通过浇筑混凝土或压浆来固定在结构中。

4. 张拉过程张拉是预应力混凝土结构中最关键的施工阶段。

在张拉过程中,通过调节液压张拉机的工作压力,使预应力钢束产生足够的张拉力,从而实现对混凝土的预应力施加。

5. 锚固当预应力钢束达到预定的张拉力后,需要进行锚固操作,将钢束的张拉力传递到混凝土结构中。

锚固一般通过砂浆或压浆材料将锚固套管填充,使钢束处于固定状态。

二、压浆施工工艺1. 压浆材料的选择在预应力混凝土结构工程中,常用的压浆材料有聚合物压浆材料和水泥浆料。

选择合适的压浆材料需要考虑其与混凝土的黏结性能、耐久性以及施工性能等因素。

2. 压浆施工方法压浆施工主要包括两种方法:压浆孔法和管道压浆法。

前者是通过在结构中钻孔,将压浆材料注入孔中,并保证充分填充结构中的空隙。

后者是通过在结构上设置管道,将压浆材料通过管道注入结构中,实现压浆作用。

3. 压浆质量控制为了保证预应力混凝土结构的质量和性能,压浆质量控制尤为重要。

在施工过程中,需对压浆材料的配合比例、注入压力和压浆时间进行调整和监控,确保压浆材料充分渗透,将结构的空隙填充。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力混凝土智能张拉与智能压浆新工艺应用
发表时间:2019-03-20T10:36:40.187Z 来源:《防护工程》2018年第34期作者:陈胜雄[导读] 在该工程当中应用预应力混凝土智能张拉与智能压浆获得了较好的张拉效果以及压浆效果,使工作效率得到了极大的提高,获得了非常理想的效果。

中铁十一局集团第一工程有限公司摘要:在桥梁工程的施工过程中,施工人员应用预应力混凝土智能张拉与智能压浆新工艺可以使施工过程具有较好的秩序性,提升施工的质量、施工的安全系数以及桥梁的使用年限。

本文主要针对预应力混凝土智能张拉与智能压浆新工艺做出详细的分析与说明,希望能够为其他类似工程提供一定的借鉴。

关键词:预应力混凝土;智能张拉;智能压浆新工艺
1、引言
在桥梁工程的施工过程中,为了使施工质量得到切实的提高,并加快施工的速度,施工人员在应用预应力混凝土智能张拉与智能压浆新工艺的过程中一定要对工作原理进行深入的分析,且制定一个科学、合理的施工方案,由此获得更好的经济效益与社会效益。

2、工程概况及项目简介2.1项目概况
甘肃省平凉至天水高速公路是国家高速公路网规划中G8513平凉至绵阳国家高速公路的重要路段。

该项目主线起点位于华亭县南川乡吴家堡子,接拟建的银川至昆明国家高速公路彭阳至大桥村段,止于天水市西十里铺,接已建成的连霍高速公路天水至兰州段,全长168.07km。

2.2标段概况
本施工标段为PT15标,起讫桩号为YK204+300~YK210+100(ZK204+300~ZK210+100),主线全长5.8Km。

含互通式立交一处(天水北互通式立交),连接线4.665km。

2.3桥梁概况
本标段桥梁均集中在天水北互通及其连接线内,桥梁上部结构采用预应力砼组合箱梁、预应力砼现浇箱梁、钢筋砼现浇箱梁等。

本标段桥梁预应力采用智能张拉与压浆工艺施工。

3、预应力混凝土智能张拉3.1 预应力智能张拉的工作原理在预应力混凝土智能张拉施工过程中,智能张拉系统由三大部分组合而成,分别为千斤顶、油泵以及系统主机,如图1所示。

该系统以应力作为一项控制指标,并将伸长量的误差作为其校对的指标。

在工作时,系统通过传感技术将每一台张拉设备,即采集千斤顶的工作压力以及钢绞线的伸长量,然后将这些数据实时的传输给系统的主机,由此进行及时的分析与判断。

与此同时,张拉设备也就是泵站在接到了系统发出的指令后,对张拉力以及加载速度进行及精确的控制。

根据预先设置好的程序,该系统的主机发出指令,对每一台设备的机械冬季进行同步的控制,从而自动的完成一个张拉的全过程,四顶同步张拉如图2所示。

3.2 主要技术特点3.2.1精确施加应力在该系统的工作过程中,能够实现对施加预应力值的精确控制,并将允许的误差由最初的张拉±1%缩小到张拉的±1%。

3.2.2及时进行伸长量的校核,实现“双控” 在张拉过程中,要对钢绞线的伸长量进行实时采集,并自动计算出伸长量的大小,看其是否在允许的±6%的范围之内,从而实现对伸长量以及应力值的“双控”。

3.2.3对称同步张拉
在预应力混凝土智能张拉过程中,能够实现一台计算机或者两台及以上千斤顶进行同步对称的张拉,从而实现“多顶同步张拉”的施工工艺,每一台千斤顶之间的张拉力允许误差为±2%。

3.2.4智能控制张拉过程,减少预应力的损失
在实现智能张拉的过程中,整个张拉过程不会受到外界环境以及人为因素所带来的影响,与此同时,张拉的加载速率以及卸载速率、持续荷载的时间长短等等会完全的符合施工技术以及规范当中一些要求,这极大的减少了张拉过程当中所造成的预应力损失。

3.2.5质量管理和远程监控功能
在桥梁施工过程中,预应力混凝土智能张拉可以实现对施工质量的远程监督与控制,并且张拉的整个过程都可以进行真实的记录,使工作人员及时的掌握施工的质量情况。

4、循环智能压浆情况
4.1 循环智能压浆工作的原理
在循环智能压浆工作过程中,整个压浆系统由以下三部分组成,分别为:循环压浆系统、测控系统以及系统的主机,如图3所示。

浆液在预应力管道以及压浆泵、制浆机组合而成的回路内部持续循环,从而排净管道内所存在的气体,并及时发现管道是否存在堵塞的情况,通过加大压力的方法来进行冲孔操作,将管道内部的杂质全部排出,从而将可能导致压浆不密实的因素全部消除掉。

在管道的进浆口以及出浆口的位置分别放置一台精密度较高的传感器来进行压力的实时监测,并将监测数据及时的传输给系统的主机,从而对其进行及时的分析与判断,测控系统就会根据主机发出的指令对压力进行适当的调整,从而保证预应力管道在施工技术规范及标准要求的稳压时间、压力大小以及浆液质量等一些重要的指标约束之下完成整个压浆的过程,并保证压浆的密实度与饱满度。

4.2 主要技术特点
4.2.1 浆液满管路循环排除管道内空气
在整个压浆过程中,管道内部的浆液从出浆口导流到储浆桶中,再从进浆口泵入到管道内部,从而形成一个较大的循环回路。

浆液在管道的内部进行一次又一次的循环,通过对浆液流量以及浆液压力的调整,将管道内部存在的气体完全排出管外,同时可以排出管道内部存在的一些细小杂质。

4.2.2 准确控制压力,调节流量
首先,智能压浆工艺可以实现对灌浆压力的精确调节与保持。

整个系统可以对管道的压力损失进行自动的实测,以出浆口满足相关标准当中的最低压力值来进行灌浆压力值的设置,从而保证在沿途的压力损失掉之后管道内部的压力仍然能够满足规范要求的最低压力值,在关闭出浆口之后能够在长时间内保持0.5MPa及以上的压力。

其次,在智能压浆过程中,通过对进浆口以及出浆口调节阀的调节能够对压力的大小以及流量的大小进行适当的调整。

在进浆口以及出浆口的压力差基本上保持不变之后,即可判断管道内部的充盈状态。

4.2.3 准确控制水胶比
按照施工配合比的数量进行自动加水操作,并准确进行加水量的控制,从而使得水胶比在相关规范允许的范围之内,即0.26~0.28。

4.2.4 一次压注双孔,提高工效
对于单孔长度在80米以内的预应力管道以及跨径在50米以内的预制梁,都可以对其进行双控同时压浆处理,将浆液从位置较低的一个孔压入,然后从位置较高的另一个孔压出使其回流到储浆桶中,从而大幅度的节约了劳动力。

4.2.5 实现高速制浆,提高浆液的质量
在整个智能压浆工作中,系统采用速度较高的制浆机,进行水、压浆剂以及水泥的高速搅拌,其转速控制在每分钟1420转,叶片的线速度在每秒10米以上,能够满足相关规范的要求。

4.2.6 规范压浆过程,实现远程监控
在智能压浆过程当中,整个灌浆的过程都由计算机的相关程序进行控制,不会受到人为因素带来的影响,可以实现对浆液温度、灌浆压力以及环境温度、稳压时间等指标的实时监测,并将其进行自动的记录,最后将所有的数据实时的传输给相关部门,实现对压浆过程的远程监控。

5、结束语
综上所述,在该工程当中应用预应力混凝土智能张拉与智能压浆获得了较好的张拉效果以及压浆效果,使工作效率得到了极大的提高,获得了非常理想的效果。

参考文献:
[1]顾汗生.预应力混凝土智能张拉与智能压浆新工艺应用[J].四川水泥,2016(12):287.
[2]陈海斌,张云文,秦江.预应力混凝土智能张拉与智能压浆新工艺应用[J].内蒙古公路与运输,2012(05):1-3.
[3]张志勇, 胡劲松, 李永强, 潘再新, 林晓伟.新型压浆材料在孔道压浆实践中的研究[J].城市道桥与防洪, 2011, (07) :90-100.。

相关文档
最新文档