初中数学规律题解题基本方法------图形找规律.
初中数学找规律的方法

初中数学找规律的方法
初中数学中,找规律常用的方法有以下几种:
1. 数列法:观察数列的前几项,找出数列的通项公式。
常见的数列有等差数列、等比数列、斐波那契数列等。
2. 图形法:观察图形的形状、位置、图案等特征,找出图形的规律。
可以通过绘制表格、拆分图形等方式来帮助分析。
3. 代数法:将题目中的未知数设定为x或n,建立方程式,通过解方程找出规律。
可以通过代入法、消元法、因式分解等方法解方程。
4. 反推法:从结果出发,通过逆向的思维反推出规律。
常用于找等式、判断大小关系等题型。
5. 分类讨论法:针对题目中的不同情况,进行分类讨论,找出每种情况下的规律。
可借助列举法或排除法等帮助分类。
以上方法仅为初中数学中常用的找规律方法,具体应根据题目特点和个人理解选择合适的方法。
在实际解题中,多练习、多思考,对各种类型题目进行归纳总结,是提高找规律能力的有效途径。
(完整版)初中数学规律题解题基本方法------图形找规律

初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。
个数 1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
初一数学找规律题技巧

在初一数学中,找规律题是一种比较常见的题型。
这类题目通常会给出一些数字、图形或者算式,让学生通过观察和分析,找出其中的规律,从而得到下一个数字或图形。
以下是几个找规律题的技巧:
观察数字变化:找规律题中,数字的变化往往是有规律的,可以通过观察相邻两个数字之间的差值或倍数关系,找出规律。
观察图形排列:找规律题中,图形的排列也往往是有规律的,可以通过观察相邻两个图形之间的相同点和不同点,找出规律。
找出特殊点:找规律题中,特殊点往往可以成为解题的关键。
例如,在数列中,可以通过找出相邻两个数字之间的差值或倍数关系,得出下一个数字。
尝试猜想:在找不到明显的规律时,可以尝试对下一个数字或图形进行猜想,然后根据猜想进行验证。
转化题目:有些找规律题可能比较复杂,可以通过转化题目,将复杂的问题转化为简单的问题。
例如,可以将一个复杂数列中的数字按照一定规律分成不同的组,每组中的数字具有相同的规律。
总之,找规律题需要学生通过观察、分析、归纳和推理等方法,综合运用数学知识和其他学科知识来解决。
在解题过程中,要善于发现规律、善于运用规律、善于解决问题。
初中数学找规律方法

初中数学找规律方法初中数学找规律是数学学习的一种重要方法,它帮助学生发现数学问题中的共性和规律,从而提高问题解决能力和创新思维能力。
在初中数学中,找规律的方法十分灵活多样,有多种途径可以应用。
下面将介绍一些常用的初中数学找规律方法。
一、观察法观察法是找规律的基本方法,通过观察题目中给出的数列、图形、关系式等,寻找其中的共性和变化规律。
观察法的核心是要“看得出来”,通过观察发现数列中的数字之间的关系、图形之间的特征以及等式左右两边的关系等。
例如,观察下面的数列:3,6,9,12,15,...通过观察可以发现,这个数列中的每一个数字都是前一个数字加上3得到的。
因此可以得出这个数列的通项公式为An=3n,其中An表示第n个数。
二、列举法列举法是找规律的一种常见方法,它通过列举一些具体的数来整理和总结问题中的规律。
通过列举不同情况下的数值,可以发现问题中不变的部分和变化的部分,从而找到问题的解决思路。
例如,要找出一个数,它的各位数相加等于5,并且能被6整除。
我们可以列举出符合条件的数:5、14、23、32等等。
通过这些列举的数,我们可以发现它们的个位数循环为5、1、7、3,因此可以得出结论:符合条件的数的个位数循环出现5、1、7、3三、归纳法归纳法是将已知的特例或者部分情况往大处归纳,找出其中的共性和规律,从而推广到更一般的情况。
通过归纳法,我们可以将具体的问题抽象出一般的结论。
例如,我们要找出一共有多少个球队参加三场比赛,每场比赛两队相比,每个球队参加且只参加一场比赛。
我们可以先从小规模情况开始研究,当球队个数为2时,只有一支球队,当球队个数为3时,只有两支球队,当球队个数为4时,只有3支球队。
通过这些列举的特殊情况,我们可以发现球队个数n和比赛场次T的关系为T=n-1、因此,我们可以得出结论,n个球队一共有n-1场比赛。
四、递推法递推法是通过已知的一些数据,推导出下一个数据的方法。
当问题中给出了一些起始的数值,我们可以通过对这些数值进行观察和分析,并找出它们之间的递推关系,从而得到下一个数据的值。
初中数学规律题解题基本方法

初中数学规律题解题基本方法初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学找规律题型总结

初中数学找规律题型总结类型一:数字型规律题需要熟记的规律:正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…熟记常见的规律:① 1、4、9、16......n2② 1、3、6、10……(1)2n n+③ 1、3、7、15……2n -1 ④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 ⑥ 2+4+6+…+2n=n(n+1)⑦ 12+22+32….+n2=16n(n+1)(2n+1) ⑧ 13+23+33….+n3=14n2(n+1)解题方法1——看增幅:(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,例1:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2例2:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1 所以,第n位数是:2+ n2-1= n2+1例3:2、3、5、9,17增幅为1、2、4、8. 解题方法2——标号找规律:通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学规律题的总结归纳

初中数学规律题的总结归纳数学规律题是初中数学中的重要内容,它不仅能够锻炼学生的逻辑思维能力,也能够帮助学生发现数学中的一些重要规律。
在这篇文章中,我将对初中数学规律题进行总结归纳,以帮助学生更好地掌握和应用这一知识点。
一、基本概念在学习数学规律题之前,我们首先要了解一些基本概念。
数学规律题是指通过观察一系列数字或图形,寻找其中的规律并进行总结归纳的问题。
在解决规律题时,我们需要注意以下几个方面:1. 观察数据的增减规律:我们可以通过观察数列中的数字或图形的变化规律来推断出下一个数字或图形是什么样的。
2. 寻找通项公式:当我们找到了数列中数字的增减规律时,可以进一步列出通项公式,以求出任意一项的值。
3. 推广运用:数学规律题并不限于数列问题,还包括图形和数学运算中的规律。
我们需要将所学的规律应用到不同的场景中,扩展思维。
二、数列规律题数列规律题是初中数学中常见且重要的一类题型。
它要求我们观察数列中数字的增减规律,并根据规律填写缺失的数字或预测下一个数字。
以下是几种常见的数列规律:1. 等差数列规律:等差数列是指数列中相邻两项之间的差恒定的数列。
通过观察数列中数字之间的差值,我们可以得出等差数列的公差,并进一步求解其通项公式。
2. 等比数列规律:等比数列是指数列中相邻两项之间的比值恒定的数列。
同样地,通过观察数列中数字之间的比值,我们可以得出等比数列的公比,并进一步求解其通项公式。
3. 奇偶数规律:有些数列中的数字可以按照奇偶性进行分组,我们可以通过观察奇数项和偶数项之间的规律来解答问题。
4. 平方数规律:部分数列中的数字可以分解为平方数的形式,我们可以通过寻找平方数的规律来预测下一个数字。
三、图形规律题除了数列规律题,图形规律题也是初中数学中的重点。
图形规律题要求我们观察一系列图形的变化规律,并根据规律填写缺失的图形或预测下一个图形。
以下是几种常见的图形规律:1. 平移规律:某些图形可以通过在平面上的平移来得到下一个图形。
初中数学找规律方法

初中数学找规律方法
有以下几种常见的方法可以帮助初中生找规律:
1. 列举法:将问题中的数据逐个列出来,观察数据之间的变化规律。
可以将数据写在表格中,帮助整理和比较。
2. 画图法:将问题中的数据用图形表示出来,可以是折线图、条形图等等。
观察图形的形状、趋势和关系,看是否能够找到规律。
3. 规律性观察法:观察问题中的数据,看是否有一些明显的数学规律。
例如,是否存在等差数列、等比数列等等。
可以通过计算差、比等来推断规律。
4. 逆向思维法:如果无法直接找到规律,可以尝试逆向思考,即从问题的答案出发,推断出问题中的规律。
通过反向推理,可以发现一些隐藏的规律。
5. 试错法:尝试不同的方法和假设,然后验证它们是否符合问题的要求。
如果结果不正确,再进行调整和尝试。
综合运用以上方法,可以帮助初中生更好地找到数学问题中的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭 n 个这样的三角形需要多少根火柴棒?2.若按图 2 方式摆放桌子和椅子⑴一张桌子可坐 6 人,2 张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图 3 的方式将桌子拼在一起⑴2 张桌子拼在一起可坐多少人?3 张呢?n 张呢?⑵教室有 40 张这样的桌子,按上图方式每 5 张拼成 1 张大桌子,则 40 张桌子可拼成 8 张大桌子,共可坐人。
⑶在⑵中,改成每 8 张桌子拼成 1 张大桌子,则共可坐人。
4.如图,把一个面积为 1 的正方形分等分成两个面积为 1 的矩形,接着把面积为 1 的矩形等分成两个面积 2 2为 1 的正方形,再把面积为 1 的矩形等分成两个面积为 1 的矩形,如此进行下去,试利用图形提示的规律计44 8算:11 1 1 1 1 1 1 1 + + + + + + + =2 4 8 16 32 64 128 2561 24 116 8 1325.把棱长为 a 的正方体摆成如图的形状,从上向下数,第一层 1 个,第二层 3 个……按这种规律摆放,第五层的正方体的个数是1例 8.观察下列图形并填表。
12个数 1 2 3 45 6 7…nn周长581114…6.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第n个图案中有白色地面砖块。
……第一个第二个第三个7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有(n≥2)个棋子,每个图案棋子总数为S,按下图的排列规律推断,S与n之间的关系可以用式子来表示。
……n=2s=4n=3s=8n=4s=12n=5s=168.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17,,。
②4,5,7,11,19,,。
③10,20,21,42,43,,,174,175。
④4,9,19,34,54,,,144。
⑤45,1,43,3,41,5,,,37,9。
⑥6,1,8,3,10,5,12,7,,。
⑦0,1,1,2,3,5,,。
⑧180,155,131,108,,。
⑨5,15,45,135,,。
⑩60,63,68,75,,。
9.(2010年山东省青岛市)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n个图案需要枚棋子.【关键词】规律…第13题图11.如图用黑白1条种颜色2的正六边形地3面砖按如下所示的规律,拼成若干个图案:两10、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴根.条条(1)第4个图案中有白色地面砖__________块;(2)第n个图案中有白色地面砖__________块.12.现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。
13:(05山东泉州)下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.14、探索题:如下图在一些大小相等的正方形内分别排列着一些等圆.˙˙˙(1)(2)(3)①请观察上图并填写下表图形编号(1(2(3)(4)(5)(6)圆的个数②你能试着表示出第n个正方形中圆的个数吗?用你发现的规律计算出第2008个图形中有多少个圆..15.如图,都是由若干盆花组成的形如三角形的图案,则组成第n个图案所需花盆的总数是___________________.*******************16.观察正方形图案,每条边上有n(n2)个圆点,每个图案中圆点总数式S,按此推断S与n的关系式为………………n=2,S=4n=3,s=8n=4,s=1217.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成,通过观察可以发现:n=1n=2n=3n=4(1)第4个图形中火柴棒的根数是;(2)第n个图形中火柴棒的根数是;4.①②③●●●●●●●●●●●●●●●●●●●●●●●●上面是用棋子摆成的“T”字,按这样的规律摆下去,摆成第10个“T”字需要多少个棋子?第n个呢?n的式子表示)18.按如下规律摆放三角形:(1)(2)(3)则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.19.观察如下图的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;……①1=12;②1+3=22;③1+3+5=32;④;⑤;…….(2)通过猜想写出与第n个点阵相对应的等式______________20.(2009武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有个小圆.…第1个图形第2个图形第3个图形第4个图形21.(2009年益阳市)图8是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.-……(1)(2)(3)22.(2009年铁岭市)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.23、先观察图形,阅读相关文字后,再回答问题。
两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;四条直线相交,最多有6个交点;…………问题:10条直线相交,最多有几个交点?n条直线最多有几个交点24、用同样规格的黑、白两色的正方形方块铺成如图3.1.1图,用n的代数式表示出第n幅图中黑色正方形块数白色正方形块数25.(2009年重庆)观察下列图形,则第n个图形中三角形的个数是()n=1n=2n=3图3.1.128.(2009 年铁岭市)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,……第 1 个第 2 个 第 3 个A . 2n + 2B . 4n + 4C . 4n - 4D . 4n26.(2009 武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第 1 个图形有 6 个小圆,第 2 个图形有 10 个小圆,第 3 个图形有 16 个小圆,第 4 个图形有 24 个小圆,……,依次规律,第 6 个图形有个小圆.…第 1 个图形第 2 个图形 第 3 个图形 第 4 个图形27、(2009 年益阳市)图 8 是一组有规律的图案,第 1 个 图案由 4 个基础图形组成,第 2 个图案由 7 个基础图形组成,……,第 n (n 是正整数)个图案中由个基础图形组成.-……(1)(2)(3)图 8则第 n 个图形需要黑色棋子的个数是.29.(2009 年广西梧州)图(3)是用火柴棍摆成的边长分别是 1,2,3 根火柴棍时的正方形.当边长为 n根火柴棍时,设摆出的正方形所用的火柴棍的根数为 s ,则 s = ★ . (用 n 的代数式表示 s )30.(2009 白银市)29.本试卷第 19 题为:若 a = 2007 , b = 2008 ,试不用将分数化小数的方法比较 a 、b 的 20082009大小.2.(2009 年重庆)观察下列图形,则第 n 个图形中三角形的个数是( )……第 1 个 第 2 个 第 3 个A . 2n + 2B . 4n + 4C . 4n - 4D . 4n31.(2009 武汉)将一些半径相同的小圆按如图所示的规律摆放:第 1 个图形有 6 个小圆,第 2 个图形有 10 个小圆,第 3 个图形有 16 个小圆,第 4 个图形有 24 个小圆,……,依次规律,第 6 个图形有 个小圆.…第 1 个图形 第 2 个图形 第 3 个图形 第 4 个图形2 -432.(2009重庆綦江)观察下列等式:1.42-12=3⨯5;2.52-22=3⨯7;3.62-32=3⨯94.72-42=3⨯11;…………则第n(n是正整数)个等式为________.33.(2009年牡丹江市)有一列数-1,,3,,…,那么第7个数是.25101734.(2009年广西梧州)下图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形.当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为s,则s=.(用n的代数式表示s)……n=3n=1n=2。