火电厂常规的自动控制系统
火电厂几种主流DCS系统的介绍

火电厂几种主流DCS系统的介绍火电厂是指以燃煤、燃气、油等为燃料,通过燃烧产生热能,进而通过蒸汽驱动汽轮机发电的电厂。
在火电厂的运行过程中,需要对各个系统进行监控和控制,以保证设备的安全、稳定和高效运行。
为了实现对火电厂各个系统的集中控制与监控,通常采用分布式控制系统(DCS)来进行综合管理。
下面将介绍几种主流的火电厂DCS系统。
1. Honeywell TDC 3000(蜜蜂天网3000)Honeywell TDC 3000是Honeywell公司开发的一款火电厂DCS系统,具有广泛的应用领域和可靠的运行记录。
该系统采用模块化设计,可以方便地根据用户的需求进行扩展和升级。
它具有高可靠性、高性能的特点,并且它的界面友好、易于操作。
TDC 3000可以实现对火电厂的发电、供热、供水等系统进行监控和控制,实时获取设备的工作状态和参数,并能够自动控制系统的运行,提高设备的效率和稳定性。
2. Yokogawa Centum CS(横河Centum CS)Yokogawa Centum CS是日本横河电机公司开发的一款火电厂DCS系统。
Centum CS以其稳定可靠的性能和灵活的扩展性而受到广泛关注。
该系统具有可视化的操作界面,可以实时监控设备的状态和参数,并根据需要调整和控制设备的运行。
它还具有自动报警和故障诊断功能,能够及时发现和解决问题,保障设备的正常运行。
3. Emerson Ovation(艾默生奥维新)Emerson Ovation是Emerson公司开发的一款先进的火电厂DCS系统。
Ovation系统具有强大的功能和灵活的配置选项,可以满足不同的用户需求。
它提供了全面的监控和控制功能,可以实时获取设备的运行状态和参数,并根据需要调整和控制设备的运行。
此外,Ovation还具有先进的故障诊断和预测功能,可以提前识别潜在故障并采取相应措施,保障设备的安全和稳定运行。
4.ABB800xA(ABB800xA)ABB800xA是瑞士ABB公司开发的一种先进的DCS系统,广泛应用于火电厂等工业领域。
火电厂APS介绍

Fuel control
Air control
Load control
FGD FGD
Auxiliary
Electrical ECS
Boiler BMS Data Acquisition System (DAS) Sequence Control System (SCS) Modulating Control System (MCS) DEH
Turbine ETS BPC
2/ 2011-3-17
APS应用目的及现状
为什么要应用APS 为什么要应用
• • • 大型火力发电机组的运行对操作人员的要求 机组安全、稳定运行的需求 现代化的发电厂运营管理上的需求
国内燃煤机组实现APS的技术难点 的技术难点 国内燃煤机组实现
1. 燃煤机组工艺过程复杂,各工艺系统的配合要求高,且运行方式多变,对于自动控 制系统的设计要求较高 2. 3. 设备的可用性、可靠性要求高 从机组自动启/停的控制需求考虑,要求纳入自动控制系统的仪控设备较多,新建机 组从控制项目投资的角度考虑,往往有所保留
• • • • • • • 步序阶段化 基于断点的程序设计 逻辑模块化 判据条理有序化 程序重定位 不同工况下的选择跳转 系统接口规范化 便于独立组态、调试 必要的人工干预点 事故处理及报警 断点1 断点
功能组1 功能组 功能组2 功能组
APS LEVEL 1
断点2 断点 断点n 断点
子组1 子组 子组2 子组 子组n 子组
APS提供的主要控制功能
• • 分阶段的全程机组启/停,运行操作指导 机组启停过程监控及实时异常报警
断点允许条件
本断点 功能组
功能组监控
断点操作 APS操作指令提示 APS操作指令提示 断点功能组报警信息
火电厂几种主流DCS系统介绍

FoxboroA2自动化控制系统更适合于中小型 装置,采用以太网系统架构.符合lSO/OSl标 准.传输速率最高为100Mb/s,通信介质为 光缆或双绞线,用于连FoxboroA2的控制站、 工程师站、操作员站,也可与多种现场总线 相连.模块采用欧陆公司的2500系列和技术, 人机界面采Wonderware产品和技术.
由于FSSS对作为事件顺序的操作记录的要 求很高,而且可能是多系统组合来完成该项 功能,所以SOE的带有时间戳的开关量输入 设备及相关功能是必须具备的.在时间同步 方面,除了DCS系统内时钟同步方式,还有目 前正兴起的GPS卫星时间同步方式.
由于电厂的主要产品电能的特殊性及电网 调度和电业管理的要求,电厂已推行火力发 电厂厂级监控信息系统技术要求SIS,现在也 基本上做到很好和DCS之间的衔接问题.
优缺点
优点:系统可靠,在中国电力方面用户多达 200多个,新系统和老系统兼容,这有利于以 后的设备改造更新.图形化组态 ,方便于机组 运行中查找维护. 缺点:不能在软件中进行强制. PS:省内电厂使用该系统的有大唐洛河电厂.
西门子Siemens
在全世界已有超过1500套DCS控制系统装 置,是成功的电力和I&C系统供应商.在我国 电站中采用西门子的Tele-perm系统较多.近 年在全集成自动化的架构下,西门子推出 SPPA—T3000系统,已经在国内大型电站项 目陆续使用,效果相当不错.现就SPPATDCS系统进入21世纪,在通信和信息管理技 术、集成电路技术的进步以及工艺设备大 型化的影响下,在节能环保和提高生产效率 的需求下,形成了新一代的DCS,或称为第四 代DCS.在电厂方面,我们重点介绍ABB、西 门子SiemensT3000、艾默生 OvationFOXBORO和日立Hitachi五家相关 产品,这五家也是现在电厂DCS的主流厂家.
火电厂DCS系统介绍

实时多任务操作系
统
提供稳定的、可靠的、高效的任 务调度和资源管理功能,确保 DCS系统的实时性和稳定性。
网络通信协议栈
支持多种网络通信协议,如 TCP/IP、Modbus等,实现DCS 系统内部及与其他系统的数据交 换。
系统安全机制
提供用户权限管理、数据加密、 防火墙等功能,确保DCS系统的 安全性和可靠性。
可靠性
DCS系统是火电厂运行的核心,其可靠性直接关系 到电厂的安全和经济运行,需要采取多种措施提高 系统的可靠性。
兼容性
不同厂商和不同时期的DCS系统存在兼容性 问题,需要进行系统升级和改造,实现不同 系统之间的互联互通。
市场前景
市场需求
随着全球能源结构的转型和 环保要求的提高,火电厂需 要更加高效、清洁、灵活的 运行方式,对DCS系统的需
优点与不足
DCS系统能够实现脱硫脱硝设施的实时监控和自动调节,提高环保设施运行效率,但在 实际应用中可能受到设备老化、测量误差等因素的影响。
BIG DATA EMPOWERS TO CREATE A NEW ERA
06
火电厂DCS系统发展趋势及挑战
发展趋势
智能化
随着人工智能和机器学习技术的发展,火电厂DCS系统将更加智能 化,能够实现自适应控制、智能优化等功能。
数据库软件
实时数据库
存储DCS系统实时数据,提供高效的数据读写和 查询功能,支持历史数据存储和追溯。
关系数据库
存储DCS系统配置信息、历史数据等,提供灵活 的数据管理和分析功能。
数据库管理工具
提供数据库创建、配置、备份、恢复等功能,方 便用户对数据库进行维护和管理。
控制策略组态软件
控制策略编辑器
火电厂生产特点及自动化

火电厂生产特点及自动化一、火电厂生产特点火电厂是指以燃煤、燃油、燃气等作为燃料,通过燃烧产生热能,再经过锅炉转化为蒸汽,驱动汽轮机发电的发电厂。
火电厂具有以下几个特点:1. 大规模生产:火电厂通常是大型发电厂,具有较大的发电容量,能够满足广大地区的电力需求。
2. 燃料多样性:火电厂可以使用多种燃料,如煤炭、天然气、石油等,具有灵活性和适应性。
3. 燃烧过程:火电厂通过燃烧燃料产生高温高压的热能,将水转化为蒸汽,再通过汽轮机驱动发电机发电。
4. 环境影响:火电厂燃烧燃料会产生大量的二氧化碳、二氧化硫、氮氧化物等有害气体和颗粒物,对环境造成一定的污染。
5. 热能利用:火电厂的余热可以通过余热锅炉回收利用,提高能源利用效率。
二、火电厂自动化为了提高火电厂的生产效率和安全性,火电厂普遍采用自动化控制系统。
火电厂自动化主要包括以下几个方面:1. 燃料供给自动化:通过自动化系统控制燃料供给装置,实现燃料的输送、储存和供应,保证燃料的稳定供应。
2. 锅炉控制自动化:通过自动化系统控制锅炉的燃烧过程、温度、压力等参数,保证锅炉的安全运行和高效发电。
3. 蒸汽系统自动化:通过自动化系统控制蒸汽的流量、温度、压力等参数,保证蒸汽的稳定供应和合理利用。
4. 汽轮机控制自动化:通过自动化系统控制汽轮机的转速、负荷等参数,实现对发电机的精确控制。
5. 电气系统自动化:通过自动化系统控制发电机的电压、频率等参数,保证电力的稳定输出。
6. 安全监测自动化:通过自动化系统监测火电厂的温度、压力、振动等参数,及时发现异常情况并采取措施,保证生产安全。
7. 数据采集与处理:通过自动化系统实时采集火电厂各个环节的数据,并进行处理、分析,为生产管理提供科学依据。
火电厂自动化的优势在于提高了生产效率、降低了人为操作的风险、提升了生产安全性,同时也减少了能源的浪费和环境污染。
随着科技的不断进步,火电厂自动化水平将会不断提高,为电力行业的发展带来更多的机遇和挑战。
火电厂电气自动化控制系统设计

第17期2023年9月无线互联科技Wireless Internet TechnologyNo.17September,2023作者简介:杨耿涛(1994 ),男,河北隆尧人,助理工程师,本科;研究方向:火电运行㊂火电厂电气自动化控制系统设计杨耿涛(河北兴泰发电有限责任公司,河北邢台045000)摘要:文章依据火电厂运行需求,提出了一种火电厂电气自动化控制系统设计方案㊂系统以DCS 系统为基础,构建了检测保护层㊁通信管理层与上位机系统3个硬件层面的保护层级,并在单神经网络基础上进行了PID 智能控制模块设计㊂在系统功能实现上,文章提出了数据库系统㊁监控系统和应用PID 控制器的控制策略设计内容,并最终确定了火电厂控制策略的最佳应用流程,从而实现了对火电厂电气设备的智慧化控制管理,满足了系统自动化控制管理要求㊂关键词:火电厂;电气自动化;单神经网络;设计流程中图分类号:TM621;TP39㊀㊀文献标志码:A 0㊀引言㊀㊀目前,我国虽然大力发展绿色电力,但是仍然高度依赖火力发电的发电方式㊂2022年我国火力发电装机量仍然超过了50%,火力发电量占比虽有降低,但是仍然维持在70%以上㊂面对 双碳 目标的提出,火电行业如何推进火电产业转型升级,已经成为整个行业的重点关注话题[1]㊂鉴于此,火电厂采用自动化控制技术提高设备运行效率㊁降低能源消耗,普及与应用电气自动化控制系统已经成为促进火电产业整体良性发展的关键举措㊂1㊀需求分析㊀㊀目前,火电厂的分散控制系统(DSC 系统)主要侧重于汽机锅炉,而忽略了对电气系统的运行监控,且对电气系统运行控制的要求在已有DSC 系统中难以完全得到满足,通过硬接线将电气系统直接与DSC 相连,无法充分发挥出电气系统智能终端装置的测量㊁监控与通信作用,使得基于DSC 系统的电气控制系统自动化水平较低[2]㊂鉴于此,火电厂需要采用分层分布式控制结构进行电气自动化控制系统设计,并采用PID 智能控制器模块实现对电气系统的智能化控制,充分发挥火电厂电气自动化控制系统的优势㊂2㊀火电厂电气自动化控制方案设计2.1㊀总体架构设计㊀㊀本文选用DCS 系统作为系统主站,形成以DCS系统为控制核心的电气自动化控制系统,总体架构如图1所示㊂PLC 与远程输入/输出设备利用远端控制模块实现通信,通过现场总线进行数据交换,PLC 根据远程站对地址设置的要求对远程分站进行地址设置,用于区分从站㊂DCS 系统可直接参与从站数据通信,且不会加剧编程工作量㊂系统中,DCS 系统为总站,远程分站有3个,分别为中间站㊁远程中心站与燃料仓站[3]㊂图1㊀总体架构现场总线为开放全数字化的㊁双向多站的计算机网络,利用该网络将智能终端设备㊁PLC 与现场设备相连,主要采用数字信号的传输模式,不同节点可以共用同一条物理传输介质㊂智能终端设备集成了CPU㊁存储器㊁A /D 转换器与I /O 回路,具体包括中压系统保护测控装置㊁低压系统自动保护装置等,通过智能终端设备进行电气设备运行数据的采集㊁处理与集中控制,将相关信息以数据信号的形式上传至DCS 等控制层,并接受来自控制层的控制指令[4]㊂2.2㊀系统功能层㊀㊀整个系统包括3个功能层,具体如下: (1)监测保护层㊂监测保护层由电气系统保护与自动装置构成,具体包括智能终端设备㊁发变组保护㊁自动励磁装置(AVR)㊁自动同步系统(ASS)等㊂所有保护装置的保护功能具有独立性,通过现场总线将各类设备直接与通信管理层相连,从而实现对这些设备的分散监测与控制㊂(2)通信管理层㊂通信管理层为现场总线,负责接收DCS对监测保护层下达的各项控制指令,以及后台工作站下达的修改定值指令等,并将接收到的指令分发至目标装置㊂同时,通信管理层还需要负责接收不同监测保护装置上传的电气设备运行信息,并反馈至DCS系统与后台工作站㊂通信管理层与DCS系统㊁后台工作站之间的连接采用以太网,通常需要配置通信管理单元,需要提供12个通信接口㊂(3)上位机系统㊂上位机系统包括DCS系统与后台工作站,DCS 系统为核心控制系统,后台工作站主要负责电气设备定值修改㊁管理维护等指令的下达工作㊂2.3㊀基于单神经网络的PID智能控制器模块㊀㊀为了提高系统的智能控制水平,系统在智能终端设备中加入了PID智能控制器模块㊂该模块采用单神经网络的PID智能控制器,有利于提高对电气设备控制的自我学习能力,提升电气设备控制的自适应性,具体结构如图2所示㊂转换器在输入过程中,通过对电气设备运行参数的分析,进一步优化电气设备的被控制过程,改善PID控制水平,以s(r)的设置为例,经过转换器的转换后,直接输出为状态数,其中,Y1(r)与ϕ(r)相同,在此基础上可求解出Y2(r),即ϕ(r)-ϕ(r-1),同理也可以求解出Y3(r)=ϕ(r)-ϕ(r-1)-ϕ(r-2)㊂S 为性能指标,R为神经元比例系数,神经元通过关联检索生成衍生信号H p㊁H i㊁H d,并通过路径优化混合控制策略进行调节,实现对电气设备的自动化控制目标㊂3㊀系统功能实现3.1㊀数据库系统的实现㊀㊀火电厂电气自动化控制系统中的数据库系统通图2㊀PID智能控制器过JdbcOdbc桥接方式实现系统功能,预先将数据库系统与本地Oracle数据库相连,其实现方式为数据源,实现在本地直接对数据库的调用功能㊂完成数据库连接后,系统界面设计中应明确数据库系统功能在火电厂电气自动化控制中的应用方向与管理需求,数据库系统运行管理涉及工作空间㊁台账管理㊁定期工作数据查询和状态管理等多项内容㊂因此,系统界面设计应包含功能定制㊁模型定制㊁角色管理与系统功能设定等内容㊂系统应用时,管理人员可通过导航栏电机相应的功能按钮实现相应的操作指令,如添加工作任务时,可通过数据库系统界面的台账管理㊁电气MIS报表㊁添加记录等模块完成㊂完成系统数据添加后,根据火电厂电气管理工作需要,管理人员可通过选择数据进行修改,但修改功能仅限于部分高等级权限人员,以保证系统数据信息安全㊂数据库系统实现中,管理人员首先需要在数据库建立类模型,类添加属性与字段进行一一对应,通过字段类型确定相应的精度与长度,从而编辑Web中类的属性,包括精度㊁长度㊁种类㊁名称㊁位置㊁项目与人员时间等,从而实现对属性的查看与修改,完成模型构建㊂3.2㊀监控系统的实现㊀㊀(1)电源切换㊂该功能模块可确保火电厂机组的安全运行,可以为机组运行提供备用电源,以保证在异常情况下能够迅速实现电源切换㊂火电厂电气自动化控制中所使用的电母线有工作分支与备用分支两种,工作分支在日常运行状态下接入系统,另外一条线路始终处于备用状态,当出现运行线路异常情况时,监控系统则会立即接入备用电源,从而实现备用线路的稳定供电,保障系统母线供电的稳定性㊂火电厂监控系统运行时有两条供电途径,其中备用电源处于断开状态,运行中两条线路相互备用,通过系统监测开关操作异常情况㊁断路器情况与接线方式进行电源切换操作㊂(2)低压电源切换㊂低压电源系统会根据系统逻辑指令进行自动切换,在低压电源切换中对汽机断路器和合跳闸逻辑指令如表1所示㊂表1㊀汽机断路器合跳闸逻辑指令内容逻辑指令信号名称状态允许合闸条件逻辑断路器分闸位置真断路器远方控制真无断路器控制电源消失非无断路器故障非PC1A段母线PT控制回路断线非PC1A段母线PT直流电源消失非PC1A段母线PT低电压动作非PC1A段母线PT熔断器熔断非侧断路器合闸状态非允许跳闸条件逻辑断路器远方控制真断路器合闸位置真㊀㊀(3)高低压用电控制原理㊂火电厂高低压用电控制均采用远程分合闸控制与就地手动分合闸控制相结合的方式,但高压控制的电气回路转换采用CK转换开关,而低压电气回路转换则采用LK转换开关㊂3.3㊀控制策略设计㊀㊀火电厂电气自动化控制中,设定PID控制器包含3个整定变量H p㊁H i㊁H d,且3个变量均存在5个有效数位㊂之后,将3个参数值抽象化于平面坐标中,并绘制出等间距和等长度的15条垂直x轴的线段,分别为A1,A2,...,A15㊂将所有线段进行九等分,从每条垂直线段上获取相应的10个节点,以此描述线段的数位值㊂此时,平面坐标系中存在15ˑ10个节点,将平面中的节点设定为a(x j,y j,i),其中x j为线段A j 的衡坐标,y j,i为A j上节点i的纵坐标,其数值和节点的纵坐标值相对应㊂在蚁群算法中从坐标原点O出发,其爬行路线可描述为:B={O,a(x1,y1,i),a(x2,y2,i),...,a(x j,y j,i)}在火电厂电气自动化控制中,按照如下流程实现有效控制㊂步骤1:依据参数整定方法(Z-N法),运算PID 参数为H p,s-M㊁H i,s-M㊁H d,s-M㊂步骤2:蚁群种群数目为n,存在15个用于保存途经节点的纵坐标和路径属性信息㊂步骤3:运用混合算法进行参数初始化㊂步骤4:设定变量j的初始值为1,当参数p<p0则计算蚂蚁在线段A j中各个节点转移的概率Q h ji(t),反之,使用赌轮选取方法确定后续节点,并记录数值㊂其计算方法如下:Q h ji(t)=[Ψji(t)]1㊃[ϑji(t)]2ðhɪallowed h[Ψji(t)]1㊃[ϑji(t)]2,iɪallowed h0,elseìîíïïïï式中,allowed h为h下一步可选取的节点; [Ψji(t)]1为描述信息素轨迹强度重要性;[ϑji(t)]2为描述能见度因素的重要性㊂步骤5:当所有蚂蚁走完一个节点后进行局部刷新㊂步骤6:设定j=j+1,若jɤ15,则返回步骤3,反之继续㊂步骤7:根据蚂蚁爬过路径,运算分析此路径所对应的PID参数H h p㊁H h i㊁H h d,通过仿真计算,获取火电厂电气自动控制系统性能指标S h z㊁稳态误差d h和超调量e h,计算其所对应的目标函数㊂步骤8:刷新全部信息素,并自适应调整全体信息发挥系数,刷新方式如下所示:Ψjiѳ(1-∂)㊃Ψji+∂㊃ΔΨji步骤9:运用单点交叉策略实施杂交,衍生出新的个体㊂步骤10:通过基本位变异方法再次计算每个参数值㊂步骤11:若控制策略中全部蚁群没有收敛至相同路径,则需再次将所有蚂蚁放置于起点位置并跳至步骤4㊂反之停止运算,输出最佳路径与相应参数㊂4 结语㊀㊀火电厂电气自动化控制系统的构建仍然以采用DCS系统作为首选,该系统在工业自动化控制方面具有其他控制系统难以比拟的应用优势,在现场总线技术出现以后,DSC系统在火电厂电气自动化控制方面的应用也可以得到进一步发展,以现场总线实现DSC 系统同智能终端设备的连接,可以有效解决基于DSC 系统的电气控制系统自动化水平较低的问题,并通过智能终端设备的优化,可以实现对电气设备的智慧化控制,真正发挥出火电厂电气自动化控制系统的控制作用㊂参考文献[1]刘放.探究大型火电厂电气自动化控制技术[J].电气技术与经济,2023(3):84-87.[2]吴燕峰.智能化技术在电气自动化控制系统开发中的运用研究[J].设备监理,2023(2):1-3,8. [3]田野.大型火电厂电气自动化控制技术研究[J].现代工业经济和信息化,2021(10):135-136,139. [4]乔建平,杨志荣,郭芬.解析火电厂电气自动化与电气工程融合运用[J].中国新技术新产品,2020 (9):43-44.(编辑㊀李春燕)Design of electrical automation control system for thermal power plantsYang GengtaoHebei Xingtai Power Generation Co. Ltd. Xingtai045000 ChinaAbstract This article proposes a design scheme for the electrical automation control system of thermal power plants based on their operational requirements.The system construction is still based on the DCS system with three hardware level protection layers detection protection layer communication management layer and upper computer system.PID intelligent control module design is also carried out on the basis of a single neural network.In terms of system function implementation the design content of control strategies for database systems monitoring systems and application PID controllers was proposed and the optimal application process of control strategies for thermal power plants was ultimately determined thus achieving intelligent control and management of electrical equipment in thermal power plants and meeting the requirements of system automation control management.Key words thermal power plant electrical automation single neural network design process。
火电厂锅炉自动化控制系统设计

火电厂锅炉自动化控制系统设计火电厂锅炉是电力发电的核心设备,其重要性不言而喻。
自动化控制系统是保证锅炉正常运行和安全稳定的关键。
本文将一步步介绍火电厂锅炉自动化控制系统的设计过程。
一、控制目标及原理选型在设计火电厂锅炉自动化控制系统时,首先需要确定控制目标和原理选型。
常见的控制目标有以下几种:1.温度控制:对于锅炉来说,温度控制是非常重要的一个控制目标。
通过控制来保证锅炉内部温度在一定范围内,避免高温烧毁设备或者低温影响发电效率。
2.压力控制:锅炉内部压力高低控制也是控制目标之一。
通过控制压力来实现热水流动速度和水蒸气压力的平衡。
3.流量控制:锅炉内部热水流速控制也是一个非常重要的控制目标。
4.阀门控制:对于火电厂锅炉来说,阀门控制是一个比较重要的控制策略。
通过控制阀门开合,可以实现流量调控和压力平衡等。
在选择控制原理时,需要考虑控制系统的响应速度,稳态精度,以及设备成本。
常见的控制原理有PID控制器、模糊控制器、神经网络控制器等。
二、运行状态识别在设计火电厂锅炉自动化控制系统时,需要考虑锅炉的各种运行状态,对不同的运行状态进行识别和分类,以便针对不同状态采取不同的控制策略。
常见的运行状态分类有以下几种:1.启动状态:在锅炉启动阶段,需要通过控制热水流入速度和阀门开合来调节内部的压力和温度;2.稳态状态:当锅炉运行稳定时,需要通过控制温度、压力和流量等参数来保证锅炉的正常运行;3.冷却状态:当锅炉停止运行时,需要关掉热水流入阀门,开始进行冷却。
针对不同的运行状态,需要设计不同的控制模型和控制参数。
三、系统架构设计在确定好控制目标和运行状态识别后,需要进行系统架构设计,包括控制系统的硬件和软件两个方面。
1.硬件设计:硬件设计主要包括传感器、执行器、控制器等方面。
对于火电厂锅炉自动化控制系统,传感器主要用于测量锅炉内部的温度、压力、流量等参数;执行器主要用于控制阀门的开合和水泵的开关;控制器主要用于控制系统的数据传输和控制逻辑等。
火电厂DCS系统介绍

DCS系统通过计算机网络技术将各个控制 器连接起来,实现集中管理和监控,方便 了操作和管理。
开放性
DCS系统采用开放式设计和标准化的通信 协议,方便与其他系统和设备的连接和集 成。
实时性
DCS系统具有快速的数据处理能力和实时 响应能力,能够及时处理生产过程中的各 种信号和数据。
DCS系统的应用范围
工程师可以使用工程师站进行系统配置、控制逻辑设 计、图形界面制作等任务,以满足生产工艺的需求。
操作站是DCS系统中用于监控现场设备运行状 况的人机界面。
工程师站是用于组态和维护DCS系统的计算机。
通讯设备
01
通讯设备是DCS系统中用于实现各硬件设备之间信 息传输的设备。
02
它包括通讯卡、交换机、中继器等设备,以确保系 统各部分之间的可靠通讯。
蒸汽。
蒸汽驱动涡轮机
蒸汽进入涡轮机,驱动 涡轮机旋转,从而产生
电力。
蒸汽冷凝和回收
蒸汽在涡轮机中释放完 能量后,被冷凝成水, 经过处理后再次循环利
用。
DCS系统在火电厂的配置方案
控制单元
DCS系统通过控制单元实现对火电厂设备的 远程控制和监测。
数据采集
DCS系统实时采集火电厂设备的运行数据, 如温度、压力、流量等。
智能运维
DCS系统将实现智能运维管理,通过实时监测和数据分析, 自动预测设备维护需求和故障风险,提高运维效率和安全 性。
DCS系统的安全性提升
安全防护
DCS系统将加强安全防护措施,采用更加先进的安全技术和加密算 法,保护系统免受网络攻击和恶意软件的侵害。
容错与冗余设计
DCS系统将采用容错与冗余设计,确保系统在发生故障时能够快速 恢复运行,降低对火电厂生产的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火电厂常规的自动控制系统(给水、减温、燃烧)介绍及方案1、锅炉设备主要有哪几个调节系统?答:(1)给水自动调节系统。
(2)过热汽温自动调节系统。
(3)再热汽温自动调节系统。
(4)燃烧过程自动调节系统(引风、送风、一次风、氧量控制)。
(5)主汽压力自动调节系统。
2、锅炉给水调节的任务是什么?答:锅炉给水调节的任务是使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围。
3、给水自动调节系统中主站切手动有哪些条件?答:1)所有给水泵分站在手动控制。
(2)操作员人为切手动。
(3)给水泵在压力控制方式,给水泵出口压力信号故障或压力与给定值偏差大。
(4)汽包水位信号故障。
(5)给水流量信号故障。
(6)蒸汽流量信号故障。
(7)给水泵在水位控制方式,汽包水位与给定值偏差大。
4、变速泵给水调节系统包括哪几个子系统?答:变速泵给水调节系统包括三个子系统:汽包水位调节子系统、泵出口压力调节子系统、泵最小流量调节子系统5、如何调节给水泵转速?答:汽动泵是通过电流、电压转换器与其电液调节系统连接来改变转速。
而电动给水泵是通过执行机构去控制液压联轴器的勺管位置,改变给水泵转速。
6、简述三冲量双回路给水调节系统的原理。
答:三冲量双回路给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量和三个信号,其中水位是主信号,任何扰动引起的水位变化,都会使调节器输出信号发生变化,改变给水流量,使水位恢复到给定值。
蒸汽流量信号是前馈信号,其作用是防止由于虚假水位而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量。
蒸汽流量和给水流量两个信号相配合,可消除系统的静差。
当给水流量变化时,测量孔板前后的差压变化反应很快,差压变化及时反应给水流量的变化,所以给水流量信号作为反馈信号,使调节器在水位还未变化时就可以根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。
7、测量信号接入调节器的极性是如何规定的?答:关于测量信号接入调节器的极性规定:当信号值增大时要求开大调节阀,该信号标“ +;反之,当信号值增大时要求关小调节阀,该信号标以“ - ”号。
8、给水调节系统投入前应进行哪些检查和试验?答:(1)信号极性检查。
2)调节阀开度试验。
(3)执行机构小回路检查。
(4)自动跟踪检查。
(5)调节器输出信号方向检查。
(6)参数设置。
(7)试投调节器。
9、给水全程调节系统通常有几种方案?答:给水全程调节系统通常有三种方案:(1)单冲量、三冲量调节系统。
单冲量、三冲量给水全程调节系统即低负荷时采用单冲量,高负荷时采用三冲量给水全程控制系统。
(2)串级三冲量给水全程调节系统。
主调节器接收经过压力校正的水位信号,副调节器除接收主调节器的输出信号外,还接收蒸汽、给水流量信号(经过校正)及负荷信号(作为前馈信号)。
(3)采用变速泵的给水全程调节系统。
10、什么是给水全程自动调节?它有什么特点?答:给水全程自动调节系统是指在机组起停过程和正常运行的全过程都能实现水位自动调节的调节系统。
这种调节系统扩大了调节范围,是具有逻辑保护功能的调节系统,是程序控制、保护和自动调节相结合的综合性调节系统,比常规调节系统功能更全、更先进,特别适用于调峰机组和启停频繁的锅炉。
11、给水全程自动调节系统中阀门切换系统调整应注意哪些问题?答:(1)切换点应有一定的滞环值,以防止切换过程中阀门多次反复切换(2)速度限制器的速度不应大于截止阀电动执行器的动作速度,以免两个调节阀的切换过程不同步。
(3)为使调节阀的切换与截止阀的切换协调配合,蒸汽流量偏差报警信号应同时送到程序控制系统,以使截止阀与调节阀的动作协调一致。
12、汽包水位测量有哪些误差来源?答:采用平衡容器进行汽包水位测量,其误差的主要来源是:(1)在运行时,当汽包压力发生变化时,会引起饱和水、饱和汽的重度发生变化,造成差压输出有误差。
(2)设计计算平衡容器补偿管是按水位处于零水位情况时得出的,而当运行时锅炉偏离零水位时会引起测量误差。
(3)汽包压力突然下降时,由于正压室内的凝结水可能会被蒸发掉,导致仪表指示出现误差。
13、单级、串级三冲量给水调节系统在结构上有什么相似与不同之处?答:(1)相同之处。
都有蒸汽流量、给水流量、水位三个信号,并由给水流量信号反馈构成内回路,水位信号构成外回路,以及有蒸汽流量信号的前馈通路。
(2)不同之处。
串级系统增加了一个调节器,主调节器控制外回路,副调节器控制内回路。
14、试述虚假水位是怎样造成的?它对水位自动调节有何影响?答:虚假水位是由于汽包内压力变化造成的。
汽包内部压力又是随蒸汽负荷变化及锅炉工况而变化的。
如当锅炉燃烧强度未变,而负荷突然增加,需从汽包内多取出一部分蒸汽量,水位应下降,但因此时燃料未及时增加,势必引起汽包压力下降,使整个汽水混合物的体积增大,结果反使水位升高了。
这与物质量平衡对水位的影响规律相反,故称为虚假水位。
待燃料增加后,压力才能逐步恢复额定值,虚假水位现象才逐步消除。
虚假水位有使给水量向与负荷变化方向相反向变化的趋势,造成错误调节动作。
15、汽包水位、给水流量、蒸汽流量的测量为什么要进行压力温度的修正?自动校正的方法是什么?答:锅炉从启动到正常运行或从正常运行到停炉的过程中,蒸汽参数和负荷在很大的范围内变化,这就会使水位、给水流量、蒸汽流量的准确性受到影响,为了实现全程自动测量和控制,就要求这些测量信号能自动地进行压力、温度的修正。
其基本方法是:先推导出被测参数随温度、压力变化的数学模型,然后利用各种算法电路运算,便可实现自动校正。
16、给水全程自动调节为什么要设计两套调节系统?它们进行切换的原则是什么?答:给水全程自动调节设计两套调节系统主要是在启停炉过程中,当负荷低于满负荷的30%左右时,蒸汽流量信号很小,测量误差相对增大,所以此时由三冲量给水调节系统改为单冲量调节系统。
两套调节系统进行切换的原则是:当蒸汽流量信号低于某一值时发生信号,使由三冲量调节系统切为单冲量调节系统。
反过来当负荷高于某一值时发出信号,由单冲量调节系统切换到三冲量调节系统。
17、为什么要对过热汽温进行调节?答:火力发电厂锅炉的过热器是在高温、高压下连续工作的。
锅炉出口的过热蒸汽温度是工艺过程中汽水工质的最高温度,其值高低对机组的安全经济运行有重大影响。
汽温过高,会使过热器和汽机高压缸承受过高的热应力而损坏,汽温过低会降低机组热效率,影响经济运行。
18、简述影响汽温变化的因素有哪些?答:影响汽温变化的因素很多,如蒸汽负荷、炉膛热负荷、烟气温度、火焰中心位置、炉膛负压、给水温度、送风量、减温水量等的变化。
19、影响烟气流速的烟气温度变化的主要原因是什么?答:(1)给粉不均匀。
(2)煤中含水量的变化。
(3)受热面结焦、积灰。
(4)过剩空气系数增加。
(5)给水温度的变化。
(6)火焰中心位置的变化。
20、过热汽温的分段调节系统的原理是什么?答:大型锅炉的过热器管道较长,结构复杂,为了改善调节品质,采用分段汽温调节系统,即将整个过热器分成若干段,每段设置一个减温器,分别控制各段的温度,以维持主汽温为给定值。
21、再热蒸汽温度有哪些调节方法?答:再热蒸汽温度调节采用改变烟气流量作为主要调节手段,如改变烟气再循环流量,改变烟气挡板位置、摆动喷然器角度等。
辅助汽温调节手段有喷水减温。
22、蒸汽负荷的变化对过热汽温有何影响?答:主蒸汽压力或汽轮机调速汽门开度的变化都将引起锅炉蒸汽流量的变化。
当蒸汽流量变化时,尚过热管整个长度各点的温度几乎同时变化,它的特点是有迟延、有惯性、有自平衡能力。
23、过热汽温调节系统有哪几种组成形式?答:过热汽温调节系统的组成形式有串级系统、具有导前微分信号的双冲量系统、相位补偿系统和分段调节系统。
24、简述再热汽温自动调节的必要性。
答:在锅炉运行中,再热器出口温度更容易受到负荷变化、燃烧工况等干扰的影响而发生变化,并且变化的幅度也较大。
再热汽温产生较大的变化,将可能造成汽轮机中压缸转子与汽缸之间产生较大的相对变形,引起汽轮机的剧烈振动。
所以大型机组配有再热汽温调节系统,用以保持再热器出口温度为给定值。
25、什么是相位补偿的汽温调节系统?答:为了克服主汽温调节中动态过程的滞后和惯性,采用相位补偿的调节系统。
此系统属于双回路系统。
在主信号回路中串接了比较器和相位补偿器,比较器的作用是将主汽温的信号与给定值进行比较,其偏差值进入相位补偿器进行相位和幅值校正,称为相位补偿,当被控对象不需进行校正或补偿器本身有故障时,可用开关将其短路。
26、对过热汽温调节的要求是什么?答:过热汽温是锅炉汽水通道中温度最高的地方,过热器管正常运行时的温度一般接近材料所允许的最高温度。
过热汽温的上限一般不应超过额定值5C,下限不低于额定值10C。
27、为什么对减温水的质量要求很高?答:由于减温水喷入减温器后与过热蒸汽直接混合, 因而对水质要求很高,其纯度与饱和蒸汽相当,否则将影响减温器运行和蒸汽品质。
28、自冷凝器的作用是什么?它对减温调节系统有哪些影响?答:自冷凝器的作用是将部分饱和蒸汽用给水冷凝, 取得品质高的凝结水喷入减温器中用于调节过热汽温。
采用自冷凝器对减温调节系统来说, 具有良好的调节性能, 并具有自动适应负荷变化的调节特性,调温幅度可达60-70 C 。
29、在汽温串级调节系统中, 什么是副回路?什么是主回路?对它们各有什么要求?答:在汽温串级调节系统中,由对象的导前区、导前汽温变送器、副调节器、执行器和喷水调节阀组成内回路或称为副回路。
由对象的惰性区、过热气温变送器、主调节器和副回路组成外回路, 也称主回路。
对副回路的要求是应能尽快地消除扰动, 对汽温起粗调作用, 当副回路动作时, 主回路可以看作开路。
对主回路的要求是使系统最后能保持主汽温不变,对主汽温起细调作用。
当主回路动作时,副回路可以看作快速随动系统。
30、过热汽温自动调节系统切手动的条件有哪些?答:(1)操作员人为切手动。
(2) MFT动作。
( 3)汽轮机跳闸。
( 4)汽温变送器故障。
( 5)过热汽温与给定值偏差大。
( 6)喷水调节输出指令与位反偏差大。
31、中间储仓式制粉系统自动调节的任务是什么?有哪几个自动调节系统?答:中间储仓式制粉系统自动调节的任务主要有:( 1)保证一定的煤粉质量,即煤粉细度和温度达到指标。
( 2)保证磨煤机运行的经济性。
( 3)保证制粉系统的正常工况,即保持磨煤机入口负压和出口风粉混合物温度。
自动调节系统有:磨煤机负荷调节系统、磨煤机入口负压调节系统、磨煤机出口风粉混合物温度调节系统。
32、锅炉燃烧调节系统的功能是什么?答:锅炉燃烧调节系统的功能是使进入炉膛的燃料量所产生的热量与锅炉蒸汽负荷所需要的热量相适应,保证燃烧过程稳定,实现机组的安全经济运行。