数字光纤通信系统信号眼图测试

合集下载

高速数字信号的眼图和抖动测量技术(基于Keysight示波器测量)

高速数字信号的眼图和抖动测量技术(基于Keysight示波器测量)

的,周期性波形
• 效果相当于调频FM
• 可能的抖动源:电源的EMI干扰、扩频时钟SSC的调制信号
TIE Trend曲线,即 TIE随时间变化的曲线, 呈现出正弦波特性
深圳市飞尔沃科技©
V 1.0
19
占空比失真DCD
• 不对称的上升边沿速率与下降边沿速率
• 不适当的判断门限选择
深圳市飞尔沃科技©
V 1.0
深圳市飞尔沃科技©
V 1.0
23
Bathtub曲线
• Bathtub曲线的中部大部分地 受到Rj的影响 • 靠向眼睛交叉点较大地受到Dj 影响 • 在既定的BER水平下,Dj的PkPk值与Rj的标准偏差值影响眼 睛的张开度
深圳市飞尔沃科技©
V 1.0
24
TJ(BER)的估算
For a BER = 10-12 JPPRJ = 14 s …7 for each tail
安捷伦仪器与仪表产品培训课程
高速数字信号的 眼图和抖动测量技术
深圳市飞尔沃科技©
V 1.0
1
内容纲要
第一部分:眼图和抖动测量简介 第二部分:眼图测量的操作步骤 第三部分:抖动测量的操作步骤 第四部分:抖动分解的操作步骤
深圳市飞尔沃科技©
V 1.0
2
第一部分: 眼图和抖动测量简介
深圳市飞尔沃科技©
抖动的常见术语
抖动测试的衡量方法
• 平均值(mean)
• 标准偏差(standard deviation)
• 峰-峰值(peak to peak)
深圳市飞尔沃科技©
V 1.0
14
抖动测量举例
0.0 ns 0.990 ns 2.000 ns 2.980 ns 4.000 ns

光接收机的动态范围及眼图观测

光接收机的动态范围及眼图观测

光接收机的动态范围及眼图观测一、实验目的1.了解光收端机动态范围的指标要求。

2.掌握光收端机眼图的观测方法。

二、实验内容1.了解光收端机眼图的观测方法。

2.用示波器观察眼图。

三、实验仪器1.光纤通信实验系统1台。

2.示波器1台。

3.万用表1部。

4.光纤跳线1根。

四、实验原理(一) 动态范围在实际的光纤通信线路中,光接收机的输入光信号功率是固定不变的,当系统的中继距离较短时,光接收机的输入光功率就会增加。

一个新建的线路,由于新器件和系统设计时考虑的富余度也会使光接收机的输入光功率增加。

为了保证系统的正常工作,对输入信号光功率的增加必须限制在一定的范围内,因为信号功率增加到某一数值时将对接收机性能产生不良影响。

在模拟通信系统中,输入信号过大将使放大器超载,输出信号失真,降低信噪比。

在数字通信系统中,当输入信号功率增加到某一数值时,将使系统出现误码。

应该指出,在数字通信系统中,放大器输出信号的失真在测试时应与模拟系统区别开来。

为了保证数字通信系统的误码特性,光接收机的输入光信号只能在某一定范围内变化,光接收机这种能适应输入信号在一定范围内变化的能力称为光接收机的动态范围,它可以表示为:max min10lg ()P D dB P (式 18-1) 式中,Pmax 是光接收机在不误码条件下能接收的最大信号平均光功率;Pmin 是光接收机的灵敏度,即最小可接收光功率。

一般来说,要求光接收机的动态范围大一点较好,但如果要求过大则会给设备的生产带来一些困难。

如何才能保证光接收机的动态范围呢?从光接收机内部来说,就是通过它的自动增益控制(AGC )来实现的。

光接收机的AGC 与电接收机的AGC 有相同之处,也有不同之处。

相同之处都是要控制放大器的放大倍数。

不同之处是在APD 光接收机中,还可以通过对APD 倍增因子的控制来扩大接收机的动态范围。

(二) 眼图原理眼图方法虽然简单,却是评估数字传输系统数据处理能力的一种极为有效的测量方法。

眼图观测实验 光纤通信_实验5实验报告

眼图观测实验 光纤通信_实验5实验报告

课程名称:光纤通信实验名称:实验5 眼图观测实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解和掌握眼图的形成过程和意义。

2、掌握光纤通信系统中的眼图观测方法。

二、实验内容1、观测数字光纤传输系统中的眼图张开和闭合效果。

2、记录眼图波形参数,分析系统传输性能。

三、实验器材1.主控&信号源模块2.25号光收发模块3.示波器四、实验原理1、实验原理框图眼图测试实验系统框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。

如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。

3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。

眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。

利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。

●被测系统的眼图观测方法通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。

眼图测试方法框图●眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。

八种状态如下所示:八种状态示意图眼图合成示意图如下所示:眼图合成示意图一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。

●眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

光纤通信实验:数字光接收性能测量

光纤通信实验:数字光接收性能测量

光纤通信实验:数字光接收性能测量实验三数字光接收性能测量一、实验目的1.熟悉数字光接收机灵敬度和动态范围的概念;2.掌握数字光接收机灵敬度和动态范围的测试方法。

3.了解眼图产生原理,用示波器观测扰码的光纤信道眼图。

二、实验仪器1•光纤通信实验箱2.20M数字双踪示波器3.光功率计(FC-FC单模尾纤)4.可调衰减器(FC-FC)5.外置误码测试仪(选用)三、实验原理1、光收端机的灵墩度光收端机的灵敬度是指在保证一定的误码率前提下,光接收机所允许接收的最小光功率。

灵敬度的单位为分贝毫瓦(dBm)。

光传输系统误码率山误码测试仪测量,误码测试仪数据输出接光发送机数据输入端,误码测试仪数据输入端光接收机数据输出端。

误码测试仪向光发射机发送作为测试信号伪随机序列,经电光转换后通过光纤传输到光接收机,光电转换后送给误码测试仪和发送的测试信号比较,检测误码,计算出误码率。

为了测量接收机灵敬度,在光接收机前的光纤线路上串接可变光衰减器,调整光衰减器使其衰减值逐渐增大,从而使输入光接收机的平均光功率逐步减小,使系统处于误码状态,随着衰减量的增大,误码率也随之增大,当误码率达到最大,11允许值(例如:)时,测得此时的光接收机的输入光功率即为此误码率条件 下光1, 10 接收机的最小光功率,这也就是光接收机的灵墩度。

光接收机灵敬度主要决定于光接收机内部噪声(光检测噪声和前置放大器噪 声)。

光接收机内部噪声是伴随光信号的接收检测与放大过程产生的,它使接收机 最小可接收平均光功率受到限制,即它决定了光接收机的灵敬度。

152, 1本实验系统中包含有简单的误码检测功能。

误码检测模块输出的伪随机 码,对 ,6输入的数据进行误码检测,当检测到当前误码率达到或大于1, 10时,误码 状态显示“误码”,即由“正常”切换为“误码”;反之,显示为“正常”,可以 很方便的用于灵敬度测试实验。

光接收机灵敬度测试实验测量结构示意图如图3, 1和3, 2所示:.5 ■—氓卢二川「"I J■ --- -------------------图3,2利用外接误码测试仪的接收机灵敬度的测试结构示意图2、光接收机的动态范圉光收端机的动态范围是指在保证一定的误码率前提下,光接收机所允许接收的 最大和最小光功率之比的分贝数。

实验二 信道与眼图实验

实验二      信道与眼图实验

实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

实验二数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试一.实验目的1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;2.学习通过数字示波器调试、观测眼图;3.掌握判别眼图质量的指标;4.熟练使用数字示波器和误码仪。

二.实验原理眼图是估计数字传输系统性能的一种十分有效的实验方法。

这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。

眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。

图2.1是测量眼图的装置图。

由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。

光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。

用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。

AV5233C误码仪用来产生伪随机数字序列信号。

在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。

伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。

伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。

例如N可取7、10、15、23、31等。

如果只考虑3比特非归零码,应有如图2.2所示的8种组合。

将这8种组合同时叠加,就可形成如图2.3所示的眼图。

图2.1 眼图测量装置许多数字通信系统的重要性能可以从眼图测试中得到。

为了理解眼图测量原理,考虑图2.4所示简化的眼图,可以得到关于信号幅度失真、定时抖动和系统上升时间等系统性能参数。

接收信号的最佳取样时间是纵向眼开度最大的时刻t1。

眼图观测实验报告

眼图观测实验报告

眼图观测实验报告一、实验目的1、了解和掌握眼图的形成过程和意义。

2、掌握光纤通信系统中的眼图观测方法。

二、实验器材主控&信号源模块25号光收发模块示波器三、实验原理1、实验原理框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。

如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。

3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。

眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。

利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。

被测系统的眼图观测方法:通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。

眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。

八种状态如下所示:眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光收端机码间干扰的大小。

其中,垂直张开度水平张开度从眼图中我们可以得到以下信息:(1)最佳抽样时刻是“眼睛”张开最大的时刻。

(2)眼图斜边的斜率表示了定时误差灵敏度。

斜率越大,对位定时误差越敏感。

实验四 光纤通信系统测量中的眼图分析方法测试实验

实验四  光纤通信系统测量中的眼图分析方法测试实验

实验四 光纤通信系统测量中的眼图分析方法测试实验一、实验目的1、了解眼图的形成过程2、掌握光纤通信系统中眼图的测试方法二、实验仪器1、ZYE4301F 型光纤通信原理实验箱1台2、20MHz 模拟双踪示波器1台3、万用表1台三、实验原理眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。

眼图可以在时域中测量,并且可以用示波器直观的显示出来。

图1是测量眼图的系统框图。

测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。

这样,在示波器的屏幕上就可以显示出被测系统的眼图。

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。

例如,由n=2比特长的4种不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。

如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。

分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度VV V ∆-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。

2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V∆增加,无畸变眼图的眼皮厚度应该等于零。

图1眼图的测试系统3、系统无畸变眼图交叉点发散角b T T∆应该等于零。

4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度-+-++-V V V V 应该等于零。

5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二数字光纤通信系统信号眼图测试
一.实验目的
1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;
2.学习通过数字示波器调试、观测眼图;
3.掌握判别眼图质量的指标;
4.熟练使用数字示波器和误码仪。

二.实验原理
眼图是估计数字传输系统性能的一种十分有效的实验方法。

这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。

眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。

图2.1是测量眼图的装置图。

由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。

光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。

用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。

AV5233C误码仪用来产生伪随机数字序列信号。

在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。

伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。

伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。

例如N可取7、10、15、23、31等。

如果只考虑3比特非归零码,应有如图2.2所示的8种组合。

将这8种组合同时叠加,就可形成如图2.3所示的眼图。

图2.1 眼图测量装置
许多数字通信系统的重要性能可以从眼图测试中得到。

为了理解眼图测量原理,考虑图2.4所示简化的眼图,可以得到关于信号幅度失真、定时抖动和系统上升时间等系统性能参数。

接收信号的最佳取样时间是纵向眼开度最大的时刻t1。

理想情况下V2- V1=0,纵向眼开度为1。

由横向眼开度确定的时间宽度定义了不会由于码间干扰产生误码的时间范围Δt。

眼开度受噪声和码间干扰的影响,从眼图的张开度可以估计出码间干扰的大小,判决时刻过门限失真量的大小以及定时抖动等。

图2.2 3比特非归零码的8种组合
图2.3 8种组合同时叠加形成的眼图
图2.4 简化的眼图
数字信号系统的幅度噪声会使眼开度减小,纵向眼开度的高度Ymax 与最大信号电平V2定义了最大的幅度畸变。

眼闭合度越大(纵向眼开度越小),说明正确判断信号中“1”与“0”越困难。

在最佳取样时间t1处的眼开度的大小定义了系统的噪声容限。

噪声容限=
%1002
1
⨯V V (2-1) 取样时间改变时,眼图边线的斜率定义了系统时间误差的灵敏度:当斜率较小时,时间误差的概率增加。

在光纤系统中由于接收机噪声和光纤的脉冲畸变,会产生时间抖动。

如果取样时间正好在信号电平与判断阈值水平相交的时刻的中点,则判断阈值电平处失真量ΔT 表示了时间抖动大小,用百分率表示为:
定时抖动=
%100⨯∆b
T T
(2-2) 式中T b 是一个比特的时间间隔。

通常上升时间定义为上升沿从幅度的10%上升到幅度的90%所需要的时间。

当进行光信号的测量时,这些点经常由于噪声和抖动效应变得模糊,因此我们更经常用比较清晰的20%~80%幅度作为测量值,并用以下近似关系将20%~80%上升时间变换为10%~90%上升时间:
8020901025.1--⨯=T T (2-3)
下降时间的测量与变换关系与上升沿时间类似。

如果理想的随机数据流通过一个理想的线性系统,所有眼图开度应是相同的,并且保持对称。

而如果信道传输过程中存在任何非线性效应都会使眼图产生不对称。

用示波器对伪随机数字序列进行观察时,示波器的扫描周期应取为T b 或T b 的整数倍,即扫描频率取为1/T b 或1/NT b 。

当示波器扫描频率和信号速率的比改变时,并列的眼睛可以多些或少些。

当扫描周期为T b 时,示波器的扫描图形与一只人眼相似,当扫描周期取为NT b 时,并列的眼睛为N 个。

三. 实验设备
1. AV4451数字示波器1台
2.AV5233C误码仪1台
3. AV38121A单模调制光源1台(1.31µm)
4.AV29116光接收机1台
5.同轴电缆两根、光纤跳线一根
四.实验步骤
1.实验装置连接:
(1)按照图2.1所示将误码仪、光源、光接收机、示波器连接好。

其中误码仪数据输出口与光源后面的“外调制”口由电缆连接;示波器入口通过Ω
75阻抗变换
Ω50
/
器与光接收机输出相连接。

(2)用光纤跳线将光源的输出端与光接收机的输入端相连。

(3)打开各仪器开关,预热大约十分钟,注意将光源面板上的调制方式设为外调制。

2.眼图实验:
(1) 用不同码率观测眼图
a. 将误码仪的“速率”设置为2M,“图形”设置为215-1,“码型”设置为NRZ(非归零码)。

对示波器按下“自动刻度”键,开始观测波形。

b. 按屏幕下方“DISP”键,将屏幕右上方“Display Mode”由“Averaged”变为“Normal”,再按TIMB键,若此时波形过宽,可按屏幕右方的“SEC/DIV”键,调节示波器面板右下方的旋钮或直接从屏幕右方的数字键输入扫描时间,如用数字键输入,建议设置为200ns/div(按下200,再按“nsec”键;若“速率”设置为8M,则扫描时间建议设置为50nS/div;34M则为10ns/div)。

c. 设置好扫描时间后,选中“DELAY”,逆时针转动旋钮,将伪随机二进制序列的起始点调出屏幕后,便可看到眼图。

d. 再换用不同码率(8M、34M)观测,其中当码率为34M时,“图形”应设置为223-1。

(2) 确定噪声容限:按屏幕下方的“ΔV”键,再按屏幕右方最上面的“Vmarkers”打开处于“Chan 1”状态。

按下“Marker 1 POSITION”对应键使其处于高亮,转动旋钮使光标移到如图2.4所示的眼图的上(下)眼皮内侧,电压值为V1。

用同样方法使“Marker 2 POSITION”光标处于上(下)眼皮外侧,电压值为V2。

在波形下方会自动显示出V1、V2 ,记录下其值。

由式(2-1)求出噪声容限。

(3) 时间抖动测试:按屏幕下方的“ΔT”键,再按屏幕右方最上面的“Tmarkers”使其处于“Chan 1”,用类似步骤(2)的方法调节“START MARKER”和“STOP MARKER”使两时间基线处于如图2.4所示的ΔT处,读出ΔT值。

再用同样方法测出图2.4中的Tb值。

由式(2-2)求出定时抖动。

(4) 上升、下降时间的测量:
再次使用“ΔV”键,按屏幕右下方的“Auto Top-Base”,再按屏幕右方的自动放置V光标的键:无论光标在何处,如果“0-100%”键被按下,光标将立即移到波形的0%
和100%处,再按一次,功能菜单将移到“10-90%”处,同样,将光标移到“20-80%”之后,按下“ΔT”键,分别移动两条时间轴光标到电压线与波形相交处,读出此时的ΔT,
,同样方法可以求出下降时间。

即为上升时间,再由式(2-3)求出T
10-90
五.实验报告要求
1.按照表
2.1格式列出测试结果;
2.分析如果光纤总色散变大,眼图将如何变化?
3.分析如果传输速率变大,眼图将如何变化?。

相关文档
最新文档