第八章 曲线积分与曲面积分部分考研真题及解答

合集下载

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。

(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。

②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。

(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。

例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。

高等数学曲线曲面积分考研题目

高等数学曲线曲面积分考研题目
x [解答] 设 P ( x , y ) = ( f ( x ) − e ) sin y , Q ( x, y ) = − f ( x) cos y, 由于
P ( x, y ), Q( x, y ) 在全平面上具有连续的偏导数,曲线积分与路径无关,因此
∂Q ∂P = , ∂x ∂y
即 f ( x) 满足方程
0
π
0
π
= π ∫ (e sin x + e −sin x )dx,
0
π
于是
∫ xe
L
sin y
dy − ye − sin x dx = ∫ xe − sin y dy − ye sin x dx .
L
[分析二] 对于第二类曲线积分,常考虑用格林公式转化为二重积分求解,由于 被积函数在全平面上都有连续的偏导数,故可利用格林公式进行求证。 [证二]由格林公式,
意按照投影法确定符号。
[解二]设 D yz , D xy 为 S 在 yoz, xoy 平面上的投影区域,则
∫∫ (2 x + z )dydz + zdxdy = ∫∫ (2
S D yz
z − y 2 + z )(−dydz )
2
+
D yz
∫∫ (−2
D yz
z − y 2 + z )dydz +
D xy
考研试题分析十一(曲线积分与曲面积分)
例 1.(2003 年高数一) 已知平面区域 D = {( x, y ) 0 ≤ x ≤ π , 0 ≤ y ≤ π }, L 为 D 的正向边界,试证
∫ xe
L
sin y
dy − ye − sin x dx = ∫ xe − sin y dy − ye sin x dx .

曲线积分及曲面积分习题46页PPT

曲线积分及曲面积分习题46页PPT

曲线积分
计算
定积分
Stokes公式
计算 曲面积分
Guass公式
计算 重积分
计算上的联系
f(x ,y)d b[y2(x)f(x ,y)d]d y,(x d 面)元
D
a y1(x)
f(x ,y ,z )d V b dy 2 x (x ) dz 2 y (x ,y )f(x ,y ,z )d,(d z体 V)元
闭合
Q P
I
( D
x
)dxdy y
y x 非闭 补充曲线或用公式
例 计算
I (exsinymy)dx(excosym)dy, L
其中L为由点(a,0)到点(0,0)的上半圆周 x2 y2 ax, y0.
解 P (exsiy n m ) e yxco y m s y y
Q (exco ys m )exco ys x x
旋度 rA o ( tR Q )i ( P R ) j ( Q P )k y z z x x y
二、典型例题
对坐标的曲线积分
P(x,y)dxQ(x,y)dy的计算法
L
思路
ILPdxQdy
(x,y)
I
PdxQdy非闭
(x0,y0)
P
Q
ILPdxQ dy0f(x,y)d sl i0m i1f(i,i)si
Ln
l i0im 1[P (i, i) xi Q (i, i) yi]
联 系
L P Q d L x ( d P cy o Q c s) o ds s
计 L f(x, y)ds
f[,]
2 2dt
算 三代一定
()
LPdxQdy
[P(,)Q(,)]dt

第八章 曲线积分与曲面积分(改)

第八章 曲线积分与曲面积分(改)

第八章 曲线积分与曲面积分(A )习题八1、计算下列数量值函数的曲线积分: ⑴22L y ds x y +⎰,其中L 为平面上的上半圆周:221,0x y y +=≥. ⑵⎰+Lds y x )(,其中L 为以(0,0),(2,0),(0,1)为顶点的三角形边界.⑶⎰+Ly x ds e22,其中L 为x 轴,圆周222(0)x y a a +=>,直线y x =在第一象限内所围成扇形的边界.⑷2Ly ds ⎰,其中L 是摆线(sin ),(1cos )x a t t y a t =-=-的一拱(02)t π≤≤.⑸22()Lx y ds -⎰,其中L 为柱面221x y +=与平面0x y z ++=的交线.2、求空间曲线cos ,sin ,(0)tttx e t y e t z e t ---===<<+∞的弧长.3、求均匀摆线弧(sin ),(1cos )(0)x a t t y a t t π=-=-≤≤的重心坐标.4、计算下列数量值函数的曲面积分: ⑴22()xy dS ∑+⎰⎰,其中∑:222()z x y =-+,0z ≥.⑵()x y z dS ∑++⎰⎰,其中∑为平面5y z +=被柱面2225x y +=所截得的部分.⑶22()x y dS ∑+⎰⎰,其中∑是锥面z =及平面1z =所围成的区域的整个边界曲面.⑷2221dS x y z ∑++⎰⎰,其中∑为介于平面0z =和平面(0)z H H =>之间的圆柱面222x y R +=.5、求抛物面22z x y =+被锥面2z =所截下的部分曲面面积.6、计算下列向量值函数在定向曲线上的积分: ⑴22610Lxydx xy dy +⎰,其中L 为曲线2y x =上从点(0,0)到(1,1)的一段弧. ⑵2(sin )Lx y dx +⎰,其中L 为由2,1y x x ==所围区域的边界(逆时针方向). ⑶2222Ly xdx dy x y x y -+++⎰,其中L 是半径为a ,圆心在原点且方向由(,0)A a 到(,0)B a -的上半圆.⑷(2)La y dx xdy -+⎰,其中L 为摆线(s i n ),(1c o sx a t t y a t =-=-从0t =到2t π=的一段.⑸||||Ldx dyx y ++⎰,其中L 为从点(1,0)A 经点(0,1)B 到点(1,0)C -的折线段. ⑹(1)Lxdx ydy x y dz +++-⎰,其中L 是从点(1,1,1)到点(2,3,4)的一段直线.7、设曲线L 是从点(0,0)O 沿圆弧y =到点(1,0)A 的弧段,计算22()(sin )LI x yx dx y x y dy =-++⎰.8、将(,)(,)LP x y dx Q x y dy +⎰化为数量值函数的曲线积分,其中L 为沿圆周222x y y +=(逆时针)从(0,0)到(1,1).9、方向沿纵轴方向,大小等于作用点的横坐标平方的力构成一力场,求质量为m 的质点沿半圆周y =(1,0)-移动到(1,0)时,场力所作的功.10、设位于点(0,1)的质点A 对质点M 的引力大小为2kr (0k >为常数,r 为质点A 与M 之间的距离),质点M 沿曲线y =自(2,0)B 运动到(0,0)O ,求在此运动过程中质点A 对质点M 的引力所作的功.11、利用格林公式计算下列曲线积分: ⑴2(1)Ly dx xydy ++⎰,其中L 为曲线sin y x =和2sin (0)y x x π=≤≤所围区域的正向边界. ⑵(sin )(cos )x x Le y y x dx e y x dy +++-⎰,其中L 为从点(0,0)O 经圆周22(1)1x y -+=的下半部分到点(2,0)A 的一段弧.12、计算曲线积分224Cxdy ydxx y-+⎰,其中C 是以(1,0)为中心,(1)R R ≠为半径的圆周,逆时针方向.13、证明曲线积分(3,4)2322(1,2)(6)(63)xy y dx x y xy dy -+-⎰与路径无关,并求积分值.14、验证22(2cos sin )(2cos sin )x y y x dx y x x y dy -+-在整个xOy 平面内为某一函数的全微分,并求一个这样的函数(,)u x y .15、计算下列向量值函数在定向曲面上的积分: ⑴22()xy zdxdy ∑+⎰⎰,其中∑是球面2221x y z ++=的下半部分的下侧.⑵zdxdy xdydz ydzdx ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分的前侧.⑶2z dxdy ∑⎰⎰,其中∑为平面1x y z ++=在第一卦限部分的上侧. ⑷2x dydz zdxdy ∑+⎰⎰,其中∑为抛物面22(01)z x y z =+≤≤的上侧.16、利用高斯公式计算下列曲面积分: ⑴222x dydz y dzdx z dxdy ∑++⎰⎰,其中∑为平面0x =,0y =,0z =,x y z a ++=(0)a >所围立体的全表面的外侧.⑵32()2xyz dydz x ydzdx zdxdy ∑--+⎰⎰,其中∑为222x y R +=在平面0z =和1z =之间部分圆柱面的外侧.⑶333()()()x yz dydz y xz dzdx z xy dxdy ∑++-++⎰⎰,其中∑为取外侧的球面222x y z z ++=. ⑷222x dydz y dzdx z dxdy ∑++⎰⎰,其中∑为抛物面22(01)z x y z =+≤≤的上侧.17、计算323232()()()xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰,其中∑为上半球面z =18、计算xyzA e r =在点()1,1,1P 处的散度,其中r 为矢径:r xi yj zk =++.19、求向量yzi xzj xyk ++穿过圆柱体222,0x y R z H +≤≤≤的全表面∑的外侧的通量.20、利用斯托克斯公式计算曲线积分()()()C z y dx x z dy x y dz -+-+-⎰,其中C 是曲线2212x y x y z ⎧+=⎨-+=⎩从z 轴正向往z 轴负向看C 的方向是顺时针的.(B )单元自我测试题一、填空题(每题4分,共20分)1、设C 为3y x =上点(0,0)到(1,1)的一段弧,则曲线积分C⎰= .(写出定积分形式,不必计算)2、设L 是圆周:2222,0x y z a x y z ⎧++=⎨++=⎩则曲线积分2Lx ds ⎰的值为 .3、设C 是逆时针方向的闭曲线,其方程为22(1)1x y -+=,则222()(2)Cx y d x y x y d y-+-⎰= . 4、设∑是抛物面221(23)z x y =-+在xOy 平面上方部分的下侧,则向量值函数在定向曲面上的积分I Pdydz Qdzdx Rdxdy ∑=++⎰⎰化为数量值函数的曲面积分后,I = .5、向量场()()22,,ln 1z u x y z xy i ye j x z k =+++在点()1,1,0P 的散度divu = .二、单项选择题(每题3分,共15分) 1、曲线积分22()Lx y ds +⎰,其中L 是圆心在原点,半径为a 的圆周,则曲线积分值为( )A .22a π B.3a π C.32a π D.34a π 2、设∑:2222(0)x y z a z ++=≥,1∑为∑在第一卦限的部分,则有( ).A .14xdS xdS ∑∑=⎰⎰⎰⎰ B.14ydS ydS ∑∑=⎰⎰⎰⎰C.14zdS zdS ∑∑=⎰⎰⎰⎰ D.14xyzdS xyzdS ∑∑=⎰⎰⎰⎰3、设L 是从点()0,0沿折线11y x =--至点()2,0A 的折线段,则曲线积分LI ydx xdy =-+⎰=( )A .2- B.1- C.0 D.24、设2()()x ay dx ydyx y +++为某函数的全微分,则常数a =( ).A .1- B.0 C.1 D.2 5、设∑是柱面221,01x y z +=≤≤外侧,()x y z dydz ∑++=⎰⎰( ). A .0 B.1π+ C.1 D.π三、计算下列曲线积分或曲面积分的值(每题6分,共24分)1、设L 是由直线2y x =,2y =和0x =所围成的三角形区域的边界,求Lxyds ⎰.2、2I z dS ∑=⎰⎰,其中∑是球面2222xy z a ++=.3、计算22C I xy dy x ydx +=-⎰,C 为圆周222x y a +=.4、2()I z x dydz zdxdy ∑=++⎰⎰,其中∑是旋转抛物面221()2z x y =+介于0z =及3z =之间部分的下侧.四、(8分)求面密度为1的均匀半球面2222:x y z a ∑++=,0z ≥对z 轴的转动惯量.五、(8分)设曲线C 为抛物线222x y =-上从点(0,1)A 到点(0,1)B -的一段弧,计算22Cxdy ydxI x y -=+⎰.六、(8分)设函数()f x 可导,且(0)1f =,求()f x 使得曲线积分()xLye dx f x dy +⎰在全平面上与路径无关,并计算(1,1)(0,0)()x I ye dx f x dy =+⎰.七、(8分)设∑是平面1x y z ++=在第一卦限部分的上侧,求曲面积分()I x y dydz ydzdx dxdy ∑=+++⎰⎰.八、(9分)计算曲面积分33311()()()22x x dydz y xz dzdx z z dxdy ∑++-+-⎰⎰,其中∑是球面2222x y z z ++=的内侧.(C )提高题1、计算曲面积分zdS ∑⎰⎰,其中∑为锥面z =在柱体222x y x +≤内的部分.2、设S 为椭球面222122x y z ++=的上半部分,点(,,)P x y z S ∈,π为S 在点P 处的切平面,(,,)x y z ρ为点(0,0,0)O 到平面π的距离,求(,,)SzdS x y z ρ⎰⎰.3、设函数(,)Q x y 在xOy 平面上具有一阶连续偏导数,曲线积分2(,)Lx y d xQ x y d y +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,)t t xydx Q x y dy xydx Q x y dy +=+⎰⎰,求(,)Q x y .4、设函数()y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yϕ++⎰的值恒为同一常数.证明:对右半平面0x >内的任意分段光滑简单闭曲线C ,有24()202Cy dx xydyx y ϕ+=+⎰.5、设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221[1()][()1]L xI y f xy dx y f xy dy y y=++-⎰, ⑴ 证明曲线积分I 与路径L 无关; ⑵ 当ab cd =时,求I 的值.6、计算222222()(2)(3)LI y z dx z x dy x y dz=-+-+-⎰,其中L 是平面2x y z ++=与柱面||||1x y +=的交线,从z 轴正向看去,L 为逆时针方向.7、确定常数λ,使向量42(,)2()A x y xy x y i λ=+242()x x y j λ-+在右半平面0x >上的为某二元函数(,)u x y 的梯度,并求(,)u x y .8、已知平面区域{(,)|0,0}D x y x y ππ=≤≤≤≤,L 为D 的正向边界,试证: ⑴sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx ---=-⎰⎰;⑵sin sin 22y x Lxe dy ye dx π--≥⎰.9、求[sin ()](cos )x xI e y b x y dx e y ax dy =-++-⎰,其中,a b 为正常数,L为从点(2,0)A a 沿曲线y =(0,0)O 的弧.10、计算曲面积分2222xdydz z dxdy x y z ∑+++⎰⎰,其中∑是由曲面222x y R +=及两平面z R =,(0)z R R =->所围成立体表面的外侧.11、计算212222()()axdydz z a dxdy x y z ∑++++⎰⎰,其中∑为下半球面z =上侧,a 为大于零的常数.12、计算曲面积分(2)x z dydz zdxdy ∑++⎰⎰,其中∑为有向曲面22z xy =+(01)z ≤≤,其法向量与z 轴正向的夹角为锐角.13、计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑是曲面221(0)z x y z =-≥-的上侧.。

曲线曲面积分部分难题解答

曲线曲面积分部分难题解答

曲线曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+l ds yx 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+lsd y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++l ds zy x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰l zds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫⎝⎛+=所以dy y y y xyds l2221..21+=⎰⎰(令t y tan =) tdtt 332arctan 0sec .tan21⎰= ()t td t sec sec .tan21222arctan 0⎰=()()t td t sec sec .1sec21222arctan 0-=⎰()()⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡-=315153155121sec 31sec 5121352arctan35|t t.15135515255315521+=⎥⎦⎤⎢⎣⎡+-=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;,其中:.20,,0:≤≤⎩⎨⎧==x xx y OA()()[]()dy y y ds y xAB21222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y其中:.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.22212222==++=+⎰⎰⎰dy y dy yds y xBO,其中:.10,,0:≤≤⎩⎨⎧==y y y x BO所以.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+π()dt t a⎰+=π202cos 124dt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l 则()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l ()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lydsds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=所以dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()dt t b a a t b 222220cos sin 4--=⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=21arcsin .2.42222222222ba aab a b a a b a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f dsP f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分.⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧;(3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解: (1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.1=-=-⎰⎰⋂dxx x ydx xdy OA(2).1~0:,,2:2x x x x y OA ⎩⎨⎧==⋂[].323224.|10312==-=-⎰⎰⋂xdxx x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OBBAOAydx xdy其中,.1~0:,.,0:x x x y OB ⎩⎨⎧==();000.1=-=-⎰⎰dxx ydx xdy OB其中,.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.12=-=-⎰⎰dyy ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a xa y ;(2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解: (1).~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+πcos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a.(2).~:,,0:a a x x x y l -⎩⎨⎧==().00.0=+=+⎰⎰-dxx xdy ydxaal(3).2~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a.6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()dy xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()dy y x dx yx l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx zy l ⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l()()dy xy y dx xy xl⎰-+-2222()()[]d x x x x xxx x⎰--+-=1124222..2.2[].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰其中 .1~0:,,:x x x x y OA ⎩⎨⎧==故()()()()[]d x xxxxdy yx dx y xOA⎰⎰-++=-++1022222222.32322|10312===⎰x dx x ;其中.2~1:,,2:x x x x y AB ⎩⎨⎧=-=故()()()()()()()[]d x x xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x所以原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|1571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dttt8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明:()).max ...P L d P f lP l∈≤⎰证明:设()()(){}.,21P f P f P f =由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f rd P f 121..lim.故()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f d P f 121..lim.()()[]∑=→∆+∆≤ni i i iid y P f xP f 121..lim()()()()2212221.limi i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.limi ini id y x P ∆+∆=∑=→)()())⎰∑=→=∆+∆≤li ini d ds P y x P .max .max lim221)P L =m a .9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=2z zx y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此d x d yyx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,22yx x xz +=∂∂,22yx y yz +=∂∂,所以,,2122d x d y d x d y y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.因此().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d zya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此d y d zya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya a dz ya a dy .882a a d z a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++= 其中,0:1=z S dxdy dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111|()212ln 211ln 2111|1010-=-+=⎪⎭⎫ ⎝⎛-+=⎰x dx x ;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=102102111211()2ln 11ln 12||110-=+-+-=y y;,0:3=y Sd z d x dS =3,()()()dzx dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++1102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=x x;,1:4y x z S --= d x d ydS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-1011021113113|().212ln 33211ln 321113|110⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x;所以()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此()()d y d zya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a22312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰所以()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则 222cb a cz by ax u ++++=(1)(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u (2) (因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)由(2)式可得: ()22221u w v -=+ (3)当u 固定时,(3)式其实就表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -='于是,;112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv = (4)故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由公式 ()dSy xJ S⎰⎰+=22由对称性()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则2z z x y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此()d x d yy x a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π()|232232.2araa -=π|2232.2ara a --π434aπ-=44aπ+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydzS d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222yx y yx x z z n y x,所以{}.c o s ,c o s ,c o s21,2,22222γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==yx yyx x n 故⎰⎰⎰⎰++=SSzdxdyydzdx xdydzSd r . ()⎰⎰++=SdSz y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=SdSz yx y yx x222222222⎰⎰⎪⎪⎭⎫ ⎝⎛-+=SdS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .0222222214(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.s i n,c o s θθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰(1)同理 dxdy by ax c zdxdy xyD S ⎰⎰⎰⎰----=2222112.2112222πcab dxdy by ax c xyD =--=⎰⎰(2)所以=⎰⎰Szdxdy +⎰⎰1S zdxdy .42πcab zdxdy S =⎰⎰(3)由轮换对称性,知:πa bc x dzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz +=⎰⎰Szdxdy +⎰⎰Sxdzdy ⎰⎰Sydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换:⎩⎨⎧+=+=.s i n ,c o sθθr b y r a x由二重积分的换元法()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++=(1)同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221[]rdr rR c D 222⎰⎰'---=()dr r rR c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ20222()rdr rR c R2222⎰---=π()r dr r R rR c c R⎰-+---=02222222πrdr r R c rdr cR R⎰⎰-+-=0222222ππ()rdr r RR⎰--0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cRRc πππ-+-=(2)所以=⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰; (3)由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x⎰⎰=Sdydzx2⎰⎰Sdzdxy 2⎰⎰Sdxdyz2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0.c b a yd y x d x c ab.422⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫ ⎝⎛=+12222b ya x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式).解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.所以,由格林公式:221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl故有xQ yP ∂∂=∂∂即()()x f x x f x '+=34 化简,得()()241xx f xx f =+' (1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214[]()cdx xx c e x e x x +=+=⎰⎰-3ln 2ln 414().1134xcx c xx+=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记 2222yu xuu ∂∂+∂∂=∆证明:⎰⎰⎰∆=∂∂Dludxdy ds nu其中()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 故()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y u y xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dy xul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: dsvun v n udxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明:我们有 ()()ds x y u y xu v ds nu vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yu vdy xu vl⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDdxdy y u x u v dxdy y v y u x v x u 22.. ...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDudxdy v dxdy y v y u x v x u (1)由轮换对称性,知 dsnv ul⎰∂∂ ...⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DDvdxdy u dxdy y v y u x v x u (2)于是ds n v u n uv ds vun v n ul l⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰DDudxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰DD vdxdy u dxdy y v y u x v x u ..()⎰⎰∆-∆=Ddxdyv u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s .,c o s ,c o s 2200b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dya x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD . 则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,33⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdydz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u(){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -=因为xQ x y y x yP ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos22()dyy x x y sin cos 22-是某一个函数()y x u ,的全微分.故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dyy xx y dx x x yx⎰⎰-+-=0202sin cos 2sin 00cos 2[]||0222c o s c o s yx yx x y x++=()[]2222c o s c o s xy x x yx -++=.cos cos 22y x x y +=则,所求的位势为().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y ex z xef yy--=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xez y x P yy-=-==--。

第八章 曲线积分和曲面积分题目+简案

第八章 曲线积分和曲面积分题目+简案

的封闭曲线, L 的方向为逆时针方向。
答案:(1)18
(2)16 (3) 2
五、证明: (2x sin y)dx x cos ydy 是某一函数的全微分,并求出一个原函数.
答案:所求原函数为 x2 x sin y C . ( C 为任意常数).
六、⑴在全平面上,证明:曲线积分 y2exdx 2 yexdy 与路径无关,并求 y2exdx 2yexdy L
L
L

P(
x,
y)
2x x2 Q(x, y)(1 x) ds .
十、证明:曲线积分有估计式 P(x, y)dx Q(x, y)dy LM ,其中L 为积分路径的长度, L
M max P2 Q2 . ( x, y)L
答案:证明略.
十一、计算下列曲面积分。
(1)计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的
z
顶部.
(2)计算曲面积分 (xz 36x2 9 y2 4z2 )dS, 其中 是 x2 y2 z2 1,其面积为 A.

49
(3)计算 I (x z2 )dydz zdxdy ,其中 是 z 1 (x2 y2 ) 介于平面 z 0 及 z 2
3. 设 为球面 x2 y2 z2 1,则 3x2ds 4 .
1 4. 设 u ln x2 y2 z2 ,则 div(gradu) x2 y2 z2 .
5. 设 是有向光滑曲面,则第二型曲面积分 Pdydz Qdzdx Rdxdy 化为第一型曲面积

(x2 y 2 z )2 3

曲线积分和曲面积分

曲线积分和曲面积分

第八章 曲线积分和曲面积分我们前面已学过定积分和重积分,当一个函数定义在空间的曲线或曲面时,则要求我们计算曲线积分或曲面积分。

由于物理背景的不同,我们还须区别曲线或曲面的方向性,因此我们要分别研究两种不同类型的积分。

§1 第一型曲线积分与曲面积分1. 第一型曲线积分我们研究如下的一个理想问题,给定空间的一条曲线物体L ,L 上每点有线密度,现在我们要求它的质量。

我们对此问题作如下限制,设L 是空间的可求长曲线,端点为A 和B ,密度函数(,,)f x y z 在L 上定义。

为了求质量,象定积分一样,我们对L 作一分割,01,,,,(,1,2,,,)n j A A A A B A j n L ===L L 在上,这样我们就将L 分成n 小段,设每段的长度为j s V 。

在每段弧长上任取一点ξηςjjj(,,),作和式,1(,)nj jj j j f s ξης=∑V以此作为L 质量的近似值。

最后我们令1max{}0j j ns λ≤≤=→V ,即可得到L 质量的精确值M ,即,01lim (,)nj j j j j M f s λξης→==∑V由此我们可得到以下定义 定义设L 是空间可求长曲线,(,,)f x y z 在L 上连续,L 的两个端点为A,B ,依次用分点01,,,n A A A A B ==L 将L 分成n 小段。

每小段弧及弧长均记为j s V ,在j s V 上任取一点(,,)j j j j P ξης=,作和式,1(,)nj jj j j f s ξης=∑V如果当1max{}0j j ns λ≤≤=→V 时,上述和式的极限存在,且不依赖于L 的分法及j P 的选取,则称这一极限值为(,,)f x y z 。

在L 上的第一型曲线积分,记作(,,)Lf x y z ds ∫。

第一型曲线积分也有类似于定积分的一些性质,如关于被积函数的线性及关于曲线的可加性,它与定积分的一个差别是第一型曲线积分与曲线的方向无关。

第八章-曲线积分与曲面积分部分考研真题及解答

第八章-曲线积分与曲面积分部分考研真题及解答

第八章 曲线积分与曲面积分 8.1对弧长的曲线积分8.2对坐标的曲线积分07.1) 设曲线:(,)1((,)L f x y f x y =具有一阶连续偏导数),过第II 象限内的点M 和第IV 象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是 ( B ) (A )(,)Tf x y dx ⎰. (B)(,)Tf x y dy ⎰.(C)(,)Tf x y ds ⎰. (D)(,)(,)x y Tf x y dx f x y dy ''+⎰.04.1) 设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23.(利用极坐标将曲线用参数方程表示) 09.1)已知曲线2:(0L y x x =≤≤,则Lxds ⎰=13610.1)已知曲线L 的方程为1||,y x =-([1,1]),x ∈-起点为(1,0),-终点为(1,0),则曲线积分2Lxydx x dy +=⎰0 (直接算或格林)01.1)计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 是平面2x y z ++=与柱面|x |+|y |=1的交线,从z 轴正向看去,L 为逆时针方向。

解:记S 为平面2x y z ++=上L 所围部分的上侧,D 为S 在xOy 坐标面上的投影。

由斯托克斯公式得(24)(26)(26)SI y z dydz z x dzdx x y dxdy=--+--+--⎰⎰(423)Sx y z dS =++⎰⎰2(6)Dx y dxdy =--+⎰⎰12Ddxdy =-⎰⎰=-2408.1)计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.(路径表达式直接代入)8.3格林公式02.1)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记22211()()1Lx I y f xy dx y f xy dy y y ⎡⎤⎡⎤=++-⎣⎦⎣⎦⎰(1)证明曲线积分I 与路径L 无关;(2)当ab cd =时,求I 的值.03.1) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1)dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--; (2) .22sin sin π≥--⎰dx ye dy xe x Ly【详解】 方法一: (1) 左边=dx e dy e x y ⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x ,右边=⎰⎰--ππππ0sin sin dx edy exy=⎰-+ππ0sin sin )(dx e e x x ,所以dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--.(2) 由于2sin sin ≥+-x xe e,故由(1)得.2)(20sin sin sin sin πππ≥+=-⎰⎰--dx e e dx yedy xex x xLy方法二:(1) 根据格林公式,得⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin , ⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin . 因为D 具有轮换对称性,所以⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin , 故dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--.(2) 由(1)知⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy e DDx y ⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDxx ⎰⎰⎰⎰-+sin sin (利用轮换对称性) =.22)(2sin sin π=≥+⎰⎰⎰⎰-dxdy dxdy e eDDx x05.1)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x >0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【详解】 (I )Yl 3如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx yϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=- 06.1)设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t >0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有()()2,,0yf x y dx xf x y dy -=⎰证:把2(,)(,)f tx ty tf x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=-令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-③ ④所给曲线积分等于0的充分必要条件为Q Px y ∂∂=∂∂今 (,)(,)x Q f x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 曲线积分与曲面积分 8.1对弧长的曲线积分8.2对坐标的曲线积分07.1) 设曲线:(,)1((,)L f x y f x y =具有一阶连续偏导数),过第II 象限内的点M 和第IV 象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是 ( B ) (A )(,)Tf x y dx ⎰. (B)(,)Tf x y dy ⎰.(C)(,)Tf x y ds ⎰. (D)(,)(,)x y Tf x y dx f x y dy ''+⎰.04.1) 设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23.(利用极坐标将曲线用参数方程表示) 09.1)已知曲线2:(0L y x x =≤≤,则Lxds ⎰=13610.1)已知曲线L 的方程为1||,y x =-([1,1]),x ∈-起点为(1,0),-终点为(1,0),则曲线积分2Lxydx x dy +=⎰0 (直接算或格林)01.1)计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 是平面2x y z ++=与柱面|x |+|y |=1的交线,从z 轴正向看去,L 为逆时针方向。

解:记S 为平面2x y z ++=上L 所围部分的上侧,D 为S 在xOy 坐标面上的投影。

由斯托克斯公式得(24)(26)(26)SI y z dydz z x dzdx x y dxdy=--+--+--⎰⎰(423)Sx y z dS =++⎰⎰2(6)Dx y dxdy =--+⎰⎰12Ddxdy =-⎰⎰=-2408.1)计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.(路径表达式直接代入)8.3格林公式02.1)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记22211()()1Lx I y f xy dx y f xy dy y y ⎡⎤⎡⎤=++-⎣⎦⎣⎦⎰(1)证明曲线积分I 与路径L 无关;(2)当ab cd =时,求I 的值.03.1) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1)dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--; (2) .22sin sin π≥--⎰dx ye dy xe x Ly【详解】 方法一: (1) 左边=dx e dy e x y ⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x ,右边=⎰⎰--ππππ0sin sin dx edy exy=⎰-+ππ0sin sin )(dx e e x x ,所以dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--.(2) 由于2sin sin ≥+-x xe e,故由(1)得.2)(20sin sin sin sin πππ≥+=-⎰⎰--dx e e dx yedy xex x xLy方法二:(1) 根据格林公式,得⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin , ⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin . 因为D 具有轮换对称性,所以⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin , 故dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--.(2) 由(1)知⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy e DDx y ⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDxx ⎰⎰⎰⎰-+sin sin (利用轮换对称性) =.22)(2sin sin π=≥+⎰⎰⎰⎰-dxdy dxdy e eDDx x05.1)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x >0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【详解】 (I )Yl 3如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx yϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=- 06.1)设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t >0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有()()2,,0yf x y dx xf x y dy -=⎰证:把2(,)(,)f tx ty tf x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=-令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-③ ④所给曲线积分等于0的充分必要条件为Q Px y ∂∂=∂∂今 (,)(,)x Q f x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立。

8.4对面积的曲面积分07.1) 设曲面:1x y z ∑++=,则dS y x ⎰⎰∑+|)|(解:由于曲面∑关于平面x =0对称,因此dS x ⎰⎰∑=0. 又曲面:1x y z ∑++=具有轮换对称性,于是dS y x ⎰⎰∑+|)|(=dS y ⎰⎰∑||=dS x ⎰⎰∑||=dS z ⎰⎰∑||=dS z y x ⎰⎰∑++|)||||(|31=dS ⎰⎰∑3123831⨯⨯=10.1)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C,并计算曲面积分2x y zI ∑+-=,其中∑是椭球面位于C 上方的部分.8.5对坐标的曲面积分06.1)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰ (补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧)8.6高斯公式05.1) 设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π.(用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可) 08.1)设曲面∑是z =2xydydz xdzdx x dxdy ∑++=⎰⎰4π (高斯) 04.1) 计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【详解】 取1∑为x o y 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233 .)1(3221233dxdy zdzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy z dzdx y dydz x π,故 .32πππ-=-=I07.1) 计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中∑为曲面221(01)4y z x z =--≤≤的上侧。

【详解】 补充曲面:221:1,04y x z ∑+==,取下侧. 则 123I xzdydz zydzdx xydxdy ∑+∑=++⎰⎰123xzdydz zydzdx xydxdy ∑-++⎰⎰=(2)3Dz z dxdydz xydxdy Ω++⎰⎰⎰⎰⎰其中Ω为∑与1∑所为成的空间区域,D 为平面区域2214y x +≤.由于区域D 关于x 轴对称,因此30Dxydxdy =⎰⎰. 又(2)3z z dxdydz zdxdy ΩΩ+=⎰⎰⎰⎰⎰⎰=11332(1).zD zdz dxdy z z dz ππ=⋅-=⎰⎰⎰⎰其中z D 22:14y x z +≤-. 09.1) 计算曲面积分32222()xdydz ydzdx zdxdy I x y z ∑++=++⎰⎰其中∑是曲面222224x y z ++=的外侧。

相关文档
最新文档