(完整版)八年级数学上册第二章测试卷
北师大版初中八年级数学上册第二章检测卷含答案

学校 班级 姓名第二章检测卷(时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列各式不是无理数的是( ).A.π5B.2ππC.π-3.14D.π+π22.|1+√3|+|1-√3|=( ).A.1B.√3C.2D.2√3 3.若实数a ,b ,c ,d 满足a-1=b-√2=c+1=d+2,则a ,b ,c ,d 这四个实数中最大的是( ).A.aB.bC.cD.d 4.下列说法正确的是( ).A.27的立方根是±3B.-8没有立方根C.立方根是它本身的数是±1D.平方根是它本身的数是05.如图,数轴上点A 所表示的数为√3,点B 到点A 的距离为1个单位长度,则点B 所表示的数是( ).A.√3-1B.√3+1C.√3-1或√3+1D.1-√3或1+√3 6.已知√a 3+3a 2=-a √a +3,则a 的取值范围是( ).A.a ≤0B.a>-3C.-3≤a ≤0D.a ≥0或a ≤-3 7.若√2x -1+√1-2x +1在实数范围内有意义,则x 满足的条件是( ).A.x ≥12B.x ≤12C.x=12D.x ≠12 8.把(2-x )√1x -2根号外的因式移到根号内,得( ). A.√2-x B.√x -2 C.-√2-xD.-√x -2 二、填空题(每小题4分,共24分)9.3-√11的绝对值是 .10.(2021遂宁)若|a-2|+√a +b =0,则ab= .11.(2021滨州)计算:√32+√83-|π0-√2|-(13)-1=. 12.当m= 时,最简二次根式12√3m +2和4√2m +3可以合并.13.(2021广元)如图,实数-√5,√15,m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D.若m 为整数,则m 的值为 .14.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b=√a+b a -b (a+b>0),如:3*2=√3+23-2=√5,则7*(6*3)= .三、解答题(共44分)15.(8分)计算:(1)(√2+1)2-√24-1+(√2 024-1)0; (2)(-1)2 023+√273+|-√3|-√16.16.(8分)解方程:(1)(3x+2)2=16;(2)12(2x-1)3=-4.17.(8分)已知3a+2的立方根是2,3a+b-1的算术平方根是3,c 是√2的整数部分.(1)求a ,b ,c 的值;(2)求a+b-c 的平方根.18.(10分)在数轴上表示a ,b ,c 三点的位置如下图所示:。
初二上数学第二单元试卷

1. 已知数列{an}的通项公式为an=3n-2,则第10项a10的值为()A. 27B. 28C. 29D. 302. 若方程2x-3=5的解为x=4,则方程2x+3=5的解为()A. x=1B. x=2C. x=3D. x=43. 已知等差数列{an}的前三项分别为a1=1,a2=4,a3=7,则该数列的公差d为()A. 1B. 2C. 3D. 44. 已知等比数列{an}的前三项分别为a1=2,a2=6,a3=18,则该数列的公比q为()A. 1B. 2C. 3D. 65. 已知函数f(x)=2x+1,若f(2)=5,则f(-1)的值为()A. 1B. 3C. 5D. 76. 已知直线l的方程为y=2x+3,则直线l的斜率为()A. 2B. -2C. 1D. -17. 已知点A(2,3)关于y轴的对称点为B,则点B的坐标为()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)8. 已知三角形ABC的三个内角分别为∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 135°D. 150°9. 已知圆的半径r=5,则圆的面积S为()A. 25πB. 50πC. 100πD. 125π10. 已知平行四边形ABCD的对角线AC和BD相交于点O,若AC=10,BD=8,则平行四边形ABCD的面积S为()A. 40B. 48C. 50D. 8011. 若等差数列{an}的首项a1=3,公差d=2,则第n项an=______。
12. 若等比数列{an}的首项a1=2,公比q=3,则第n项an=______。
13. 若函数f(x)=x^2+2x+1,则f(-1)=______。
14. 已知点P(3,4)到直线y=2x+1的距离为______。
15. 已知圆的半径r=3,则圆的周长L=______。
八年级上学期数学第二章检测试题(含答案)

书山有路勤为径;学海无涯苦作舟
八年级上学期数学第二章检测试题(含答案)
初中频道为大家编辑了八年级上学期数学第二章检测试题相关内容,供
大家参考阅读,和小编一起加油努力吧。
一、选择题
1. 在以下数0.3, 0, , , 0.123456,0.1001001 001 中,其中无理数的个数是( )
A.2
B.3
C.4
D.5
2. 化简的结果是( )
A. 4
B. -4
C.±4
D.无意义
3. 如果a 是(-3)2 的平方根,那幺等于( )
A.-3
B.-
C.±3
D. 或-
4.下列说法中,正确的是( )
A.一个有理数的平方根有两个,它们互为相反数
B.一个有理数的立方根,不是正数就是负数[
C.负数没有立方根
D.如果一个数的立方根是这个数本身,那幺这个数一定是-1,0,1
5. 下列各式中,无意义的是( )
A. B. C. D.
6. 若a2=(-5)2,b3=(-5)3,则a+b 的值为( )
A.0B.±10 C.0 或10 D.0 或-10
7. 如果+ 有意义,那幺代数式|x-1|+ 的值为( )
A.±8
B.8
C.与x 的值无关
D.无法确定
8. 若x 小于0,则等于( )
今天的努力是为了明天的幸福。
八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:二、填空题(每题3分,共18分)11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m,宽为415 m.(1)求该长方形土地的面积(精确到0.1 m2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4. (2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5, 所以a 2+4b +1=121, 所以a 2+4b +11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
八年级上数学试卷二单元

一、选择题(每题3分,共30分)1. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11B. 3, 6, 9, 12C. 1, 3, 7, 11D. 4, 8, 12, 162. 若等差数列{an}中,a1=3,d=2,则a10=()A. 23B. 25C. 27D. 293. 若等比数列{bn}中,b1=8,q=2,则b4=()A. 16B. 32C. 64D. 1284. 在直角坐标系中,点A(2,3),B(-1,4),C(3,-2)构成一个三角形,则该三角形的面积是()A. 2B. 3C. 4D. 55. 在直角坐标系中,点P(x,y)的坐标满足方程x^2 + y^2 = 25,则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若直线y=kx+b与圆x^2 + y^2 = 4相切,则k和b的关系是()A. k^2 + b^2 = 4B. k^2 + b^2 = 16C. k^2 + b^2 = 1D. k^2 + b^2 = 257. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 75°B. 105°C. 120°D. 135°8. 若直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB=()A. 5B. 6C. 7D. 89. 若一元二次方程x^2 - 5x + 6 = 0的两个根为a和b,则a+b=()A. 5B. 6C. 10D. 1210. 若函数f(x) = 2x + 1的图象向上平移3个单位后,得到的函数图象的解析式是()A. y = 2x + 4B. y = 2x - 2C. y = 2x + 1D. y = 2x - 1二、填空题(每题5分,共25分)11. 若等差数列{an}中,a1=5,d=3,则an=________。
12. 若等比数列{bn}中,b1=2,q=3,则b5=________。
浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章-测试卷及答案浙教版八年级上册数学第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()。
A。
低碳B。
节水C。
节能D。
绿色食品2.如图,在△ABC 中,AB = AC,∠A = 36°,BD 是 AC 边上的高,则∠DBC 的度数是()。
A。
18°B。
24°C。
30°D。
36°3.在直角三角形 ABC 中,∠C = 90°,AC = 9,BC = 12,则点 C 到 AB 的距离是()。
A。
5B。
25C。
4D。
34.如图,已知∠C = ∠D = 90°,添加一个条件,可使用“HL”判定 Rt △ABC ≌ Rt △ABD,以下给出的条件合适的是()。
A。
AC = ADB。
BC = ADC。
∠ABC = ∠ABDD。
∠BAC = ∠BAD5.已知一个等腰三角形的两个内角度数之比为 1:4,则这个等腰三角形顶角的度数为()。
A。
20°B。
120°C。
20°或 120°D。
36°6.在△ABC 中,AB² = (a + b)²,AC² = (a - b)²,BC² = 4ab,且 a。
b。
0,则下列结论中正确的是()。
A。
∠A = 90°B。
∠B = 90°C。
∠C = 90°D。
△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是 5 和 12,则第三条边上的中线长是()。
A。
5B。
6C。
6.5D。
88.如图,在△ABC 中,AD,CE 分别是△ABC 的中线和角平分线,若 AB = AC,∠CAD = 20°,则∠ACE 的度数是()。
A。
20°B。
35°C。
八年级数学(上册)第二章测试卷.doc

八年级数学(上册)第二章测试卷一、选择题(10*3=30 )1 、已知等腰三角形的两边长分别为 4 、 9,则它的周长为()( A)17(B)22(C)17 或 22(D)132 、等边三角形的对称轴有()A1 条B2条C 3 条D 4 条3、以以下三个数为边长的三角形能构成直角三角形的是()A1,1,2B5,810C6,7,8D3,4,54、已知 ABC 的三边分别是 3cm, 4cm, 5cm,则 ABC的面积是()A6c ㎡ ,B7.5c ㎡ C 10c㎡D12c ㎡5、三角形内到三角形各边的距离都相等的点必在三角形的()A中线上B角均分线上C高线上D 不可以确立6、以下条件中,不可以判断两个直角三角形全等的是()A两个锐角对应相等B一条边和一个锐角对应相等C两条直角边对应相等D一条直角边和一条斜边对应相等7 、等腰三角形的一个顶角为40o,则它的底角为()C( A) 100 o(B)40 o(C)70o(D)70o或40o8 、以下能判定△ ABC 为等腰三角形的是()( A)∠ A=30 o、∠B=60 o(B)∠A=50 o、∠ B=80 oA DB ( C) AB=AC=2 , BC=4( D )AB=3 、 BC=7 ,周长为 139、若一个三角形有两条边相等,且有一内角为 60o,那么这个三角形必定为()( A)等边三角形( B )等腰三角形( C)直角三角形( D)钝角三角形10、如图∠BCA=90,CD⊥AB,则图中与∠A 互余的角有()个A.1 个B、2 个 C、3 个 D、4 个二.填空题( 10*3=30 )1、一个等腰三角形底上的高、________和顶角的 ________相互重合。
2、在 Rt △ ABC 中 ,∠C=90度 ,∠B=25 度 ,则∠A=______ 度 .3、等腰三角形的腰长为10 ,底边长为12 ,则其底边上的高为______.4、已知等边三角形的周长为24cm ,则等边三角形的边长为 _______cm5、Rt △ ABC 的斜边 AB 的长为 10cm ,则 AB 边上的中线长为 ________6、在 Rt △ ABC 中,∠C=90 o,∠ A=30 o, BC=2cm ,则 AB=_____cm 。
八年级数学上册第2章试卷含答案

第2章自我评价一、选择题(每小题3分,共30分)1.在下列标志中,属于轴对称图形的是(B)2.下列四组线段能构成直角三角形的是(D)A.a=1,b=2,c=3 B.a=2,b=3,c=4C.a=2,b=4,c=5 D.a=3,b=4,c=53.有下列命题:①同位角相等,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.其中逆命题是真命题的有(B)A.1个B.2个C.3个D.4个4.如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是(C)A.20°B.35°C.40°D.70°(第4题)(第5题)5.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果M是OP的中点,那么DM的长是(C)A.2B. 2C.3D.2 3(第6题)6.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,连结AP 并延长,交BC 于点D ,则下列说法中,正确的个数是(D ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC ∶S △ABC =1∶3.A . 1B . 2C . 3D . 47.如图,将一把含45°角的三角尺的直角顶点放在一张宽为3 cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角尺的一边与纸带的一边所在的直线成30°角,则三角尺的最大边长为(D )A . 3 cmB . 6 cmC . 18 cmD . 72 cm(第7题)(第7题解)【解】 如解图,过点C 作CD ⊥AD 于点D , 则CD =3 cm . 在Rt △ADC 中,∵∠CAD =30°,∴AC =2CD =2×3=6(cm). ∵该三角尺是含45°角的三角尺, ∴∠BAC =90°,AB =AC =6 cm , ∴BC =AB 2+AC 2=62+62=72(cm).(第8题)8.如图,在△ABC中,AB=AC=BD,DA=DC,则∠B的度数为(C)A.22.5°B.30°C.36°D.45°【解】设∠B=x.∵AB=AC,∴∠C=∠B=x.∵DA=DC,∴∠DAC=∠C=x.∴∠ADB=∠C+∠DAC=2x.∵AB=BD,∴∠BAD=∠ADB=2x.在△ABD中,∵∠B=x,∠ADB=∠BAD=2x,∴x+2x+2x=180°,解得x=36°,即∠B=36°.9.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是线段AD上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为(C)A.20°B.25°C.30°D.45°(第9题)(第9题解)【解】如解图,过点E作EM∥BC,交AB于点M,则∠AME=∠B,∠AEM=∠ACB.∵△ABC是等边三角形,∴∠B=∠ACB=60°,AB=AC=BC=4.∴∠AME=∠AEM=60°.∴AM=AE=2.∴BM =AB -AM =2.∵AD 是BC 边上的中线,∴AD ⊥BC . ∵EM ∥BC ,∴AD ⊥EM . ∴点E 和点M 关于AD 对称. 连结CM 交AD 于点F ,连结EF , 则此时EF +CF 的值最小. ∵AC =BC ,AM =BM , ∴∠ECF =12∠ACB =30°.10.如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,∠ADC +∠ABC =180°,有下列结论:①CD =CB ;②AD +AB =2AE ;③∠ACD =∠BCE ;④AB -AD =2BE .其中正确的是(C )A . ②B . ①②③C . ①②④D . ①②③④ 导学号:91354016(第10题)(第10题解)【解】 如解图,在EA 上取点F ,使EF =BE ,连结CF . ∵CE ⊥AB ,EF =BE , ∴CF =CB ,∴∠CFB =∠B .∵∠AFC +∠CFB =180°,∠ADC +∠ABC =180°,∴∠D =∠AFC . ∵AC 平分∠BAD ,∴∠DAC =∠FAC .在△ACD 和△ACF 中,∵⎩⎨⎧∠D =∠AFC ,∠DAC =∠FAC ,AC =AC ,∴△ACD ≌△ACF(AAS).∴AD =AF ,CD =CF .∴CD =CB ,故①正确.AD +AB =AF +(BE +AE)=AF +EF +AE =AE +AE =2AE ,故②正确. 根据已知条件无法证明∠ACD =∠BCE , 故③错误.AB -AD =AB -AF =BF =2BE ,故④正确. 综上所述,正确的是①②④. 二、填空题(每小题3分,共30分)11.如图,在△ABC 中,AB =AC ,AD 是中线.若∠B =60°,则∠BAD =__30°__.,(第11题)) ,(第12题))12.如图,在等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高AD 的长是__8__ cm .13.如图,AB ∥CD ,FE ⊥DB ,垂足为E .若∠1=50°,则∠2的度数为__40°__.,(第13题)) ,(第14题))14.如图,在△ABC 中,BO ,CO 分别是∠ABC ,∠ACB 的平分线,且它们相交于点O ,OE ∥AB ,OF ∥AC ,BC =10,则△OEF 的周长为__10__.【解】 ∵OB ,OC 分别是∠ABC ,∠ACB 的平分线, ∴∠ABO =∠CBO ,∠ACO =∠BCO . ∵OE ∥AB ,OF ∥AC ,∴∠ABO =∠BOE ,∠ACO =∠COF , ∴∠CBO =∠BOE ,∠BCO =∠COF ,∴BE =OE ,OF =FC ,∴△OEF 的周长=OE +EF +OF =BE +EF +FC =BC =10.(第15题)15.如图,在△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =__52°__.【解】 ∵AC =AD =DB , ∴∠B =∠BAD ,∠ADC =∠C . 设∠ADC =α,则∠B =∠BAD =α2. ∵∠BAC =102°,∴∠DAC =102°-α2. ∵∠ADC +∠C +∠DAC =180°, ∴2α+102°-α2=180°,解得α=52°,即∠ADC =52°.16.如图,已知△ABC 的周长是21,BO ,CO 分别平分∠ABC 和∠ACB ,OD ⊥BC ,垂足为D ,且OD =3,则△ABC 的面积是__632__., (第16题)) , (第16题解))【解】 如解图,过点O 作OE ⊥AB ,OF ⊥AC ,垂足分别为E ,F ,连结OA . 由角平分线的性质知OD =OE =OF ,∴S △ABC =S △AOB +S △BOC +S △AOC =12AB·OE +12BC·OD +12AC·OF =12(AB +BC +AC)·OD =12×21×3=632.17.如图,在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是__245__.,(第17题)),(第17题解))【解】 过点A 作AD ⊥BC 于点D ,如解图. ∵AB =AC =5,BC =6,∴BD =12BC =3,∴AD =AB 2-BD 2=4.易得当BP ⊥AC 时,BP 有最小值. 此时12AD·BC =12BP·AC , 得4×6=5BP ,∴BP =245.18.如图是两把完全一样的含30°角的三角尺,分别记做△ABC 与△A′B′C′,现将两把三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C ′间的距离是__5__.(第18题)(第18题解)【解】 如解图,连结C′C .∵M 是AC ,A ′C ′的中点,AC =A′C′=10, ∴CM =A′M =C′M =12AC =5,∴∠A ′CM =∠A′=30°,∴∠CMC ′=60°. ∴△MCC ′为等边三角形.∴C′C =CM =5.(第19题)19.按如图所示的方式作正方形和等腰直角三角形.若第一个正方形的边长AB =1,第一个正方形与第一个等腰直角三角形的面积和为S 1,第二个正方形与第二个等腰直角三角形的面积和为S 2……则第n 个正方形与第n 个等腰直角三角形的面积和S n =__52+__.【解】 易得第一个正方形的面积为1, 第一个等腰直角三角形的面积为14, 第二个正方形的面积为12,第二个等腰直角三角形的面积为12×14, ……∴第n 个正方形的面积为⎝⎛⎭⎫12n -1×1=12n -1,第n 个等腰直角三角形的面积为⎝⎛⎭⎫12n -1×14=12n +1, ∴第n 个正方形与第n 个等腰直角三角形的面积和S n =⎝⎛⎭⎫12n -1+12n +1=52n +1.(第20题)20.如图,正方形ABDE ,正方形CDFI ,正方形EFGH 的面积分别为25,9,16,△AEH ,△BDC ,△GFI 的面积分别为S 1,S 2,S 3,则S 1+S 2+S 3=__18__.导学号:91354017【解】 过点A 作AK ⊥HE ,交HE 的延长线于点K . 易得DE 2=25,DE 2=9,EF 2=16, ∴DE 2=DF 2+EF 2,∴△DEF 是直角三角形,且∠DFE =90°. 易得∠AEK +∠DEK =∠DEK +∠DEF =90°, ∴∠AEK =∠DEF .又∵AE =DE ,∠K =∠DFE =90°, ∴△AEK ≌△DEF (AAS ), ∴AK =DF . 又∵EH =EF ,∴S △AHE =12EH ·AK =12EF ·DF =S △DEF .同理,S △BDC =S △GFI =S △DEF , ∴S 1+S 2+S 3=3S △DEF . 易得DF =3,EF =4, ∴S △DEF =12×3×4=6, ∴S 1+S 2+S 3=3×6=18. 三、解答题(共40分)21.(6分)如图,AD =BC ,AC =BD .求证:△EAB 是等腰三角形.(第21题)【解】 在△ADB 和△BCA 中,∵⎩⎨⎧AD =BC ,BD =AC ,AB =BA ,∴△ADB ≌△BCA(SSS), ∴∠DBA =∠CAB , ∴△EAB 是等腰三角形.(第22题)22.(6分)如图,△ABC为等边三角形,DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为E,F,D,则△DEF是等边三角形吗?请说明理由.【解】△DEF是等边三角形.理由如下:∵DE⊥BC,EF⊥AC,FD⊥AB,△ABC为等边三角形,∴∠A=60°,∠ADF=∠CFE=90°,∴∠AFD=30°,∴∠DFE=180°-30°-90°=60°.同理,∠FDE=∠DEF=60°.∴△DEF是等边三角形.(第23题)23.(8分)如图,在△ABC中,AB=AC,点E在CA的延长线上,∠E=∠AFE,请判断EF与BC的位置关系,并说明理由.【解】EF⊥BC.理由如下:过点A作AD⊥BC于点D,延长EF交BC于点G.∵AB=AC,AD⊥BC,∴∠BAC=2∠CAD.又∵∠BAC=∠E+∠AFE,∠E=∠AFE,∴∠BAC=2∠E,∴∠CAD=∠E,∴AD∥EF.又∵∠ADC=90°,∴∠EGC=90°,即EF⊥BC.24.(10分)已知△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,F 为BE 的中点,连结DF ,CF .(1)如图①,当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF ,CF 的数量关系和位置关系.(2)如图②,在(1)的条件下将△ADE 绕点A 顺时针旋转45°,请你判断此时(1)中的结论是否仍然成立,并证明你的判断.(3)如图③,在(1)的条件下将△ADE 绕点A 顺时针旋转90°,若AD =1,AC =8,求此时线段CF 的长(直接写出结果).(第24题)【解】 (1)∵∠ACB =∠ADE =90°,F 为BE 的中点,∴DF =BF =12BE ,CF =12BE ,∴DF =CF .∵△ABC 是等腰直角三角形,∴∠ABC =45°.∵BF =DF ,∴∠DBF =∠BDF .∵∠DFE =∠DBF +∠BDF ,∴∠DFE =2∠DBF .同理,∠CFE =2∠CBF ,∴∠DFE +∠CFE =2∠DBF +2∠CBF =2∠ABC =90°,∴DF ⊥CF .(2)(1)中的结论仍然成立.证明如下:如解图①,延长DF 交BC 于点G .∵∠ADE =∠ACB =90°,∴DE ∥BC ,∴∠DEF =∠GBF ,∠EDF =∠BGF .∵F 为BE 的中点,∴EF =BF ,∴△DEF ≌△GBF(AAS),∴DE =GB ,DF =GF .∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD=BC-GB,即DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(第24题解) (3)如解图②,延长DF交BA于点H.∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE,∠AED=∠ABC=45°.由旋转可知∠CAE=∠BAD=∠ACB=90°,∴AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.∵F是BE的中点,∴EF=BF.又∵∠DFE=∠HFB,∴△DEF≌△HBF(ASA),∴ED=BH.∵BC=AC=8,∠ACB=90°,∴AB=4.∵BH=ED=AD=1,∴AH=3.∵∠BAD=90°,∴DH=10,∴DF=102,∴CF=102.25.(10分)问题探究:(1)如图①,在锐角△ABC中,分别以AB,AC为边向外作等腰三角形ABE和等腰三角形ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连结BD,CE,试猜想BD与CE的大小关系,并说明理由.深入探究:(2)如图②,在四边形ABCD 中,AB =7,BC =3,∠ABC =∠ACD =∠ADC =45°,求BD 的长.(3)如图③,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.(第25题)导学号:91354018【解】 (1)BD =CE .理由如下:∵∠BAE =∠CAD ,∴∠BAE +∠BAC =∠CAD +∠BAC ,即∠EAC =∠BAD .在△EAC 和△BAD 中,∵⎩⎨⎧AE =AB ,∠EAC =∠BAD ,AC =AD ,∴△EAC ≌△BAD(SAS),∴BD =CE .(2)如解图①,在△ABC 的外部作等腰直角三角形BAE ,使∠BAE =90°,AE =AB ,连结EC .∵∠ACD =∠ADC =45°,∴AC =AD ,∠CAD =90°,∴∠BAE +∠BAC =∠CAD +∠BAC ,即∠EAC =∠BAD .在△EAC 和△BAD 中,∵⎩⎨⎧AE =AB ,∠EAC =∠BAD ,AC =AD ,∴△EAC ≌△BAD(SAS),∴EC =BD .∵AE =AB =7,∴BE =72+72=98.易知∠ABE =45°,又∵∠ABC =45°,∴∠CBE =45°+45°=90°,∴EC =BE 2+BC 2=(98)2+32=107,∴BD =EC =107.(第25题解)(3)如解图②,在线段AC 的右侧过点A 作AE ⊥AB ,交BC 的延长线于点E . ∵AE ⊥AB ,∴∠BAE =90°.又∵∠ABC =45°,∴∠E =∠ABC =45°,∴AE =AB =7,∴BE =72+72=98.∵∠ACD =∠ADC =45°,∴∠DAC =90°=∠BAE ,∴∠BAE -∠BAC =∠DAC -∠BAC ,即∠EAC =∠BAD .在△EAC 和△BAD 中,∵⎩⎨⎧AE =AB ,∠EAC =∠BAD ,AC =AD ,∴△EAC ≌△BAD(SAS),∴EC =BD .又∵BC =3,∴BD =EC =BE -BC =98-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册第二章测试卷
班级: 姓名: 成绩:
一、选择题:(40分,每小题4分)
1、下列各数、2
3π、0)(π-、14.3、80108.0、ππ--1、Λ1010010001.0、4、Λ544514524534.0其中无理数的个数是 ( )
A 、1
B 、2
C 、3
D 、4
2、 下列说法正确的是 ( )
A 、无限小数都是无理数
B 、正数、负数统称有理数
C 、无理数的相反数还是无理数
D 、无理数的倒数不一定是无理数
3、下列说法中不正确的是 ( )
A 、1-的立方是1-,1-的平方是1
B 、两个有理之间必定存在着无数个无理数
C 、在1和2之间的有理数有无数个,但无理数却没有
D 、如果62=x ,则x 一定不是有理数
4、两个正有理数之和 ( )
A 、一定是无理数
B 、一定是有理数
C 、 可能是有理数
D 、 不可能是自然数 5、36的平方根是 ( )
A 、6
B 、6±
C 、6
D 、6±
6、下列运算中,错误的是 ( )
①1251144251=,②4)4(2±=-,③22222-=-=-,④20
95141251161=+=+ A 、1个 B 、2个 C 、3个 D 、4个
7、若9,42
2==b a ,且0<ab ,则b a -的值为 ( )
A 、2-
B 、5±
C 、5
D 、5-
8、若a 和a -都有意义,则a 的值是 ( )
A 0≥a
B 0≤a
C 0=a
D 0≠a 9、若规定误差小于1, 那么60的估算值为 ( ) A. 3 B. 7 C. 8 D. 7或8
10、已知实数x 、y 满足02242=++-y x ,则y x -2的值为 ( )
A 、3
B 、-3
C 、5
D 、-5
二、填空题:(30分,每空3分)
11、3的算术平方根是 ,16的平方根是 ,8-的立方根是 。
12、实数a 、b 的数轴上的位置如图所示,则
化简结果为 。
13、=-2)4( , =-33)6( , 2)196(= 。
14、已知032=++-b a ,则______)(2=-b a ;
15、当_______x 时,32-x 有意义。
16、若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
17、计算:______1112=-+-+-x x x ;
三、解答题:
18、计算(每小题5分,共30分) ①、2328-+; ②、)32)(32(-+
③、2)52(-; ④、)31)(21(-+.
⑤、
0)31(33122-++ ⑥、2)3322(+
a b。