七年级下学期数学练习题及答案 (27)
上海市杨浦区部分学校2023-2024学年七年级下学期期中数学试题(解析版)

2023学年第二学期七年级数学期中质量调研卷七年级数学(时间:100分钟分值 基础100分 附加50分)一、填空题(本大题共14题,每题2分,共28分)1. 下列各数:,0,0.3030030003,中,无理数的个数为______个.【答案】2【解析】,无理数有,,共2个.故答案为:2.【点睛】此题主要考查了算术平方根,无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽得到的数;以及像0.1010010001…(两个1之间依次多一个0),等有这样规律的数.2. 的算术平方根是______.【答案】【解析】【分析】首先将化为假分数;然后根据算术平方根的含义求解即可.详解】,∴.故答案为:.【点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3. 比较大小:___________(填“”,“”或“”)【答案】【π22271-3=π21-π2π911654911692511616=251654=54-7->=<>【解析】【分析】根据实数大小的比较方法比较大小即可.【详解】解:,,∵,,又∵,∴,∴.故答案为:.【点睛】本题主要考查了实数大小的比较,解题的关键是熟练掌握实数大小的比较方法.4.化为幂的形式:____________.【答案】【解析】【分析】根据分数指数幂定义求解可得.,,故答案为:.,正确掌握分数指数幂的定义是解题的关键.5. 计算:_________.【答案】7【解析】【分析】先利用平方差公式计算,再利用分数指数幂计算即可求解.【详解】解:,故答案为:7.的4-77-=(248=2749=4849<7<7->->342n m a =342=342n m a =()12222524-=()12222524-()()1225242524+-⎡⎤=⎣⎦1249=7=【点睛】本题考查了分数指数幂,平方差公式,掌握相关运算法则是解题的关键.6. 海洋面积用科学记数法可记作_________.(保留2个有效数字)【答案】【解析】【分析】本题考查了用科学记数法表示较大的数﹒考查科学记数法即考查应用数学的能力.有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字,根据定义即可求解.【详解】解:根据题意故答案∶.7. 如图,面积为3的正方形的顶点A 在数轴上,且表示的数为,若,则数轴上点E 所表示的数为____.【答案】【解析】【分析】本题考查了实数与数轴,算术平方根的求解,先求出的长,再求出点E 的坐标即可.【详解】正方形的面积为3,.的坐标为,E 在点A 的右侧,的坐标为.故答案为:8. 两条相交直线所形成的一个角为150°,则它们的夹角是______.【答案】30°【解析】【分析】根据已知两条相交直线所形成的一个角为150°,那么它们的夹角是就是150°角的邻补角,从而求出它们的夹角.为2361000000km 2km 83.610⨯8361000000 3.6110=⨯83.610≈⨯83.610⨯ABCD 1-AB AE =1-+1-AB AB ∴=AE AB ∴==A 1-E ∴1-1-【详解】解:∵两条相交直线所形成的一个角为150°,∴它们的夹角是150°角的邻补角即180°-150°=30°,故答案为:30°.【点睛】此题考查的知识点是对顶角、邻补角,解答此题的关键是要明确要求的角是150°角的邻补角.9. 如图..直线交于点E ,交于点F ,平分,交于点G ,,则等于________.【答案】##度【解析】【分析】本题主要考查了平行线的性质,角平分线的定义,先由平行线的性质得到,,再由角平分线的定义可得.【详解】解;∵,,∴,,∵平分,∴,故答案为:.10. 如图,,已知直角三角形中,B ,C 在直线a 上,A 在直线b 上,,,,则点A 到直线a 的距离为________.【答案】【解析】【分析】设点A 到直线a 的距离为h ,根据,即可求解.【详解】解:设点A 到直线a 的距离为h ,AB CD EF AB CD EG BEF ∠CD 150∠=︒2∠65︒651801130BEF ∠=︒-∠=︒2BEG ∠=∠12652BEG BEF ===︒∠∠AB CD 150∠=︒1801130BEF ∠=︒-∠=︒2BEG ∠=∠EG BEF ∠12652BEG BEF ===︒∠∠∠65︒a b ∥ABC 3AB =4AC =5BC =1251122ABC S AB AC BC h =⨯=⨯∵直角三角形中,,,,∴,即,解得:.故答案为:【点睛】本题主要考查了点到直线的距离,根据题意得到是解题的关键.11. 如图,有一条直的宽纸带,按图折叠,已知,则______度.【答案】##76度【解析】【分析】本题主要考查平行线的性质,掌握平行线的性质是解题关键.根据平行线的性质可得,,再结合折线的性质可得,即可得到的度数.【详解】解:如图由折叠的性质可得∶故答案为∶.12. 若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是_____.【答案】4ABC 3AB =4AC =5BC =1122ABC S AB AC BC h =⨯=⨯ 1134522h ⨯⨯=⨯⨯125h =1251122ABC S AB AC BC h =⨯=⨯ 128∠=︒2∠=76︒1528∠=∠=︒23∠∠=()3418052∠=∠=︒-∠÷2∠,AB CD ∥1528,23,∴∠=∠=︒∠=∠()3418052∠=∠=︒-∠÷()18028276=︒-︒÷=︒276∴∠=︒76︒【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出正数的立方根.【详解】根据题意得:a+3+2-2a=0,解得:a=5,则这个正数为(5+3)2=64,则这个正数的立方根是4.故答案为4.【点睛】本题考查了立方根以及平方根的定义,熟练掌握各自的定义是解本题的关键.13. 如图,直线,点E ,F 分别在直线和直线上,点P 在两条平行线之间,和的角平分线交于点H ,已知,则的度数为__________.【答案】##度【解析】【分析】本题主要考查了平行线的性质与判定,过点作,过点作.根据平行线的性质得到,结合角平分线的定义得到,同理可得.【详解】解:如图所示,过点作,过点作,∵,∴,,∴,∵,∴,∵,AB CD AB CD AEP ∠CFP ∠78P ∠=︒H ∠141︒141P PQ AB ∥H HG AB 78EPF BEP DFP ∠=∠+∠=︒AEH CFH ∠+∠EHF AEH CFH ∠=∠+∠P PQ AB ∥H HG AB AB CD PQ CD ∥HG CD ∥BEP QPE DFP QPF ∠=∠∠=∠,78EPF QPE QPF ∠=∠+∠=︒78BEP DFP ∠+∠=︒180180AEP BEP CFP DFP +=︒+=︒∠∠,∠∠∴,∵平分,平分,∴.∵,∴,∴故答案为:.14. 消防云梯的示意图如图1所示,其由救援台、延展臂(B 在C 的左侧)、伸展主臂、支撑臂构成,在作业过程中,救援台、车身及地面三者始终保持水平平行.为了参与一项高空救援工作,需要进行作业调整,如图2.使得延展臂与支撑臂所在直线互相垂直,且,这时展角_________.【答案】##度【解析】【分析】本题主要考查平行线的性质,三角形的外角性质,解答的关键是作出正确的辅助线.延长,,相交于点P ,延长交的延长线于点Q ,利用平行线的性质可求得,再利用三角形的外角等于与它不相邻的两个内角之和,即可求得答案.【详解】如图,延长,,相交于点P ,延长交的延长线于点Q ,,,,延展臂与支撑臂所在直线互相垂直,36078282AEP CFP ∠+∠=︒-︒=︒EH AEP ∠HF CFP ∠2822141AEH CFH ∠+∠=︒÷=︒HG CD AB ∥∥EHG AEH FHG CFH ==∠∠,∠∠141EHF EHG FHG AEH CFH =+=+=︒∠∠∠∠∠141︒AB BC CD EF AB GH MN BC EF 70EFH ∠=︒ABC ∠=160︒160BC FE AB FE 70Q ∠=︒BC FE AB FE AB FH ∥ 70EFH ∠=︒70Q EFH ∴∠=∠=︒,.故答案为:.二、选择题(本大题共4题,每题3分,共12分)15. 下列计算正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了立方根,平方根,算术平方根.根据立方根,平方根,算术平方根的性质求解即可.【详解】解:A,本选项不符合题意;B,本选项不符合题意;C,本选项不符合题意;D,本选项符合题意;故选:D .16. 圆圆要用一根笔直的铁丝从两处弯曲后围成一个三角形.如图,铁丝的长度为1m ,圆圆从M ,N 两处弯曲,其中,她不能成功的是( )A. B. C. D. 90BPQ ∴∠=︒ABC BPQ Q∴∠=∠+∠9070=︒+︒160=︒160︒18=4=-a =a=618=≠44==≠-a a =≠a =AB AM AN <20cm 30cmAM <<30cm 40cm AM <<40cm 50cm AM <<50cm 60cmAM <<【答案】D【解析】【分析】本题考查三角形的三边关系,根据“两边之和大于第三边,两边之差小于第三边”解答即可.【详解】解:∵能构成三角形,∴,即,∴,∴选项D 不符合要求,故选D .17. 如图所示,在下列四组条件中,不能判定的是( )A. B. C. D. 【答案】D【解析】【分析】根据平行线的判定方法分别对四个选项进行判断.【详解】解:A 、当∠1=∠2时,AD BC ,本选项不符合题意;B 、当∠3=∠4时,AD BC ,本选项不符合题意;C 、当∠BAD +∠ABC =180°时,AD BC ,本选项不符合题意;D 、当∠BAC =∠ACD 时,AB CD ,本选项符合题意.故选:D .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.18. 如图,下列说法错误的是()AM MN BN MB <+=100AM AM <-050cm AM <<AD BC ∥12∠=∠3=4∠∠180BAD ABC ∠+∠=︒BAC ACD∠=∠∥∥∥∥A. ∠A 与∠AEF 是同旁内角B. ∠BED 与∠CFG 是同位角C. ∠AFE 与∠BEF 是内错角D. ∠A 与∠CFE 是同位角【答案】B【解析】【分析】本题考查的是两直线相交所成角的问题,根据同位角、同旁内角、内错角定义解答即可【详解】A. ∠A 与∠AEF 是同旁内角,正确B. ∠BED 与∠CFG 是同位角,错误C. ∠AFE 与∠BEF 是内错角,正确D. ∠A 与∠CFE 是同位角,正确【点睛】本题的关键是掌握同位角、同旁内角、内错角的定义三、简答题(本大题共7题,每题6分,共42分)19. 计算:.【答案】6【解析】【分析】本题主要考查实数的混合运算,原式分别化简算术平方根,零次幂,绝对值和负整数指数幂,然后再进行加减运算即可.【详解】解:.20. 计算:【答案】0216(3)1|()2π--++-0216(3)|1|()2π--+-+-161|21|43=⨯-+-+2114=-++6=÷59【解析】【分析】利用二次根式的乘除运算法则计算即可.【详解】解:原式【点睛】本题考查了二次根式乘除法,解题的关键是掌握运算顺序和运算法则.21. 计算:.【答案】【解析】【分析】根据乘法公式,二次根式的运算法则即可求解.【详解】解:.【点睛】本题主要考查运用乘法公式计算二次根式,掌握乘法公式,二次根式的加减混合运算法则是解题的关键.22.(结果用幕的形式来表示)【答案】【解析】【分析】根据分数指数幂可进行求解.【详解】解:原式.【点睛】本题主要考查分数指数幂,熟练掌握分数指数幂的运算是解题的关键.23. 作图并写出结论:如图,直线CD 与直线AB 相交于点C ,根据下列语句画图.的2==59=2(1(3-+4--2(1(3--12(92)=+---37=-4=--3421513641622=⨯÷451364222=⨯÷4153462+-=342=(1)过点P 作PQ CD ,交AB 上于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =135º,则∠PQC 是多少度?请说明理由.解:∵PQ CD (已作)∴∠DCB +∠PQC =180º( )∵∠DCB =135º∴∠PQC =【答案】(1)见解析(2)见解析 (3)45º,理由见解析【解析】【分析】(1)平移DR 使它过点P ,此时交AB 于Q ,则PQ CD ;(2)过点P 作CD 的垂线,垂足为R ;(3)利用平行线的性质解决问题即可.【小问1详解】直线PQ 如图所示.【小问2详解】直线PR 如图所示. 【小问3详解】∠PQC =45°;理由:解:∵PQ CD (已作)∴∠DCB +∠PQC =180º(两直线平行,同旁内角互补)∵∠DCB =135º∴∠PQC =45 º【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 已知,猜想与的关系如何?并说明理由.解:因为(已知)所以(______)所以;同理,;所以______(______).【答案】平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式性质【解析】【分析】根据平行线的判定和性质以及同角的补角相等求解即可.【详解】解:因为,(已知)所以(平行于同一条直线的两直线平行);所以∠A +∠B =180°(两直线平行,同旁内角互补);同理,∠C +∠B =180°;∴∠A =∠C (同角的补角相等或等式的性质).故答案为:平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式的性质.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,熟知平行线的性质与判定是解题的关键.25. 阅读、填空并将说理过程补充完整:如图,已知直线,点A 、B 在直线上,点C 、D 在直线上,与交于点E .与的面积相等吗?为什么?,,,AE GF BC GF EF DC EF AB ∥∥∥∥A ∠C ∠,AE GF BC GF ∥∥AE BC ∥______180(______)A ∠+=︒______180C ∠+=︒AE GF ∥BC GF ∥AE BC ∥12l l ∥1l 2l AD BC ACE △BDE解:作,垂足为,作,垂足为.又因为(已知),所以______(平行线间距离的意义).(完成以下说理过程)【答案】相等,理由见解析.【解析】【分析】作,垂足为,作,垂足为,根据平行线间间距相等得到,再根据三角形面积公式得到,进而可得.【详解】解:相等,理由如下:作,垂足为,作,垂足为.又因为(已知),所以(平行线间距离的意义)因为,,所以,所以,所以,所以与的面积相等.【点睛】本题主要考查了平行线的性质,熟知平行线间间距相等是解题的关键.四、解答题(本大题共3题,每题6分,共18分)26. 如图,AB 、CD 是两条直线,,.请说明的理由.12AH l ⊥1H 22BH l ⊥2H 12l l ∥12AH l ⊥1H 22BH l ⊥2H 12AH BH =ACD CBD S S = ACE BDE S S =△△12AH l ⊥1H 22BH l ⊥2H 12l l ∥12AH BH =112ACD S CD AH =⨯⨯△212CBD S CD BH =⨯⨯△ACD CBD S S = ACD CDE CBD CDE S S S S -=-△△△△ACE BDE S S =△△ACE △BDE BMN CNM ∠=∠12∠=∠E F ∠=∠【答案】见解析【解析】【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠AMN =∠MND ,求出∠EMN =∠MNF ,根据平行线的判定得出ME ∥NF ,根据平行线的性质得出即可.【详解】∵∠BMN =∠CNM (已知),∴(内错角相等,两直线平行).∴∠AMN =∠MND (两直线平行,内错角相等).∵∠1=∠2(已知),∴∠EMN =∠MNF (等式性质).∴(内错角相等,两直线平行).∴∠E =∠F (两直线平行,内错角相等),【点睛】本题考查了平行线性质和判定的应用,能灵活运用定理进行推理是解此题的关键.27. 观察下列一组等式,然后解答后面的问题:,(1)观察上面的规律,计算下列式子的值.;(2【答案】(1)2012;(2【解析】【分析】(1)根据分母乘以分母中这两个数的差,可分母有理化,根据实数的运算,可得答案;(2)根据平方差公式,可化成分子相同的数,根据相同的分子,分母越大的数越小,可得答案.【详解】解:(1)由,则=的ABCD ME NF∥)111,1,1,1+-=-=-==)1++⋅+ -)111,1,1,1+-=-=-==1)n =≥)1++⋅+ 1)⋅==2012(2,,【点睛】本题考查了分母有理化和分子有理化在二次根式混合运算和实数大小比较中的应用,熟练掌握相关的运算法则是解题的关键.28. (1)【问题情境】如图1,已知三角形,试说明的理由.解:过A点作(过直线外一点有且只有一条直线与已知直线平行)(请按照上述思路继续完成说理过程)(2)【尝试运用】如图2,若且经过A点,,求的度数(用含n的代数式表示).(3)【拓展探索】如图3,在三角形中,点D是延长线上的一点,过点D作,平分,平分,与交于点G.若,求的度数.【答案】(1)过程见详解;(2);(3)【解析】【分析】本题考查了平行线的判定及性质、角平分线的性质以及三角形外角的性质,解决该题型题目时,利用平行线的性质找出相等(或互补)的角是关键.(1)过A点作,根据平行线的性质得到,,根据平角的定义得到结论;1)⋅+-ABC180BAC B C∠+∠+∠=︒DE BC∥80,BAC DE BC∠=︒∥,EAC n EAF ABC n FBC∠=∠∠=∠AFB∠ABC AC DE BC∥DG ADE∠BG ABC∠DG BG40A∠=︒G∠100n︒20︒DE BC∥DAB B∠=∠EAC C∠=∠(2)如图2,过F 作,根据三角形的内角和定理得到,根据平行线的性质即可得到结论;(3)由结合外角的性质可得出,再根据角平分线的定义可得出,由此可得出,从而得出,根据的度数即可得出结论.【详解】(1)证明:过A 点作(过直线外一点有且只有一条直线与已知直线平行),,,,;(2)解:如图2,过F 作,,,,,,,,,,,,,;FH BC ∥180100ABC C BAC ∠+∠=︒-∠=︒DE BC ∥ADE A ABC ∠=∠+∠()12GDE A ABC ∠=∠+∠()12GFM A ABC GBF G ∠=∠+∠=∠+∠12G A ∠=∠A ∠DE BC ∥DAB B ∴∠=∠EAC C ∠=∠180DAB BAC EAC ∠+∠+∠=︒ 180BAC B C ∴∠+∠+∠=︒FH BC ∥80BAC ∠=︒ 180100ABC C BAC ∴∠+∠=︒-∠=︒DE BC ∥FH DE ∴ EAF HFA ∴∠=∠FH BC ∥CBF HFB ∴∠=∠AFB AFH BFH EAF CBF ∴∠=∠+∠=∠+∠DE BC ∥EAC C ∴∠=∠,EAC n EAF ABC n FBC ∠=∠∠=∠ 1,1EAF EAC CBF ABC n n∴∠=∠∠=∠()111100AFB EAF CBF EAC ABC C ABC n n n n︒∴∠=∠+∠=∠+∠=∠+∠=(3)解:,平分,平分,,,五、附加题29. 如图,直线,一副三角尺()按如图①放置,其中点在直线上,点,均在直线上,且平分.(1)求的度数.(2)如图②,若将三角形绕点以每秒度的速度逆时针方向旋转(的对应点分别为,),设旋转时间为(s )();①在旋转过程中,若边,求的值;②若在三角形绕点旋转的同时,三角形绕点以每秒度的速度顺时针方向旋转(的对应点为,)请求出当边时的值.【答案】(1);(2)①;②或.【解析】【分析】利用平行线的性质角平分线的定义即可解决问题.首先证明,由此构建方程即可解决问题.DE BC ∥,.ADE ACF A ABC GFM GDE ∴∠=∠=∠+∠∠=∠DG ADE ∠BG ABC ∠()111,222GDE ACF A ABC GBF ABC ∴∠=∠=∠+∠∠=∠()12GFM A ABC GBF G ∴∠=∠+∠=∠+∠114020.22G A ∴∠=∠=⨯︒=︒PQ MN ∥90,30,ABC CDE ACB BAC ∠∠∠∠==︒=︒=60,45DCE DEC ∠∠︒==︒E PQ B C MN CE ACN ∠DEQ ∠ABC B 4,A C F G t 045≤≤t ∥BG CD t ABC B CDE E 3,C D H K BG HK ∥t 60︒7.5s 4.5s 180s 7()1()2①30GBC DCN ∠=∠=︒分两种情形:如图中,当时,延长交于根据构建方程即可解决问题.如图中,当时,延长交于根据构建方程即可解决问题.【小问1详解】解:如图中,,,平分,,,,,;【小问2详解】解:如图中,,,,②③//BG HK KH MN .R GBN KRN ∠=∠1-③//BG HK HK MN .R 180GBN KRM ∠+∠=︒①30ACB ∠=︒ 180150ACN ACB ∴∠=︒-∠=︒CE ACN ∠1752ECN ACN =∠=∴∠︒PQ MN ∥180QEC ECN ∴∠+∠=︒105QEC ∠∴=︒1054560DEQ QEC CED ∴∠=∠-∠=︒-︒=︒①②//BG CD GBC DCN ∠=∠∴30DCN ECN ECD ∠∠∠=-=︒∵,,,在旋转过程中,若边,的值为;如图中,当时,延长交于,,,,,,;如图中,当时,延长交于,,,,,30GBC ∴∠=︒430t ∴=7.5t s ∴=∴∥BG CD t 7.5s ②③//BG HK KH MN R //BG HK ∵GBN KRN ∠∠∴=603,QEK t K QEK KRN ∠∠∠∠=︒+=+ 90(603)303KRN t t ∠∴=︒-︒+=︒-4303t t ∴=︒-4.5t s ∴=1-③//BG HK HK MN R //BG KR 180GBN KRM ∴∠+∠=︒603,QEK t EKR PEK KRM ∠∠∠∠∴=︒+=+120(180603)3KRM t t ∠∴=︒-︒-︒-=,综上所述,满足条件的的值为或.【点睛】本题考查了平行线的性质,掌握平行线的性质,旋转变换,角平分线的定义是解题的关键.30. 对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 °;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE ;①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).【答案】(1)60 (2)①∠B =75°,②当BG 上的动点P 为∠CDE 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k =2n .【解析】【分析】(1)设∠H 的4系补周角的度数为x °,根据新定义列出方程求解便可;(2)①过E 作EF ∥AB ,得∠B +∠D =∠BED ,再由已知∠D =60°,∠B 是∠E 的3系补周角,列出∠B 的方程,求得∠B 便可;②根据k 系补周角的定义先确定P 点的位置,再结合∠ABF =n ∠ABE ,∠CDF =n ∠CDE 求解k 与n 的关系即可求解.【小问1详解】解:设∠H 的4系补周角的度数为x °,根据新定义得,120+4x =360,解得,x =60,43180t t ∴+=︒1807t s ∴=t 4.5s 180s 7∠H的4系补周角的度数为60°,故答案为:60;【小问2详解】解:①过E作EF∥AB,如图1,∴∠B=∠BEF,∵AB∥CD,∴EF∥CD,∠D=60°,∴∠D=∠DEF=60°,∵∠B+60°=∠BEF+∠DEF,即∠B+60°=∠BED,∵∠B是∠BED的3系补周角,∴∠BED=360°-3∠B,∴∠B+60°=360°-3∠B,∴∠B=75°;②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,理解题意是解题的关键.。
人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
湖南省怀化市2023-2024学年七年级下学期期末数学试题(含答案)

怀化市2024年上学期期末七年级教学质量抽测试卷数学温馨提示:(1)本试卷分试题卷和答题卡两部分,考试时量120分钟,满分120分,附加题10分。
(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上。
(3)请你在答题卡上作答,答在本试题卷上无效。
一、选择题(每小题3分,共30分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.市教育部门高度重视学生安全教育,要求各级各类学校认真落实“1530”学生安全教育模式.下列安全图不是轴对称图形的是()A .B .C .D .2.下列运算正确的是()A .B .C .D .3.下列因式分解正确的是()A . B .C .D .4.用加减消元法解二元一次方程组时,下列无法消元的是()A .①×2-②B .②×3+①C .①-②×3D .①×(-2)+②5.某校经常采用“小组合作学习”的方式进行学习,某班值周班长对上周本班7个学习小组合作学习的得分情况进行了统计,得到以下评分结果:90,91,85,90,90,96,89,这组数据的中位数和众数分别是()A .89,90B .90,90C .88,95D .90,956.下列说法中正确的是()A .相等的角是对顶角B .旋转一定会改变图形的形状和大小C .两条直线被第三条直线所截,同位角相等D .在同一平面内,过一点有且只有一条直线与已知直线垂直7.己知直线,将一块含角的直角三角板ABC 按如图方式放置(),且顶点A ,C 分别落在直线a ,b 上,若,则的度数是()235326a a a ⋅=()326aa -=222()ab a b -=-224x x x +=2269(3)x x x --=-232(2)(1)x x x x -+=--2262(6)x x x x -=-222()x a x a -=-3421x y x y +=⎧⎨-=⎩①②a b ∥30︒30BAC ∠=︒128∠=︒2∠A .B .C .D .8.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各公几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱:每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x 人,物品的价格为y 钱,根据题意,可列方程组为()A . B . C .D .9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A .B .C .D .10.如图,在中,,AD 平分,若P 、Q 分别是AD 和AC 上的动点,则的最小值是()A .1.2B .2.4C .4.8D .9.6二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上)11.多项式的公因式是__________.12.已知方程,用含x 的代数式表示y ,则__________.18︒30︒58︒60︒8374y x y x =-⎧⎨=+⎩8374x y x y =+⎧⎨=-⎩8374y x y x =+⎧⎨=-⎩8374x y x y =-⎧⎨=+⎩2()a a b a ab -=-22()()a b a b a b -=+-222()2a b a ab b -=-+2()a a b a ab+=+Rt ABC △906810ACB AC BC AB ∠=︒===,,,BAC ∠PC PQ +2223a b ab +210x y +=y =13.已知一组数据:3,3,4,5,5,则这组数据的方差为__________.14.己知,则的值为__________.15.如图,直线AB ,CD 相交于点O ,,垂足是点O ,,则______.16.在的方格中,有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有__________种.17.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以光线在水中是平行的,在空气中也是平行的.如图,若,则________.18.如图,点E 在线段BA 的延长线上,,连FH 交AD 于G ,的余角比大,K 为线段BC 上一点,连接CG ,使得,在内部有射线GM ,GM 平分,则下列结论:①;②GK 平分;③;④的角度为定值且定值为,其中正确的结论是(填序号)__________.三、解答题(本大题共8小题,共66分。
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
七年级下学期 二元一次方程组数学试卷(含答案)

,C选项错误;
,D选项正确;
故选D
【点睛】
本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.
8.A
解析:A
【分析】
根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.
【详解】
A、满足三元一次方程组的定义,故A选项正确;
B、含未知数项的次数为2次,∴不是三元一次方程,故B选项错误;
【详解】
解:设甲获胜x局,平y局,则负 局,
根据题意可得: ,即 ,
当 时, , ;
当 时, , ;
当 时, , ;
当 时, (舍);
综上所述,获胜的场数可能为1,2,3,共3种可能,
故选:B.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
11.B
解析:B
【分析】
26.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?
27.规定:二元一次方程 有无数组解,每组解记为 ,称 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:
7.已知 是方程组 的解,则 是哪一个方程的解()
A. B. C. D.
8.下列方程组是三元一次方程组的是()
A. B. C. D.
9.已知|x+y-1|+(x-y+3)2=0,则(x+y)2019的值是()
A.22019B.-1C.1D.-22019
2018-2019学年七年级下期末考试数学试卷及答案

2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案) (27)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)某中学体育组因教学需要本学期购进篮球和排球共100个,共花费2600元,已知篮球的单价是20元/个,排球的单价是30元/个.()1篮球和排球各购进了多少个(列方程组解答)?()2因该中学秋季开学成立小学部,教学资源实现共享,体育组提出还需购进同样的篮球和排球共30个,但学校要求花费不能超过800元,那么排球最多能购进多少个(列不等式解答)?【答案】(1)购进篮球40个,购进排球60个;(2)最多购进排球20个. 【解析】 【分析】()1根据购进篮球和排球共100个,共花费2600元,进而分别得出方程求出即可;()2利用篮球和排球共30个,学校要求花费不能超过800元,得出不等式求出即可.【详解】() 1设购进篮球x 个,购进排球y 个,根据题意可得:x y 10020x 30y 2600+=⎧+=⎨⎩, 解得:{x 40y 60==,答:购进篮球40个,购进排球60个;()2设购进排球z 个,购进篮球()30z -个,根据题意可得:()+-≤,30z2030z800≤,解得:z20答:最多购进排球20个.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,利用已知排球与篮球的数量总和和总费用得出等式是解题关键.62.为了解决小区停车难的问题,某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)根据实际情况,该小区新建地上停车位不多于33个,且预计投资金额不超过11万元,共有几种建造方式?【答案】(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元.(2)有4种建造方式.【解析】【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元,可列出方程组求解.(2)设新建m个地上停车位,根据小区预计投资金额超过10万元而不超过11万元,可列出不等式求解.【详解】(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,0.532 1.1x y x y ==+⎧⎨+⎩, 解得0.10.4x y ⎧⎨⎩==,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元. (2)设新建m 个地上停车位,则新建(50-m )个地下停车位, 由题意可知,0.1m+0.4(50-m )≤11且m ≤33, 解得30≤m ≤33,因为m 为整数,所以m=30或m=31或m=32或m=33, 对应的50-m=20或50-m=19或50-m=18或50-m=17, 答:有4种建造方式. 【点睛】此题考查二元一次方程组与不等式组的实际运用,找出题目蕴含的等量关系于不等关系,建立不等式组于方程组解决问题.63.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a ,b 的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨? 【答案】(1)a 的值是2.2,b 的值是4.4;(2)小王家6月份用水量40吨. 【解析】 【分析】(1)根据题意和表格可以列出相应的二元一次方程组,从而可以求出a 、b 的值;(2)根据题意可以列出相应的方程,从而可以求得小王家本月用水量为多少吨.【详解】解:(1)根据题意可得,173200.866178250.891a b a b ++⨯=⎧⎨++⨯=⎩, 解得, 2.24.2a b =⎧⎨=⎩,即a 的值是2.2,b 的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116+0.80×(x﹣30)=184,解得,x=40即小王家6月份用水量40吨.【点睛】本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组.64.某商场元旦期间举行优惠活动,对甲、乙两种商品实行打折出售,打折前,购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,元旦优惠打折期间,购买50件甲商品和50件乙商品仅需960元,这比不打折前节省多少钱?【答案】比不打折前节省40元.【解析】【分析】设甲商品单价为x元,乙商品单价为y元,根据购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,列出方程组,继而可计算购买50件甲商品和50件乙商品需要的花费,也可得出比不打折前少花多少钱.【详解】设打折前甲商品每件x元,乙商品每件y元.根据题意,得584 63108x yx y+⎧⎨+⎩==,解方程组,164 xy==⎧⎨⎩打折前购买50件甲商品和50件乙商品共需50×16+50×4=1000元,比不打折前节省1000-960=40元.答:比不打折前节省40元.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.65.对于有理数x,y,定义新运算:x•y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算.例如,3×4=3a+4b,则若3×4=8,即可知3a+4b=8.已知1×2=1,(﹣3)×3=6,求2×(﹣5)的值.【答案】﹣7.【解析】【分析】根据运算关系得出关于a,b的等式,进而求出a,b的值,即可得出答案.【详解】根据题意可得:212a ba b+⎧⎨-+⎩=①=②,则①+②得:b=1,则a=-1,故方程组的解为:11ab-⎧⎨⎩==,则原式=2a-5b=-2-5=-7.【点睛】此题主要考查了解二元一次方程组,正确得出关于a,b的方程组是解题关键.66.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于30042=507(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为1712 184x yx y=-⎧⎨=+⎩,解得:16284xy=⎧⎨=⎩,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于30042=507(取整为8)辆,综合起来可知汽车总数为8辆,故答案为8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:⨯+⨯=方案一:租用甲种客车3辆,乙种客车5辆,租车费用为30034005 2900元;⨯+⨯=方案二:租用甲种客车2辆,乙种客车6辆,租车费用为30024006 3000元;⨯+⨯=方案三:租用甲种客车1辆,乙种客车7辆,租车费用为30014007 3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.67.据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100m、宽80m的长方形土地分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是2:1?请你设计两种不同的种植方案.【答案】见解析 【解析】 【分析】先设计出两种方案图,然后根据甲、乙两种作物的总产量的比是2:1列出方程组,求出方程的解即可.【详解】 方案1:如图,设AE=x ,EB=y ,则80:2802:1100x y x y ()()⨯=⎧⎨+=⎩, 解得:8020x y =⎧⎨=⎩,即将原长方形的长分为80m 和20m 两部分;方案2:如图,设AE=a ,EC=b ,则80100:21002:1a b a b +=⎧⎨⨯=⎩()(), 解得:6416a b =⎧⎨=⎩,即将原长方形的宽分为64m 和16m 两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期数学练习题及答案
8.(3分)下列语句是命题的是()
(1)两点之间,线段最短;
(2)如果x2>0,那么x>0吗?
(3)如果两个角的和是90度,那么这两个角互余.
(4)过直线外一点作已知直线的垂线;
A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)
【分析】根据命题的概念判断即可.
【解答】解:(1)两点之间,线段最短,是命题;
(2)如果x2>0,那么x>0吗?不是命题;
(3)如果两个角的和是90度,那么这两个角互余,是命题;
(4)过直线外一点作已知直线的垂线,不是命题;
故选:C.
【点评】本题考查的是命题的概念,判断一件事情的语句,叫做命题,命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.
第1页共1页。