八年级数学知识大纲(北师版)
完整)北师版教材初中数学大纲

完整)北师版教材初中数学大纲1.1 直角三角形1.2 勾股定理1.3 应用勾股定理求解问题1.4 勾股定理的逆定理1.5 勾股定理的推广第二章相似形2.1 相似形2.2 相似三角形的判定2.3 相似三角形的性质2.4 相似三角形的应用2.5 黄金分割第三章比例与比例方程3.1 比例3.2 比例的性质3.3 比例的应用3.4 比例方程3.5 解比例方程3.6 比例方程的应用第四章函数4.1 函数的概念4.2 函数的表示4.3 函数的性质4.4 直线函数4.5 函数的应用第五章一次函数5.1 一次函数的概念5.2 一次函数的图象5.3 一次函数的性质5.4 一次函数的应用第六章平面向量6.1 向量的概念6.2 向量的表示6.3 向量的运算6.4 向量的性质6.5 平面向量的应用第七章圆的性质7.1 圆的定义7.2 圆的性质7.3 切线的性质7.4 弧的性质7.5 圆的应用课题研究制作一个简单的游戏八年级下学期第一章二次根式1.1 二次根式的概念1.2 二次根式的化简1.3 二次根式的加减1.4 二次根式的乘除1.5 二次根式的应用第二章三角函数2.1 角度的概念2.2 弧度制2.3 三角函数的概念2.4 正弦函数2.5 余弦函数2.6 正切函数2.7 三角函数的性质2.8 三角函数的应用第三章数列3.1 数列的概念3.2 等差数列3.3 等比数列3.4 数列的应用第四章立体图形4.1 立体图形的概念4.2 立体图形的表示方法4.3 立体图形的面积和体积4.4 球的表面积和体积4.5 立体图形的应用第五章二次函数5.1 二次函数的概念5.2 二次函数的图象5.3 二次函数的性质5.4 二次函数的应用第六章概率分布6.1 随机试验与事件6.2 事件的概率6.3 概率分布6.4 随机变量6.5 期望6.6 概率分布的应用第七章解析几何7.1 坐标系7.2 直线的方程7.3 圆的方程7.4 解析几何的应用课题研究制作一个简单的模型第一章:勾股定理、蚂蚁走路在这一章中,我们将探索数学中的一些基本问题。
北师大版八年级上册数学知识点总结大全

北师大版八年级上册数学知识点总结大全八年级上册数学知识点复习第一章勾股定理1、勾股定理-----已知直角三角形,得边的关系直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理-----由边的关系,判断直角三角形如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。
3、勾股数:满足a2b2c2的三个正整数a,b,c,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1)、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a为奇数且a<b时,如果b+c=a2,那么a,b,c就是一组勾股数.如:(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n>1)都可构成一组勾股数划分是:2n、n2-1、n2 1如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)任意一条的边长和另外两条边长之间的干系,求各边的长度//斜边上的高线/周长/面积……(3)断定三角形外形:1a..找最长边;b.比力长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状第二章实数1.无理数的引入。
无理数的界说无穷不轮回小数。
22、无理数:无穷不轮回小数叫做无理数。
在理解无理数时,要捉住“无穷不轮回”这一时之,归纳起来有四类:(1)开方开不尽的数,如数)。
(2)有特定意义的数,如圆周率π(π=3.…),或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.…;0.……(相邻两个5之间8的个数逐次加1等;二、实数的倒数、相反数和绝对值1、相反数337、5等根号a(a为非完全平方数或非立方实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b 互为相反数,则有a+b=0,a=—b,反之亦成立。
北师大版数学八年级上册知识点归纳总结

北师大版数学八年级上册知识点归纳总结第一章勾股定理1.勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2.勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3.勾股数满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)第二章实数1.实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:a.开方开不尽的数,如√7 ,³√2等;b.有特定意义的数,如圆周率π,或化简后含有π的数,如π/₃+8等;c.有特定结构的数,如0.1010010001…等;d.某些三角函数值,如sin60°等2.实数的倒数、相反数和绝对值①相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0。
0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
③倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
0没有倒数。
④数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算3.平方根、算数平方根和立方根①算术平方根一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a 的算术平方根。
北师大版八年级数学上册知识点梳理

第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。
命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。
正确的命题叫真命题,不正确的命题叫假命题。
基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。
定理:用逻辑的方法判断为正确并作为推理的根据的真命题。
注意:基本事实和定理一定是真命题。
[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。
[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形三内角和等于180°。
三角形的一个外角等于与它不相邻的的两个内角之和。
[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。
思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。
还有其它推出来的性质:全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。
八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
北师大版八年级数学知识点

北师大版八年级数学知识点一、勾股定理。
1. 勾股定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。
2. 勾股定理的证明。
- 常见的证明方法有赵爽弦图证法等。
通过图形的拼接、面积的计算来证明等式成立。
3. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
4. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数,如3、4、5;5、12、13等。
二、实数。
1. 无理数的概念。
- 无限不循环小数叫做无理数。
例如√(2)、π等。
2. 实数的分类。
- 实数包括有理数和无理数。
有理数包括整数(正整数、0、负整数)和分数(有限小数和无限循环小数);无理数是无限不循环小数。
3. 实数的运算。
- 实数的运算顺序与有理数运算顺序相同,先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
- 在进行实数运算时,有理数的运算法则和运算律同样适用。
例如加法交换律a + b=b + a,乘法分配律a(b + c)=ab+ac等。
4. 平方根与立方根。
- 平方根:如果x^2=a(a≥slant0),那么x叫做a的平方根,记作x=±√(a),其中√(a)是a的算术平方根。
- 立方根:如果x^3=a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
三、位置与坐标。
1. 确定位置的方法。
- 在平面内确定一个物体的位置需要两个数据。
例如用有序数对(x,y)来表示平面内点的位置。
2. 平面直角坐标系。
- 由两条互相垂直、原点重合的数轴组成。
水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,两轴交点O称为原点。
- 坐标平面被坐标轴分成四个象限,右上部分为第一象限(x>0,y>0),左上部分为第二象限(x<0,y>0),左下部分为第三象限(x<0,y<0),右下部分为第四象限(x>0,y<0)。
北师大版八年级上册数学课本知识点

北师大版八年级上册数学课本知识点第一章 勾股定理1、(4页)勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ;b 和c 分别表示直角三角形的两直角边和斜边;那么222a b c +=.2、(18页)如果三角形的三边长a ;b ;c 满足222a b c +=;那么这个三角形是直角三角形.3、(18页)满足222a b c +=的三个正整数;称为勾股数.第二章 实数4、(35页)无限不循环小数叫做无理数.5、(38页)一般地;如果一个正数x 的平方等于a ;即2x a =;那么这个正数x 就叫做a 的;读作“根号a ”.6、(40页)一般地;如果一个数x 的的平方等于a ;即2x a =;那么这个数x 就叫做a 的平方根(也叫做二次方根).7、(41页)一个正数有两个平方根;0只有一个平方根;它是0本身;负数没有平方根.8、(41页)求一个数a 的平方根的运算;叫做开平方;其中a 叫做被开方数.9、(44页)一般地;如果一个数x 的立方等于a ;即3x a =;那么这书数x 就叫做a 的立方根(也叫做三次方根).记为;读作“三次根号a ”.如2是8的立方根;23-是827-的立方根;0是0的立方根.10、(45页)正数的立方根是正数;0的立方根是0;负数的立方根是负数.11、(45页)求一个数a 的立方根的运算;叫做开立方;其中a 叫做被开方数.12、(54页)有理数和无理数统称为实数;即实数可以分为有理数和无理数.实数也可以分为正实数、0、负实数;13、(55页)a 是一个实数;它的相反数为a -;绝对值为a ;如果0a ≠;那么它的倒数为1a. 14、(55页)每一个实数都可以用数轴上的一个点来表示;反过来;数轴上的每一个点都表示一个实数.即实数和数轴上的电视一一对应的.在数轴上;右边的点表示的数比左边的点表示的数大.第二章 图形的平移与旋转15、(69页)在平面内;将一个图形沿某个方向移动一定的距离;这样的图形运动称为平移.平移不改变图形的形状和大小.16、(69页)经过平移;对应点所连的线段平行且相等;对应线段平行且相等;对应角相等.17、(78页)在平面内;将一个图形绕一个定点沿某个方向转动一个角度;这样的图形运动称为旋转;这个定点称为旋转中心;转动的角称为旋转角.旋转不改变图形的大小和形状.18、(79页)经过旋转;图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角;对应角到旋转中心的距离相等.第四章四边形性质探索19、(98页)两组对边分别平行的四边形叫做平行四边形.平行四边形不相邻的两个顶点连成的线段叫做它的对角线.如右图平行四边形ABCD是平行四边形;记作“ABCD”;读作“平行四边形ABCD”;线段BD就是该平行四边形的一条对角线.20、(99、100页)平行四边形的性质:平行四边形的对边平行且相等.平行四边形的对角相等.平行四边形的对角线互相平分.(红色字为自己补充的)21、(101页)若两条直线互相平行;则其中一条直线上任意两点到另一条直线的距离相等;这个距离成为平行线之间的距离.22、(106页)平行四边形的判别方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.‘一组对边平行且相等的四边形是平行四边形.两条对角线互相平分的四边形是平行四边形.23、(108页)一组邻边相等的平行四边形叫做菱形.24、(108页)菱形的性质:菱形的四条边都相等;对边平行;对角相等;两条对角线互相垂直平分;每一条对角线平分一组对角.25、(109页)菱形的判别方法:一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.26、(112页)有一个内角是直角的平行四边形叫做矩形.27、(112页)矩形的性质:矩形的对边平行且相等;对角线相等且互相平分;四个角都是直角.28、(113页)矩形的判定:有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.29、(114页)一组邻边相等的矩形叫做正方形.30、(114页)正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.正方形的四条边都相等;四个角都是直角;对角线相等且互相垂直平分;且每一条对角线平分一组对角.31、(115页)正方形、矩形、菱形以及平行四边形之间有什么关系?32、(119页)一组对边平行而另一组对边不平行的四边形叫做梯形.如右图所示;平行的两边叫做梯形的底;不平行的两边叫做梯形的腰.夹在两底之间的垂线段叫做梯形的高.如下图;两条腰相等的梯形叫做等腰梯形.一条腰和底垂直的梯形叫做直角梯形.33、(120页)等腰梯形同一底上的两个内角相等;对角线相等.34、(123页)同一底上的两个内角相等的梯形是等腰梯形.35、(125页)在平面内;由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形.在多边形中;连接不相邻两个顶点的线段叫做多边形的对角线.多边形的边、顶点、内角、内角和的含义与三角形相同.n-⋅o.36、(126页)n边形的内角和等于()218037、(126页)在平面内;内角都相等、边也都相等的多边形叫做正多边形.38、(129页)多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.在每个顶点处取这个多边形的一个外角;它们的和叫做这个多变性的外交和.多边形的外交和都等于360o.第五章位置的确定39、(152页)在平面内;两条互相垂直且有公共原点的数轴组成平面直角坐标系.40、(153页)对于平面内任意一点P;过点P分别向x轴、y轴作垂线;垂足在x轴、y轴上对应的数a;b分别叫做点P的横坐标、纵坐标;有序数(),a b叫做点P的坐标.41、平移:(1)纵坐标不变;横坐标分别增加(减少)a个单位时;图形向右或向左平移a个单(2)横坐标不变;纵坐标分别增加(减少)a个单位时;图形向上或向下平移a个单位.伸缩:(1)纵坐标不变;横坐标分别变为原来的a(a>0)倍;图形被横向拉长(a>1)或横向压缩(a<1)为原来的a倍.(2)横坐标不变;纵坐标分别变为原来的a(a>0)倍;图形被纵向拉长(a>1)或纵向压缩(a<1)为原来的a倍.对称:(1)纵坐标不变;横坐标分别乘-1;所得图形与原图形关于Y轴对称.(2)横坐标不变;纵坐标分别乘-1;所得图形与原图形关于X轴对称.(3)横坐标与纵坐标都乘-1;所得图形与原图形关于坐标原点中心对称.第六章一次函数42、(179页)一般地;在某个变化过程中;有两个变量x 和y ;如果给定一个x 值;相应地就确定了一个y 值;那么我们称y 是x 的函数;其中x 是自变量;y 是因变量.43、(182页)若两个变量x ;y 间的关系式可以表示成(,0)y kx b k b k =+≠为常数,的形式;则称y 是x 的一次函数(x 为自变量;y 为因变量).特别地;当0b =时;称y 是x 的正比例函数.44、(190页)正比例函数y kx =的图像是经过原点()0,0的一条直线.45、(190页)在一次函数y kx b =+中;当0k >时;y 的值随x 值的增大而增大.当0k <时;y 的值随x 值的增大而减小.第七章 二元一次方程组46、(216页)含有两个未知数;并且所含未知数的项的次数都是1的方程叫做二元一次方程.47、(217页)含有两个未知数的两个一次方程所组成的一组方程;叫做二元一次方程组.适合一个二元一次方程的一组未知数的值;叫做这个二元一次方程的一个解.48、(218页)二元一次方程组中各个方程的公共解;叫做这个二元一次方程组的解.49、(223页)解二元一次方程组的基本思路是“消元”—把“二元”变为“一元”.主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来;并代入另一个方程中;从而消去一个未知数;化二元一次方程组为一元一次方程.这种解方程组的方法称为代入消元法;简称代入法.50、(226页)通过两式相加(减)消去其中一个未知数;这种解二元一次方程组的方法叫做加减消元法;简称加减法.第八章 数据的代表51、(251页)一般地;对于n 个数1x ;2x ;…;n x ;我们把()n x x x n +++Λ211叫做这n 个数的算术平均数;简称平均数;记为x .52、(253页)实际问题中;一组数据里的各个数据的“重要程度”未必相同.因而;在计算这组数据的平均数时;往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权;而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的加权平均数. 53、(259页)一般地;n 个数据按大小顺序排列;处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.。
北师大版数学八年级上册知识点总结

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册知识大纲(北师版)第一章 勾股定理1 探索勾股定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果用a,b 和c 分别表示直角三角形的两直角边和斜边,那么222c b a =+。
(2)割补法证明勾股定理2 能得到直角三角形吗(1)勾股定理逆定理:如果三角形的三边长a,b,c 满足222c b a =+,那么这个三角形是直角三角形。
(2)勾股数:3,4,5;6,8,10;5,12,13;8,15,17;7,24,25… 3 蚂蚁怎样走最近——最短路径问题(长方体、正方体、圆柱体、圆锥体等)第二章 实数1 数不够用了(1)无理数:无限不循环小数叫做无理数。
(2)有理数总可以用有限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数。
2 平方根(1)算术平方根:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为a 。
特别地,我们规定0的算术平方根是0,即00=。
(2)平方根:一般地,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根(也叫二次方根),记为a ±。
求一个数a 的平方根的运算,叫做开平方,其中a 叫做被开方数。
(3)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
3 立方根(1)立方根:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫三次方根)。
求一个数a 的立方根的运算,叫做开立方。
(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数。
4 公园有多宽5 用计算器开方6 实数(1)有理数和无理数统称为实数,即实数可分为有理数和无理数。
(2)实数也可以分为正实数、0、负实数。
(3)实数与数轴上的点一一对应。
7 二次根式(1)二次根式:一般地,式子)0(≥a a 叫做二次根式。
(2)二次根式乘除运算法则:)0,0();0,0(>≥=≥≥⋅=⋅b a b a ba b a b a b a (3)最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
第三章 位置与坐标1 确定位置在平面内,确定一个物体的位置一般需要两个数据。
2 平面直角坐标系(1)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
通常两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条坐标轴的正方向。
水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴,x 轴和y 轴统称为坐标轴,它们的公共原点O 称为直角坐标系的坐标原点。
(2)有序数对与坐标(3)各象限与坐标轴上点的特点(4)在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应。
3 坐标与对称轴关于x 轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y 轴对称的两个点的坐标,纵坐标形同,横坐标互为相反数。
第四章 一次函数1 函数(1)函数:一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,则称y 是x 的函数,其中x 是自变量,y 是因变量。
(2)表示函数的方法一般有:列表法、关系式法和图象法。
2 一次函数一次函数:若两个变量x 和y 之间的关系式可以表示为b kx y +=(k ,b 为常数,0≠k )的形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b=0时,称y 是x 的正比例函数。
3 一次函数的图像(1)把一函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。
(2)作函数图像的一般步骤:列表、描点、连线。
(3)一次函数图象性质在一次函数b kx y +=(0≠k )的图象是一条直线,它与x 轴的交点坐标为(k b -,0),与y 轴的交点坐标为(0,b),函数图像与k ,b 的关系如下表(b=0时为正比例函数):注:由上表可知,正比例函数图象是一条过原点的直线。
4 确定一次函数表达式(1)方法:待定系数法(2)步骤:①设:设一次函数表达式b kx y +=;②代:将已知两点代入b kx y +=中,列出关于k ,b 的方程;③求:解方程,求出k ,b 的值;④写:把求出的k ,b 值代入到表达式中。
5 一次函数的应用第五章 二元一次方程组1 谁的包裹多(1)二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
(2)二元一次方程组:共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
(3)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解;二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
2 解二元一次方程组(1)基本思想:消元(2)代入法:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
(3)加减法:当两个方程中未知数x(或y)的系数相等(或相反)时,通过两式相减(或相加)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
3 鸡兔同笼4 增收节支5 里程碑上的数6 二元一次方程与一次函数(1)一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数图象相同,是一条直线。
(2)一般地,从图形的角度看,解一个二元一次方程组相当于确定相应两条直线交点坐标。
7 三元一次方程组(1)三元一次方程:含有三个未知数,并且所含未知数的项的次数都是1的方程叫做三元一次方程。
(2)三元一次方程组:共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组。
(3)三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。
(4)解三元一次方程组第六章 数据的分析1 平均数(1)算术平均数:一般地,对于n 个数n x x x ,,,21 ,我们把()n x x x n+++ 211叫做这n 个数的算术平均数,简称平均数,记为x 。
(2)加权平均数:一组数据里各个数据的重要程度不同,在计算平均数时,往往给每个数据一个权。
2 中位数与众数(1)中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
(2)众数:一组数据中出现次数最多的那个数据叫做这组数据的众数。
(3)平均数、中位数和众数的特征3 从统计图估计数据的代表4 数据的波动(1)极差:一组数据中最大数据与最小数据的差叫做这组数据的极差。
(2)方差:各个数据与与平均数差的平方的平均数叫做方差,即()()()[]2222121x x x x x x n s n -++-+-= 其中,x 是n x x x ,,,21 的平均数,s 2是方差。
(3)标准差:方差s 2的算术平方根叫做标准差。
(4)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
第七章 证明(一)1 你能肯定吗2 定义与命题(1)定义:对名称或术语的含义加以描述,做出明确的规定,也就是给它们的定义。
(2)命题:判断一件事情的句子,叫做命题。
如果一个句子没有对某一件事情做出任何判断,那么它就不是命题。
(3)每个命题都是由条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出的事项。
一般地,命题可以写成“如果…,那么…”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论。
(4)正确的命题称为真命题;不正确的命题称为假命题。
要说明一个命题是假命题,通常需要举出一个例子,使之具备命题的条件,而不具备命题的结论,这种例子称为反例。
(5)公认的真命题称为公理;推理的过程称为证明;经过证明的真命题称为定理。
(6)定理:对顶角相等;同角(等角)的补角相等;同角(等角)的余角相等。
3 直线平行的判定定理1:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说:内错角相等,两直线平行。
定理2:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说:同旁内角互补,两直线平行。
定理3:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说:同位角相等,两直线平行。
4 平行线的性质定理1:两条平行直线被第三条直线所截,同位角相等。
简单说:两直线平行,同位角相等。
定理2:两条平行直线被第三条直线所截,内错角相等。
简单说:两直线平行,内错角相等。
定理3:两条平行直线被第三条直线所截,同旁内角互补。
简单说:两直线平行,同旁内角互补。
5 三角形内角和定理(1)三角形内角和定理:三角形内角和等于180o。
(2)推论1:三角形的一个外角等于和它不相邻的两个内角的和。
(3)推论2:三角形的一个外角大于任何一个和它不相邻的内角。
八年级数学下册知识大纲(北师版)第一章三角形的证明1 等腰三角形(1)全等三角形判定定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)(2)全等三角形性质:全等三角形的对应边相等、对应角相等。
(3)等腰三角形性质定理:等腰三角形的两底角相等。
简述为:等边对等角。
(4)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
简述为:等腰三角形三线合一。
(5)等边三角形性质定理:等边三角形的三个内角都相等,并且每个角都等于60o。
(6)等腰三角形判定定理:有两个角相等的三角形是等腰三角形。
简述为:等角对等边。
(7)反证法:在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾得结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
(8)等边三角形判定定理:三个角都相等的三角形是等边三角形;有一个角等于60o的等腰三角形是等边三角形。
(9)定理:在直角三角形中,如果一个锐角等于30o,那么它所对的直角边等于斜边的一半。
2 直角三角形(1)直角三角形性质定理:直角三角形的两个锐角互余;直角三角形两条直角边的平方和等于斜边的平方(勾股定理)。
(2)直角三角形判定定理:有两个角互余的三角形是直角三角形;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形(勾股定理)。
(3)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
(4)直角三角形全等判定定理:斜边和一条直角边分别相等的两个直角三角形全等(HL)。