交通灯控制器___EDA课程设计实验报告

合集下载

EDA课程设计报告交通灯控制系统

EDA课程设计报告交通灯控制系统

一、课程设计目的和要求目的:掌握基于FPGA 的复杂数字系统的设计和验证方法。

提高学生复杂数字系统的设计能力。

要求:使用实验箱为W48-PK2SOPC 试验开发系统,核心器件为Alatera 公司的EP1C6Q240C8芯片,开发软件为Quartus4.0.本实验环节要求学生以FPGA 器件为目标器件,设计典型的数字系统,如:A/D 、D/A 接口;电子密码锁,交通灯控制系统,数字表等复杂硬件电路,完成设计综合、仿真和硬件测试,并写实验报告。

二、设计方案工作原理:本次设计是针对十字路口,进行南北和东西直行情况下交通灯控制。

设定东西方向为主干道方向,根据交通灯的亮的规则,在初始状态下四个方向的都为红灯亮启,进入正常工作状态后,当主干道上绿灯亮时,支干道上红灯亮,持续40S 后,主干道和支干道上的黄灯都亮启,持续5S 后,主干道上红灯亮启,支干道上绿灯亮启持续40S ,之后主干道和支干道上的黄灯都亮启5s ,一个循环完成。

用LED 灯显示倒计时,并且能实现总体清零功能,计数器由初始状态开始计数,对应状态的显示灯亮。

实现方法:本次采用文本编辑法,即利用Verilog HDL 语言描述交通控制器,通过状态机计数法,实现设计所要求的交通灯控制及时间显示。

设计中用两组红黄绿LED 模拟两个方向上的交通灯,用4个7段数码管分别显示两个方向上的交通灯剩余时间,控制时钟由试验箱上频率信号提供。

状状状状状状状状状状状状00状状10状状11状状01状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状001100010010001010100010图2.交通灯控制状态转化说明:该状态图为交通灯在正常情况下的状态转化图,进入控制后,状态00时主干道绿灯及支干道红灯亮起,进入状态01后两路黄灯亮起,状态11时主干道红灯及支干道绿灯亮起。

进入10状态两路黄灯亮起。

结束一个循环,从00状态重新开始循环。

EDA课程设计报告 交通灯控制器

EDA课程设计报告 交通灯控制器

---------------------考试---------------------------学资学习网---------------------押题------------------------------.EDA课程设计报告交通灯控制器.一、设计任务要求1、控制器按东西、南北两个方向控制两组交通灯(红、绿、黄)2、两组灯亮的顺序满足交通安全的规则要求.3、东西向绿灯每次亮30S,接着黄灯亮2S,红灯亮20S;南北向绿灯每次亮28S,接着黄灯亮2S,红灯亮30S.4、有两组数码管给出灯亮的时间倒计时显示。

二、设计思路及总体结构框图设计思路:1.硬件:由设计任务要求可知,总体输入电路有:(1)在开始计时之前的等待状态,复位键reset接低电位,接通电源后,首先要将它接高电位,表示计时开始。

(2)当按一下(on_off)键,表示紧急情况发生,两个方向均为红灯亮,计时停止,当再次按下(on_off)键时,控制器恢复原来状态,正常工作。

输出电路:(1)由于东西和南北方向都要显示时间,因此需要4个数码管,这样在设计中就需要四条输出线choose4,用来选通指定一个LED七段显示数码管。

(2)显示器的每一位都采用LED七段显示数码管进行显示,每一个LED七段显示数码管都要有七条输出线控制,一共使用4个七段数码管,故输出电路使用四个七位输出信号:showtime1,showtime2,showtime3,showtime4。

(3)东西和南北方向都有交通灯亮的情况,故输出电路中要有两个状态控制信号state1,state2分别控制东西和南北的灯,每个方向上有4个灯(增加了左、右转弯显示控制功能),所以state1,state2的类型应该是4位数组型的。

外部电路图如下:东西方向 clk 4/ State1交通灯 stasreset State2南北方向 on_off 4/ 交通灯7/ Showtime17/ Showtime27/ Showtime37/ Showtime4Choose44/- 2 -2.软件:(1)在VHDL设计描述中,采用自顶向下的设计思路,该思路,首先要描述顶层的接口,上面的描述已经规定了交通灯控制的输入输出信号:输入信号:复位开关信号reset;紧急情况控制信号on_off;外部时钟信号clk。

EDA实验课程大作业报告:设计制作一个用于十字路口的交通灯控制器

EDA实验课程大作业报告:设计制作一个用于十字路口的交通灯控制器

交通灯控制器设计一.系统功能设计要求设计制作一个用于十字路口的交通灯控制器,要求如下:(1)南北和东西方向各有一组红、绿、黄灯来指挥交通,持续时间分别为25S,20S,和5S。

(2)当有特殊情况(如消防车、救护车等)时,两个方向均为红灯亮,计时停止。

(3)当特殊情况结束后,控制器恢复原来状态,继续正常运行。

(4)用两组数码管,以倒计时方式显示两个方向允许通行或禁止通行的时间。

二.设计原理1.交通灯控制器的状态转换根据题目要求将将红绿灯的状态转换列成如下表:2.设计方案1)由于交通灯需要使用2位7段LED数码管指示通行剩余时间,故采用LED动态扫描方式显示当前时间。

频率设定CLK1k对应的频率为50MHZ。

2)控制模块是交通灯的核心,主要控制交通灯按工作顺序自动变换,同时控制倒计时模块工作,每当倒计时回零时,控制模块接收到一个计时信号,从而控制交通灯进入下一个工作状态。

3)每个方向有一组2位倒计时器模块,用以显示该方向交通灯剩余的点亮时间。

4)显示模块由两部分组成,一是由七段数码管组成的倒计时显示器,每个方向两个七段数码管;二是由发光二极管代替的交通灯,每个方向3个发光二极管。

三.变量符号说明其中,CLK1K为系统时钟信号输入端,SN为禁止通行信号输入通行信号输入端,light0为东西红灯信号输出端,light1为东西黄灯信号输出端,light2为东西绿灯信号输出端,light3为南北红灯信号输出端,light4为南北黄灯信号输出端,light5为南北绿灯信号输出端,led1、led2、led3、led4为数码管地址选择信号输出端。

四.代码说明library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity Hongld ISport (clk1k,SN:in std_logic; --SN紧急情况led1, led2, led3, led4 :out std_logic_vector (6 downto 0);--显示管显示时间用light:out std_logic_vector (5 downto 0)); --红绿黄灯end Hongld;architecture traffic1 of Hongld ISsignal S:std_logic_vector (1 downto 0); --状态signal DXT:std_logic_vector(7 downto 0):=X"01"; --东西方向时间signal NBX:std_logic_vector(7 downto 0):=X"01"; --南北方向时间signal ART,AGT,AYT,BRT,BGT,BYT: std_logic_vector(7 downto 0); --红绿黄灯信号signal temp: integer range 0 to 49999999; --产生1s计数器时计数signal clk: std_logic;beginART<="00100101";AGT<="00100000";AYT<="00000100";BRT<="00100101";BGT<="00100000";BYT<="00000100";process(clk1k) -- 选频率为50MHZ beginif (clk1k'event and clk1k='1') thenif temp=49999999 thentemp<=0;clk<='1';elsetemp<=temp+1;clk<='0';end if;end if;end process;process(clk,DXT,NBX) --状态转换进程beginif clk'event and clk ='1' thenif(DXT ="00000001")OR (NBX = "00000001") then S<=S+1;else S<=S;end if; --状态转换结束end if;end process;process (clk,SN,S) --倒计时模块beginif SN = '1' then DXT<=DXT; NBX<=NBX;elseif clk'event and clk='1' thenif (DXT="0000000") OR (NBX="00000000") thencase S ISwhen "00"=>DXT<=ART; NBX<=BGT; --南北红灯、东西绿灯when "01"=>NBX<=BYT; --南北红灯、东西黄灯when "10"=>DXT<=AGT; NBX<=BRT; --南北绿灯、东西红灯when "11"=>DXT<=AYT; --南北黄灯、东西红灯when others=>NULL;end case;end if;if DXT/="00000000" thenif DXT(3 downto 0)= "0000" thenDXT(3 downto 0)<="1001";DXT(7 downto 4)<=DXT(7 downto 4)-1;else DXT(3 downto 0)<=DXT(3 downto 0)-1;DXT(7 downto 4)<=DXT(7 downto 4);end if;end if;if NBX/="00000000" thenif NBX(3 downto 0)="0000" thenNBX(3 downto 0)<="1001";NBX(7 downto 4)<=NBX(7 downto 4)-1;else NBX(3 downto 0)<=NBX(3 downto 0)-1;NBX(7 downto 4)<=NBX(7 downto 4);end if;end if;end if;end if;end process; --倒计时模块结束process(DXT,NBX,S,SN) --显示模块begincase NBX(3 downto 0) iswhen "0000"=>led1<="1000000";when "0010"=>led1<="0100100"; when "0011"=>led1<="0110000"; when "0100"=>led1<="0011001"; when "0101"=>led1<="0010010"; when "0110"=>led1<="0000010"; when "0111"=>led1<="1111000"; when "1000"=>led1<="0000000"; when "1001"=>led1<="0010000"; when others=>led1<="1111111"; end case;case NBX(7 downto 4) iswhen "0000"=>led2<="1000000"; when "0001"=>led2<="1111001"; when "0010"=>led2<="0100100"; when "0011"=>led2<="0110000"; when "0100"=>led2<="0011001"; when "0101"=>led2<="0010010"; when "0110"=>led2<="0000010"; when "0111"=>led2<="1111000"; when "1000"=>led2<="0000000"; when "1001"=>led2<="0010000"; when others=>led2<="1111111"; end case;case DXT(3 downto 0) iswhen "0000"=>led3<="1000000"; when "0001"=>led3<="1111001"; when "0010"=>led3<="0100100"; when "0011"=>led3<="0110000"; when "0100"=>led3<="0011001"; when "0101"=>led3<="0010010"; when "0110"=>led3<="0000010"; when "0111"=>led3<="1111000"; when "1000"=>led3<="0000000"; when "1001"=>led3<="0010000"; when others=>led3<="1111111"; end case;case DXT(7 downto 4) iswhen "0000"=>led4<="1000000"; when "0001"=>led4<="1111001"; when "0010"=>led4<="0100100";when "0100"=>led4<="0011001";when "0101"=>led4<="0010010";when "0110"=>led4<="0000010";when "0111"=>led4<="1111000";when "1000"=>led4<="0000000";when "1001"=>led4<="0010000";when others=>led4<="1111111";end case;if SN ='1' then light<="001001";elsecase S ISwhen "00"=>light<="010001";when "01"=> light <="100001";when "10"=> light <="001010";when "11"=> light <="001100";when others=>NULL;end case;end if;end process;end traffic1;五.仿真波形图仿真时序波形图。

EDA交通灯课程设计报告(EDA)

EDA交通灯课程设计报告(EDA)

数字电路课程设计报告交通灯设计目录序言 (3)第一章设计任务和要求 (4)设计任务 (4)1. 2 设计要求 (4)第二章电路工作原理及方案设计 (4)第三章单元电路设计与仿真 (6)3.1 软件原理图 (6)3.2 各模块的原理及其程序 (6)分频模块的设计及仿真图 (6)计数模块的设计及仿真图 (7)控制模块的设计及仿真图 (9)分位模块的设计及仿真图 (10)译码模块的设计及仿真图 (11)第四章系统设计 (12)4.1 顶层电路设计 (12) (13)第五章总结 (13)参考文献 (14)附录 (14)序言CPLD(Complex Programmable Logic Device)是Complex PLD的简称,一种较PLD 为复杂的逻辑元件。

CPLD是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。

其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。

20世纪70年代,最早的可编程逻辑器件--PLD诞生了。

其输出结构是可编程的逻辑宏单元,因为它的硬件结构设计可由软件完成,因而它的设计比纯硬件的数字电路具有很强的灵活性,但其过于简单的结构也使它们只能实现规模较小的电路。

为弥补PLD只能设计小规模电路这一缺陷,20世纪80年代中期,推出了复杂可编程逻辑器件--CPLD。

目前应用已深入网络、仪器仪表、汽车电子、数控机床、航天测控设备等方面。

它具有编程灵活、集成度高、设计开发周期短、适用范围宽、开发工具先进、设计制造成本低、对设计者的硬件经验要求低、标准产品无需测试、保密性强、价格大众化等特点,可实现较大规模的电路设计,因此被广泛应用于产品的原型设计和产品生产(一般在10,000件以下)之中。

几乎所有应用中小规模通用数字集成电路的场合均可应用CPLD器件。

CPLD 器件已成为电子产品不可缺少的组成部分,它的设计和应用成为电子工程师必备的一种技能。

交通灯控制器 EDA课程设计实验报告

交通灯控制器   EDA课程设计实验报告

目录1课程设计要求 (3)2 电路功能描述 (3)3 设计方案 (3)4设计原理图 (4)5 VHDL语言 (4)6仿真截图 (6)7心得体会 (11)8参考文献 (11)1. 课程设计要求1.1.红、黄、绿灯分别控制显示;1.2.每一个状态分别分配一个时间显示(两位十进制,倒计时);1.3.符合实际交通规律。

2.电路功能描述本设计是实现交通灯的控制,模拟实现了红、绿、黄灯指挥交通的功能。

本设计适用东西和南北方向的车流量大致相同的路口,红灯显示时间30S,绿灯显示时间25S,黄灯显示时间5S,同时用数码管指示当前的状态(红、绿、黄灯)的剩余时间。

当有紧急状况发生时,两个方向都禁止通行,并且显示红灯,当紧急状况解除后,重新计时并且指示时间。

3.设计方案根据设计要求,需要控制显示红、黄、绿三个灯的亮灭状态及显示的时间。

这个设计主要由两部分组成,红黄绿灯的显示模块,显示时间模块。

由实际的交通情况可知,东西方向的显示情况是一致的,南北方向的显示情况也是一致,故在设计的时候就只考虑两种状态,将东西方向合成一种,南北方向合成一种。

红黄绿灯的显示模块用两组共6个灯显示,时间显示模块用LED数码管显示。

此外,本交通灯控制器设置的红黄绿显示方式是参照一些城市的显示规律,红灯30S,绿灯25S,黄灯5S,同时用数码管指示当前状(红、绿、黄灯)的剩余时间。

另外还设有一个紧急状态,当特殊情况发生时,两个方向都禁止通行,指示红灯,紧急状态解除后,重新计时并指示时间。

时间采用倒计时的方式显示。

本设计采用VHDL语言编程,描述各个硬件模块实现的功能,使红、黄、绿灯的转换有一个准确的转换顺序和时间间隔,并进行仿真,通过仿真的结果,得出实验的结果。

在正常情况下的一个完整周期内,交通灯控制器系统一共有四种状态,分别是东西红、南北绿,东西红、南北黄,东西绿、南北红,东西黄、南北红。

其运行方式为东西红、南北绿→东西红、南北黄→东西绿、南北红→东西黄、南北绿,东西黄、南北绿结束后再回到东西红、南北绿的状态,整个周期持续60s。

EDA交通灯控制器课程设计报告书

EDA交通灯控制器课程设计报告书

交通灯控制器课程设计该交通信号控制器控制十字路甲、乙两条道路的红、黄和绿三色灯,指挥车辆和行人安全通行。

功能要求如下:1.只有在小路上发现汽车时,高速公路上的交通灯才可能变成红灯。

2.当汽车行驶在小路上时,小路的交通灯保持为绿灯,但不能超过给定的时间。

(20s)3.高速公路灯转为绿色后,即使小路上有汽车出现,而高速公路上并无汽车,也将在给定的时间内保持绿灯。

(60s)。

设计如下:——1hz分频器library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity fen_pin1 isport(clk100hz:in std_logic;clk1hz:out std_logic);end fen_pin1;architecture bhv of fen_pin1 issignal qan:std_logic_vector(3 downto 0);signal qbn:std_logic_vector(3 downto 0);signal cin:std_logic;beginprocess(clk100hz)beginif(clk100hz'event and clk100hz='1')thenif qan="1001"then qan<="0000";cin<='1';else qan<=qan+1;cin<='0';end if;end if;end process;process(clk100hz,cin)beginif(clk100hz'event and clk100hz='1')thenif cin='1' thenif qbn="1001" then qbn<="0000";else qbn<=qbn+1;end if ;end if ;end if ;end process;process(qan,qbn)beginif (qan="1001"and qbn="1001")then clk1hz<='1'; else clk1hz<='0';end if;end process;end bhv;——2hz分频器library ieee;use ieee.std_logic_1164.all;entity fen_pin2 isport (clk100hz:in std_logic;clk2hz:out std_logic);end fen_pin2;architecture bhv of fen_pin2 isbeginprocess(clk100hz)variable cnt:integer range 0 to 24;variable tmp:std_logic;beginif(clk100hz'event and clk100hz='1')thenif cnt=24 thencnt:=0;tmp:=not tmp;elsecnt:=cnt+1;end if;end if;clk2hz<=tmp;end process;end bhv;——主干道控制library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity contralz isport(clk:in std_logic;ra,ga,ya:out std_logic;timeah,timeal:out std_logic_vector(3 downto 0)); end contralz;architecture bhv of contralz istype rg is(green,red,yellow2);beginprocess(clk)variable a:std_logic;variable th,tl:std_logic_vector(3 downto 0);variable state:rg;beginif clk'event and clk='1'thencase state iswhen green=>if a='0'thenth:="0101";tl:="1001";a:='1';ga<='1';ra<='0';ya<='0';elseif not(th="0000"and tl="0001")thenif tl="0000"thentl:="1001";th:=th-1;elsetl:=tl-1;elseth:="0000";tl:="0000";a:='0';state:=red;end if;end if;when red=>if a='0'thenth:="0001";tl:="1001";a:='1';ra<='1';ya<='0';ga<='0';elseif not(th="0000"and tl="0001")then if tl="0000"thentl:="1001";th:=th-1;elsetl:=tl-1;end if;elseth:="0000";tl:="0000";a:='0';ra<='0';ga<='0';state:=yellow2;end if;end if;when yellow2=>if a='0'thenth:="0000";tl:="1001";a:='1';ya<='1';ga<='0';ra<='0';elseif not(th="0000"and tl="0001")then if tl="0000"thentl:="1001";th:=th-1;tl:=tl-1;end if;elseth:="0000";tl:="0000";ga<='0';ra<='0';ya<='0';a:='0';state:=green;end if;end if;end case;end if;timeah<=th;timeal<=tl;end process;end bhv;——支路控制library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity contralx isport(clk:in std_logic;rb,gb,yb,chu:out std_logic;timeah,timeal:out std_logic_vector(3 downto 0)); end contralx;architecture bhv of contralx istype rgy is(red,yellow1,green,yellow2);beginprocess(clk)variable a:std_logic;variable th,tl:std_logic_vector(3 downto 0);variable state:rgy;beginif clk'event and clk='1'thencase state iswhen yellow1=>if a='0'thenth:="0000";tl:="0100";a:='1';yb<='1';gb<='0';chu<='1';elseif not(th="0000"and tl="0001")then if tl="0000"thentl:="1001";th:=th-1;elsetl:=tl-1;end if;elseth:="0000";tl:="0000";a:='0';state:=green;end if;end if;when green=>if a='0'thenth:="0001";tl:="1001";a:='1';gb<='1';rb<='0';yb<='0';chu<='1';elseif not(th="0000"and tl="0001")then if tl="0000"thentl:="1001";th:=th-1;elsetl:=tl-1;end if;elseth:="0000";tl:="0000";a:='0';state:=yellow2;end if;end if;when red=>if a='0'thenth:="0101";tl:="0100";a:='1';yb<='0';chu<='1';elseif not(th="0000"and tl="0001")then if tl="0000"thentl:="1001";th:=th-1;elsetl:=tl-1;end if;elseth:="0000";tl:="0000";a:='0';state:=yellow1;end if;end if;when yellow2=>if a='0'thenth:="0000";tl:="0100";a:='1';yb<='1';gb<='0';rb<='0';chu<='1';elseif not(th="0000"and tl="0001")then if tl="0000"thentl:="1001";th:=th-1;elsetl:=tl-1;end if;elseth:="0000";tl:="0000";a:='0';chu<='0';state:=red;end if;end if;end case;end if;timeah<=th;timeal<=tl;end process;end bhv;——反馈器library ieee;use ieee.std_logic_1164.all;entity smen isport( sm ,re,gr,ye:in std_logic;jinji:out std_logic);end smen;architecture se of smen isbeginprocess isbeginif(sm='1' and re='0' and gr='0' and ye='0') then jinji<='1'; elsejinji<='0';end if;end process;end se;——消抖电路library ieee;use ieee.std_logic_1164.all;entity xiaodou isport(jinji,clk1hz:in std_logic;b:out std_logic);end xiaodou;architecture bhv of xiaodou issignal temp1:std_logic;beginprocess(clk1hz,jinji)variable temp2:std_logic;beginif(clk1hz'event and clk1hz='0')thentemp1<=jinji;temp2:=not temp1;end if;b<=temp1 and temp2 and clk1hz;end process;end bhv;——状态转换library ieee;use ieee.std_logic_1164.all;entity no isport(a:in std_logic;en:out std_logic);end no;architecture no_arc of no isbeginprocess(a)variable tmp:std_logic;beginif(a'event and a='1')thentmp:=not tmp;end if;en<=tmp;end process;end no_arc;——mux4llibrary ieee;use ieee.std_logic_1164.all;entity mux41 isport(sel:in std_logic_vector(2 downto 0);d0,d1,d2,d3:in std_logic_vector(3 downto 0); q:out std_logic_vector(3 downto 0);so:out std_logic_vector(1 downto 0));end mux41;architecture bhv of mux41 isbeginprocess(sel)begincase sel iswhen"100"=>q<=d2;so<="00"; when"101"=>q<=d3;so<="01"; when"000"=>q<=d0;so<="10";when others=>q<=d1;so<="11";end case;end process;end bhv;——译码器library ieee;use ieee.std_logic_1164.all;entity dec7s isport(d:in std_logic_vector(3 downto 0);q0,q1,q2,q3,q4,q5,q6:out std_logic);end dec7s;architecture bhv of dec7s isbeginprocess(d)variable q:std_logic_vector(6 downto 0); begincase d iswhen"0000"=>q:="0111111"; when"0001"=>q:="0000110"; when"0010"=>q:="1011011"; when"0011"=>q:="1001111"; when"0100"=>q:="1100110"; when"0101"=>q:="1101101"; when"0110"=>q:="1111101"; when"0111"=>q:="0100111"; when"1000"=>q:="1111111"; when"1001"=>q:="1101111";when others=>q:="1111001";end case;q0<=q(0);q1<=q(1);q2<=q(2);q3<=q(3);q4<=q(4);q5<=q(5);q6<=q(6);end process;end bhv;下载可编辑.专业.整理. 仿真图如下:Ya,ra,ga 表示主干道黄红绿灯;yb,rb,gb 表示乡村小路黄红绿灯。

基于VHDL的交通灯设计(EDA课程设计报告)!!

基于VHDL的交通灯设计(EDA课程设计报告)!!

EDA课程设计实验报告交通信号控制器的VHDL的设计一、设计任务及要求:设计任务:模拟十字路口交通信号灯的工作过程,利用实验板上的两组红、黄、绿LED作为交通信号灯,设计一个交通信号灯控制器。

要求:(1)交通灯从绿变红时,有4秒黄灯亮的间隔时间;(2)交通灯红变绿是直接进行的,没有间隔时间;(3)主干道上的绿灯时间为40秒,支干道的绿灯时间为20秒;(4)在任意时间,显示每个状态到该状态结束所需的时间。

支干道主干道图1 路口交通管理示意图表1 交通信号灯的4种状态设计要求:(1)采用VHDL语言编写程序,并在QUARTUSII工具平台中进行仿真,下载到EDA实验箱进行验证。

(2)编写设计报告,要求包括方案选择、程序清单、调试过程、测试结果及心得体会。

二设计原理1、设计目的:学习DEA开发软件和QuartusII的使用方法,熟悉可编程逻辑器件的使用。

通过制作来了解交通灯控制系统,交通灯控制系统主要是实现城市十字交叉路口红绿灯的控制2’设计说明(1)第一模块:clk时钟秒脉冲发生电路在红绿灯交通信号系统中,大多数情况是通过自动控制的方式指挥交通的。

因此为了避免意外事件的发生,电路必须给一个稳定的时钟(clock)才能让系统正常运作。

模块说明:系统输入信号:Clk: 由外接信号发生器提供256的时钟信号;系统输出信号:full:产生每秒一个脉冲的信号;(2)第二模块:计数秒数选择电路计数电路最主要的功能就是记数负责显示倒数的计数值,对下一个模块提供状态转换信号。

模块说明:系统输入:full: 接收由clk电路的提供的1hz的时钟脉冲信号;系统输出信号:tm:产生显示电路状态转换信号tl:倒计数值秒数个位变化控制信号th:倒计数值秒数十位变化控制信号(3)第三模块:红绿灯状态转换电路本电路负责红绿灯的转换。

模块说明:系统输入信号:full: 接收由clk电路的提供的1hz的时钟脉冲信号;tm: 接收计数秒数选择电路状态转换信号;系统输出信号:comb_out: 负责红绿灯的状态显示。

EDA交通灯控制系统的课程设计报告书

EDA交通灯控制系统的课程设计报告书

摘要 (1)一设计目的与要求 (2)二设计原理 (2)2.1交通灯控制的系统构成 (3)2.2交通灯控制器的电路控制原理框图 (3)2.3器件下载编程与硬件实现 (4)三设计内容 (4)3.1设计步骤 (5)3.2交通灯控制器各模块的程序 (6)3.3软件仿真结果 (9)3.4硬件实现及调试结果 (10)总结与致谢 (11)参考文献 (12)附录 (21)EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。

EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

随着社会经济的发展,城市交通问题越来越引起人们的关注。

人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。

交通控制系统的适用场合主要是用于交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代交通监控指挥系统中最重要的组成部分。

关键字:EDA 交通灯 Verilog HDL QuartusII一设计目的与要求(1) 主、支干道各设有一个绿、黄、红指示灯,两个显示数码管。

(2) 主、支道交替允许通行,主干道每次放行45 s,支干道每次放行25 s,在每次由亮绿灯变成亮红灯的转换过程中,要亮5 s的黄灯作为过渡,并进行减计时显示。

(3) 具有清零、可预置主、支干道通行时间功能。

二设计原理交通灯控制系统的作用主要是实现城市十字交叉路口红绿灯的控制。

在现代化的大城市中,十字交叉路口越来越多,在每个交叉路口都需要使用红绿灯进行交通指挥和管理,红、黄、绿灯的转换要有一个准确的时间间隔和转换顺序,这就需要有一个安全、自动的系统对红、黄、绿灯的转换进行管理,本系统就是基于此目的而开发的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
1课程设计要求 (3)
2 电路功能描述 (3)
3 设计方案 (3)
4设计原理图 (4)
5 VHDL语言 (4)
6仿真截图 (6)
7心得体会 (11)
8参考文献 (11)
1. 课程设计要求
1.1.红、黄、绿灯分别控制显示;
1.2.每一个状态分别分配一个时间显示(两位十进制,倒计时);
1.3.符合实际交通规律。

2.电路功能描述
本设计是实现交通灯的控制,模拟实现了红、绿、黄灯指挥交通的功能。

本设计适用东西和南北方向的车流量大致相同的路口,红灯显示时间30S,绿灯显示时间25S,黄灯显示时间5S,同时用数码管指示当前的状态(红、绿、黄灯)的剩余时间。

当有紧急状况发生时,两个方向都禁止通行,并且显示红灯,当紧急状况解除后,重新计时并且指示时间。

3.设计方案
根据设计要求,需要控制显示红、黄、绿三个灯的亮灭状态及显示的时间。

这个设计主要由两部分组成,红黄绿灯的显示模块,显示时间模块。

由实际的交通情况可知,东西方向的显示情况是一致的,南北方向的显示情况也是一致,故在设计的时候就只考虑两种状态,将东西方向合成一种,南北方向合成一种。

红黄绿灯的显示模块用两组共6个灯显示,时间显示模块用LED数码管显示。

此外,本交通灯控制器设置的红黄绿显示方式是参照一些城市的显示规律,红灯30S,绿灯25S,黄灯5S,同时用数码管指示当前状(红、绿、黄灯)的剩余时间。

另外还设有一个紧急状态,当特殊情况发生时,两个方向都禁止通行,指示红灯,紧急状态解除后,重新计时并指示时间。

时间采用倒计时的方式显示。

本设计采用VHDL语言编程,描述各个硬件模块实现的功能,使红、黄、绿灯的转换有一个准确的转换顺序和时间间隔,并进行仿真,通过仿真的结果,得出实验的结果。

在正常情况下的一个完整周期内,交通灯控制器系统一共有四种状态,分别是东西红、南北绿,东西红、南北黄,东西绿、南北红,东西黄、南北红。

其运行方式为东西红、南北绿→东西红、南北黄→东西绿、南北红→东西黄、南北绿,东西黄、南北绿结束后再回到东西红、南北绿的状态,整个周期持续60s。

urgency 为紧急控制信号,为高电平时系统转换为东西南北均是红灯亮的状态,状态结束后系统重新设置,转换为东西红,南北绿的状态。

4.设计的原理图
判断是否是紧急情况
东西红灯亮30S ,南北绿灯亮25S
东西南北均红灯
东西红灯亮5S ,南北黄灯亮5S
东西绿灯亮25S ,南北红灯亮25S
东西黄灯亮5S ,南北红灯亮5S
开 始
结 束

不是
循环
5.VHDL硬件描述语言
LIBRARY IEEE ;
USE IEEE.STD_LOGIC_1164.ALL ;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY traffic IS --定义实体
PORT( clk : IN STD_LOGIC; --CLK为时钟信号(1Hz)urgency : IN STD_LOGIC; --紧急状态控制端
led : BUFFER STD_LOGIC_VECTOR(5 DOWNTO 0); --红黄绿绿黄红
East_West,South_North : BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0));
END; --东西、南北倒计时数码管(高4位为十位,低4位为个位)
ARCHITECTURE rtl OF traffic IS --定义结构体
BEGIN
PROCESS(clk,urgency)
BEGIN
IF urgency = '1' THEN --出现紧急状态
led <= "100001"; --东西南北都亮红灯
East_West <= "00000000"; --设置重新计时的数据
South_North <= "00000000";
ELSIF (clk'EVENT AND clk = '1') THEN
IF (East_West > "00110000" or South_North > "00110000") THEN
East_West <= "00101001"; --计数错误时纠正到初始转态
South_North <= "00100100";
led <= "100100"; --东西红灯亮30秒,南北绿灯亮25秒
ELSIF (East_West = "00000101" AND South_North = "00000000") THEN
East_West <= "00000100"; --红、绿灯亮了25秒,绿灯将转变为黄灯South_North <= "00000100";
led <= "100010"; --东西红灯亮剩余5秒,南北黄灯亮5秒
ELSIF (East_West = "00000000" AND South_North = "00000000" AND led = "100010") THEN --东西红灯30秒时间结束,南北黄灯5秒结束East_West <= "00100100";
South_North <= "00101001";
led <= "001001"; --东西亮绿灯25秒,南北亮红灯30秒
ELSIF (East_West = "00000000" AND South_North = "00000101") THEN
East_West <= "00000100"; --东西红绿亮25秒结束,转为5秒黄灯
South_North <= "00000100";
led <= "010001"; --东西黄灯亮5秒,南北红灯亮剩余5秒
ELSIF (East_West = "00000000" AND South_North = "00000000" AND led = "010001") THEN --东西亮黄灯5秒结束,南北亮30秒红灯结束East_West <= "00101001";
South_North <= "00100100";
led <= "100100"; --东西红灯30秒,南北绿灯25秒,循环
ELSIF (East_West(3 DOWNTO 0) = 0 AND South_North (3 DOWNTO 0) = 0) THEN East_West <= East_West - 7; --BCD码减法转换
South_North <= South_North - 7;
ELSIF (East_West(3 DOWNTO 0) = 0 AND South_North (3 DOWNTO 0) = 0) THEN East_West <= East_West - 7; --BCD码减法转换
South_North <= South_North - 1;
ELSIF (South_North (3 DOWNTO 0) = 0 AND East_West(3 DOWNTO 0) = 0) THEN South_North <= South_North - 7; --BCD码减法转换
East_West <= East_West - 1;
ELSE East_West <= East_West - 1; --不满足上述特殊情况时减一
South_North <= South_North - 1;
END IF;
END IF;
END PROCESS;
END;
6.仿真截图
6.1VHDL源程序仿真
创建VHDL语言的编程窗口,并进行保存
程序截图:
对源程序进行编译,为出现错误。

6.1.2创建波形文件并进行仿真
导入,
将仿真的结束时间定为65s,进行仿真;(1)、东西红,南北绿:
(2)、东西红,南北黄
(3)东西绿,南北红
7.心得体会
通过这次的课程设计,加深了我对EDA技术这么课程的理解和认识,同时也让我对其有了更加熟练的运用。

之前对VHDL的了解仅局限于课本上的些许知识,而没有深入体会,缺乏实践经验。

这次的课程设计是很有意义的。

看到设计题目之后,我意识到自己对VHDL语言的掌握程度远远不够,开始查阅VHDL教程,寻找教程上的相似问题。

最先做的是对设计进行模块的划分。

在这个过程中,我也遇到了很多的问题,刚开始,没有找对方向,浪费了很多的时间。

慢慢的,在查阅了相关的书籍之后,我找到了设计思路,确定了其由两个模块构成的思路。

在对各个模块进行仿真的时候,遇到了不少困难,各个模块的
连接以及信号的定义老是出现错误,经过反复修改才成功。

8.参考文献
[1] 潘松黄继业•EDA技术实用教程——VHDL版(第4版)•科学出版社,2010。

相关文档
最新文档