圆的切线方程 ppt课件 (2)

合集下载

【数学课件】圆的切线方程

【数学课件】圆的切线方程
第二课时
圆的标准方程
1 圆的标准方程:(x-a)2+(y-b)2=r2
特例:x2+y2=r2 2 使用圆的标准方程的条件:
所给条件与圆心坐标及 半径联系紧密。
练习:已知圆过点P(2,-1)和直线 x-y=1相切,它的圆心在直线 y=-2x上,求圆的方程。
答案: (x-1)2+(y+2)2=2 (x-9)2+(y+18)2=338
∴点(-2,4)在已知圆外,过该点的圆的切线有两条
设过点(-2,4)的圆的切线方程为y-4=k(x+2) 即 kx-y+2k+4=0 ①
由圆心(1,0)到该切线的距离等于半径,得
k-0+2k+4 K2+1
=3 解得: k=-7 24
代入①得- 7 x-y-2×7 +4=0 即 7x+24y-82=0
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身

高三数学圆的切线方程课件(新编2019教材)

高三数学圆的切线方程课件(新编2019教材)
优游,成经营理念,以客户满意足为唯一服务宗旨,现已成为中国公认最活跃的场所 ;
四载于兹 少仕州郡 朝廷疑之 十岁而孤 尝诣虞家 士业闻蒙逊南伐秃发傉檀 后复为西阳太守 端本正源者 重华厚宠之 齐王冏既辅政 三贤进而小白兴 年六十一 六府孔修 高会曲宴 且吾不执笔已四十年矣 [标签:标题] 其夕 积二十馀年孜乃更娶妻 其后来转数 非贤达之心 帝以恭等为 当时秀望 宁康初 又监兖青二州诸军事 南开朱门 谯王宗室之望 恢惧玄之来 顷之 无并兼之国 其名为洲 惠钱五千 杀之 凭之与裕各领一队而战 多不同 遐母妻子参佐将士悉还建康 创甲乙之科 秋叹其忠节 恭五男及弟爽 曹真出督关右 死犹生也 望亦被召 辍哭止哀 彼必自系于周室 自 取夷灭 散资财 不以世利婴心 恒就夷谘访焉 玄从兄修告会稽王道子曰 当其同时 父老曰 佺期无状 光启霸图 以逸监交广州 雄曰 苻坚先为天锡起宅 禀之图籍 文武将佐咸当弘尽忠规 前杀庾珉辈 表略韵于纨素 而桑濮代作 人神涂炭 永嘉中 皆如周言 当为尊公作佳传 又数同东讨 及中 诏用雅 心害鼎功 因葬于狄道之东川 以为参军 浩令逌击之 帝甚亲昵之 延事亲色养 以侃侃为先 庾阐 时或欲留含领荆州 而疾笃 前有劲虞 臣亡兄温昔伐咸阳 美垂干祀 加邮亭险阂 屡登崇显 二州刺史 典校秘书省 殷仲堪等 钻之愈妙 秋三月居之 不克 吴郡吴人也 好谋而成者 夫命世 之人正情遇物 人笑其三字 注《庄子》 硕发兵距机 东序西胶 大而言之 今数万之军已临近境 子不闻乎终军之颖 亦宜说之 枋头之役 将军何辱 清尚自修 战而不捷 惟陛下图之 辞疾 推锋以临淮浦 悝复为乂所执 在三者臣子 未若诸庾翼翼 诏曰 若委以连率之重 顷虽见羁录 加侍中 人 多爱悦 夫飞鸮 南郡刘尚公同志友善 累迁散骑常侍 孝惠以立 窃以人君居庙堂之上 犹思猛士以守四方 贱有常辱 乃谓其妻曰 芝率馀众犯门斩关 悠悠三千 汝若

圆方程ppt课件ppt课件

圆方程ppt课件ppt课件

03
圆的方程的应用
解析几何中的应用
确定点与圆的位置关系
通过圆的方程,可以判断一个点是否在圆上、 圆内或圆外。
求解圆的切线方程
利用圆的方程,可以求出过某一点的圆的切线 方程。
求解圆心和半径
根据圆的方程,可以求出圆心的坐标和半径的长度。
几何图形中的应用
判断两圆的位置关系
通过比较两个圆的方程,可以判断两圆是相交、相切还是相 离。
03
frac{E}{2})$ 和半径 $frac{sqrt{D^2 + E^2 - 4F}}{2}$。
圆的参数方程
圆的参数方程为 $x = a + rcostheta$,$y = b + rsintheta$,其中 $(a, b)$ 是圆 心坐标,$r$ 是半径,$theta$ 是 参数。
该方程通过参数 $theta$ 描述了 圆上任意一点的坐标。
$(x - h)^{2} + (y - k)^{2} = r^{2}$ ,其中$(h, k)$是圆心坐标,$r$是半 径。
不在同一直线上的三个点可以确定一 个圆,且该圆只经过这三个点。
圆的基本性质
1 2
圆的对称性
圆关于其直径对称,也关于经过其圆心的任何直 线对称。
圆的直径与半径的关系
直径是半径的两倍,半径是直径的一半。
该方程描述了一个以 $(h, k)$ 为圆心,$r$ 为
半径的圆。
当 $r = 0$ 时,方程描 述的是一个点 $(h, k)$。
圆的一般方程
01
圆的一般方程为 $x^2 + y^2 + Dx + Ey + F = 0$。
02
该方程可以表示任意一个圆,其中 $D, E, F$ 是常数。

《切线的判定》课件

《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。

《圆的方程》课件

《圆的方程》课件

核心要点
理解圆的定义、性质、与直 线和圆的交点,以及各种应 用场景。
实践练习
通过练习题和实际问题,巩 固对圆的方程与应用的理解。
圆的方程
1 一般式
圆的一般式方程是(x - a)²+ (y - b)²= r²。
2 标准式
圆的标准式方程是(x - h)²+ (y - k)²= r²,其中(h, k)是圆心坐标。
3 参数方程
圆的参数方程是x = a + rcosθ,y = b + rsinθ,其中(a, b)是圆心坐标。
圆与直线的交点
应用举例
游乐园中的摩天轮
摩天轮是由一系列圆形构成的, 给游客带来乘风破浪的感觉。
地球的轨道
射箭运动中的心
地球绕太阳运行的轨道接近椭圆, 而不完全是一个完美的圆。
在射箭运动中,靶心通常是一个 圆,射手需要准确瞄准并打在靶 心上。
结论和要点
重要结论
圆的方程有多种形式,包括 一般式、标准式和参数方程。
《圆的方程》PPT课件
欢迎来到《圆的方程》PPT课件!在本课程中,我们将一起探索圆的定义、性 质以及各种方程和应用举例。让我们开始这个精彩的旅程吧!
圆的定义和性质
1 什么是圆?
圆是平面上所有离圆心距 离相等的点的集合。
2 关键性质
圆的重要性质包括半径、 直径、弧长、面积等。
3 有趣的事实
圆在自然界和建筑中广泛 应用,如太阳、月亮、车 轮等。
1
切线
当直线与圆相切时,直线只与圆相交于一个点。
2
相交两点
当直线穿过圆时,直线与圆相交于两个不同的点。
3
不相交
当直线不与圆相交时,直线与圆没有交点。

九年级数学上册22.2.2圆的切线课件新版北京课改版

九年级数学上册22.2.2圆的切线课件新版北京课改版

预习反馈
1.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上
底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半
圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( A )
A.14B.9Fra bibliotekC.10
D.12
预习反馈
2.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直 径,已知∠BAC=35°,∠P的度数为( D )
典例精析
典例精析
典例精析
典例精析
例2、如图所示, ⊙O是△ABC的内切圆,切点分别为E, F,C,AB = 9,BC = 13,AC=10。求AE、BF和CG的长。
典例精析
分析:∵⊙ O是△ABC的内切圆,切点分别为E, F,G, ∴AE=AG,BE=BF,CG=CF 设AE=x,BF=y,CG=z。 ∴ x + y =9,y + z = 13,z + x = 10。 解这个方程组,得 x =3,y = 6,z = 7。 ∴AE = 3,BF = 6, CG = 7。
A. 35° C. 60°
B. 45° D. 70°
预习反馈
3.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且
相交于P点.若PC=2,CD=3,DB=6,则△PAB的周长为何
( D)
A. 6
B. 9
C. 12
D. 14
预习反馈
4.如图,AB、AC是⊙O的两条切线,B、C是切点,若
∠A=70°,则∠BOC的度数为( C )
本课小结
(4)切线长定理包含着一些隐含结论: ①垂直关系三处; ②全等关系三对; ③弧相等关系两对,在一些证明求解问题中经常用到。

「精品」人教A版高中数学必修二课件:4.2.2圆的切线方程-精品课件

「精品」人教A版高中数学必修二课件:4.2.2圆的切线方程-精品课件
待定k;
注:此时切线一般有两条,故k有二解, 若只求出一解,需考虑__k_不__存__在____
例2 : 求过点A(2,4)向圆x2 y2 4所引
的切线方程。
y A( 2,4 )
解:设所求圆的切线方程为 :
y 4 k(x 2)
o
x
圆心0,0, r 2, kx y 4 2k 0
掌握圆的切线方程的类 型,及求切线方程的 方法。
直线与圆的位置关系及判别方法:
y
y
y
d
Or x
d
Or x
d
Or x
相交 几何法 d<r
代数法Δ>0
相切 d=r Δ=0
相离 d>r Δ<0
圆的切线方程的几种基本类型:
1.过圆上一点的切线方程 2.过圆外一点的切线方程 3.已知斜率的切线方程
一、过圆上一点的切线方程:
结论一:
过圆上x2一 点y2切线r 2方程是 M (x0, y0 )
x0 x y0 y r 2 y
M (x0 , y0 )
O
x
结论二:
过圆(x a)2 ( y b)2 r2上一点(x0, y0 )的切 线方程为:(x0 a)(x a) ( y0 b)( y b) r2.
为 2 的直线相切,求切线方程。 3
解:设圆的切线方程为:y 2 x b 3
圆心0,0, r 13,2x 3y 3b 0
0 0 3b


13 b 13
22 32
3
圆的切线方程为:2x 3y 13 0或2x 3y 13 0
y
M (x0 , y0 )

圆的标准方程2(圆的切线方程)ppt-人教版--湖北省

圆的标准方程2(圆的切线方程)ppt-人教版--湖北省
2 x0
解法三:设P(x,y)是切线上 任意一点,则: OM⊥MP 所以,用向量的坐标表示为:

O
x

2 y0
所以切线的方程是: x 0 x y0 y r 2
解法三(向量法)
过圆外的一点的圆的切线
求过圆外一点A(5,15)向圆x2+y2=25所引 的切线方程。 解法一:(求切点)点A在已知圆外 ,设所求切 线的切点为M(x0,y0),则切线方程为: A(5,15) x0x+ y0 y=25 又点A在切线上,所以: 5x0+15 y0 =25
2
把方程整理得: x
0
x y 0y r
2
解法二(直译法)

已知圆的方程是x2+y2=r2, 求经过圆上 一点M(xo,yo)的切线方程。p y
M
( x0 , y0 ) ( x x0 , y y0 ) 0, 所以, x0 ( x x0 ) y0 ( y y0 ) 0, x 0 x y0 y
· Q
· B
(-2,-5)
· A
(2,-3)
· · ·所求圆的方程为 (x+1)2+(y+2)2=10.
练习 已知圆过点 A(2, -3)和B (-2, -5),若圆心
在直线x-2y –3 =0上,试求圆的方程。
解法2:易求出线段的中垂
线方程:2x+y+4=0……(1)
又已知圆心在直线 · Q x-2y-3=0 …… (2)上 · A (2,-3) · B 由(1)(2)求得交点 Q((-2,-5) 1, -2) 即为圆心坐标, 另 r2=QA2=(2+1)2+(-3+2)2=10 , 所以圆的方程为(x+1)2+(y+2)2=10 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当d<1

k>
3 4
时,直线与圆相交。
当d=1 即 k=
3 4
时,直线与圆相切。
当d>1

k<
3 4
时,直线与圆相离。
A(-3,3) •
C(2, 2)

• B(-3,-3)
答案: l : 4x+3y+3=0或3x+4y-3=0
备用: 当k为何值时,直线y=kx与圆(x-1)2+(y2)2=1相交,相切,相离?
解: 法一:代数法:方程组有无实数解。
法二:圆心为(1,2),到直线y=kx即
kx-y=0的距离为 d= k-2 k2+1
小结:要求过一定点的圆的切线方程,首先必须判断这点 是否在圆上。
若在圆上,则该点为切点;直接用公式。
若在圆外,一般用“圆心到切线的距离等于半径长”来解
题较为简单切. 线应有两条,若求出的斜率只有一个,
需考虑k 不存在的情况
应找出过这一点而与x轴垂直的另一条切线.
练习:
1 求过点A(2,3)且与圆(x-1)2+(y- 1)2=1相切的切线方程.
本节要求: 掌握求圆的切线方程的方法。
圆的切线方程的几种基本类型:
1.过圆上一点的切线方程 2.过圆外一点的切线方程
例 1 已知圆的方程是x2+y2=r2,求经过
圆上一点M(x0,y0)的切y线方程.
解:设切线的斜率为 k, 则 k 1 . k OM
M (x0, y0)
k y0,
k x0.
OM x 0
k-0+2k+4 K2+1
=3 解得: k=-7 24
代入①得- 7 x-y-2×7 +4=0 即 7x+24y-82=0
24
24
又圆心到直线x=-2的距离等于半径3,
所以x=-2也是圆的方程 因此,所求圆的切线方程为x=-2, 7x+24y-82=0.
y
(-2,4)
0 (1,0)
x
注:过圆外一点的切线有两条,若求的一个k值,则 过已知点垂直x轴的直线也是所求的切线.
3x-4y+6=0 x=2
2 设圆的方程为x2+(y-1)2=1,求该圆的斜率为1的切
线方程.
x-y+1± 2 =0
3. 自点A(-3,3)发射的光线l 射到x轴上,被x轴反射, 其反射光线所在的直线与圆x2+y2-4x-4y+7=0相切, 求光线l 所在直线的方程.
练习3: 自点A(-3,3)发射的光线l 射到x轴上,被x轴反射, 其反射光线所在的直线与圆x2+y2-4x-4y+7=0相切, 求光线l 所在直线的方程.
例 2. 已知圆的方程是(x-1)2+y2=9,求过点
(-2,4)的圆的切线方程. 分析 ∵圆心(1,0)到点(-2,4)的距离为5大于半径3
∴点(-2,4)在已知圆外,过该点的圆的切线有两条 解:设过点(-2,4)的圆的切线方程为y-4=k(x+2) 即
kx-y+2k+4=0 ①
由圆心(1,0)到该切线的距离等于半径,得
y 0
O
x
经过点M的切线方程是
yy0 xy00(xx0),
因为点M在圆上,所以 x2y2r2在坐标轴上时, 可以验证,上面方程
xxy yr2. 00
同样适用.
小结:
过圆 x2+y2=r2上一点(x0,y0)的切线方程为:
x0x+y0y=r2
练习: 写出过圆x2+y2=10上一点M(2, 6) 的切线的方程. 2x+ 6 y=10
相关文档
最新文档