高三数学复数
高三数学复习知识点之复数

高三数学复习知识点之复数1. ⑴复数的单位为i,它的平方等于-1,即i²=-1.⑵复数及其相关概念:① 复数—形如a + b i的数(其中a,b∈R);② 实数—当b = 0时的复数a + b i,即a;③ 虚数—当b≠0时的复数a + b i;④ 纯虚数—当a = 0且b≠0时的复数a + b i,即b i.⑤ 复数a + b i的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)⑥ 复数集C—全体复数的集合,一般用字母C表示.⑶两个复数相等的定义:a+bi=c+di<=>a=c且b=d(其中,a,b,c,d∈R)特别的a+bi=0<=>a=b=0.⑷两个复数,如果不全是实数,就不能比较大小.注:①若z₁,z₂为复数,则1°若z₁+z₂>0,则z₁>-z₂.(×)[z₁,z₂为复数,而不是实数]2°若z₁<z₂,则z₁-z₂<0.(√)②若a,b,c∈C,则(a-b)²+(b-c)²+(c-a)²=0是a=b=c的必要不充分条件.(当(a-b)²=i²,(b-c)²=1,(c-a)²=0时,上式成立)2. ⑴复平面内的两点间距离公式:d=|z₁-z₂|.其中z₁,z₂是复平面内的两点z₁和z₂所对应的复数,d表示z₁和z₂间的距离.由上可得:复平面内以z0为圆心,r为半径的圆的复数方程:|z-z0|=r(r>0).⑵曲线方程的复数形式:①|z-z0|=r表示以z0为圆心,r为半径的圆的方程.②|z-z₁|=|z-z₂|表示线段z₁z₂的垂直平分线的方程.③|z-z₁|+|z-z₂|=2a(a>0且2a>|z₁z₂|表示以Z₁,Z₂为焦点,长半轴长为a的椭圆的方程(若2a=|z₁z₂|,此方程表示线段Z₁,Z₂).④||z-z₁|-|z-z₂||=2a(0<2a<|z₁z₂|,表示以Z₁,Z₂为焦点,实半轴长为a的双曲线方程(若2a=|z₁z₂|,此方程表示两条射线).⑶绝对值不等式:设z₁,z₂是不等于零的复数,则①||z₁|-|z₂||≤|z₁+z₂|≤|z₁|+|z₂|.左边取等号的条件是z₂=λz₁(λ∈R,且λ<0),右边取等号的条件是z₂=λz₁(λ∈R,λ>0).②||z₁|-|z₂||≤|z₁-z₂|≤|z₁|+|z₂|.左边取等号的条件是z₂=λz₁(λ∈R,且λ>0),右边取等号的条件是z₂=λz₁(λ∈R,且λ<0).注:3. 共轭复数的性质:注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]4⑴①复数的乘方:zⁿ=z·z·z...z}n(n∈N﹢)②对任何z,z₁,z₂∈C及m,n∈N﹢有③注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如i²=-1,i的4次方=1若由就会得到-1=1的错误结论.②在实数集成立的|x|=x₂. 当x为虚数时,|x|≠x²,所以复数集内解方程不能采用两边平方法.⑵常用的结论:若ω是1的立方虚数根。
高三复数的知识点归纳总结

高三复数的知识点归纳总结一、复数的概念复数是指由一个实数和一个虚数共同构成的数,通常表示为a+bi的形式,其中a和b为实数,i是虚数单位,满足i^2=-1。
在复数中,实部为a,虚部为b。
二、复数的表示方法1. 代数形式:a+bi2. 幅角形式:z=r(cosθ + i sinθ),其中r为复数的模,θ为复数的辐角3. 指数形式:z=re^(iθ),其中r为复数的模,e为自然对数的底三、复数的加减乘除1. 加减法:复数相加或相减,实部和虚部分别相加或相减2. 乘法:使用分配律相乘,然后利用i^2=-1进行计算3. 除法:将分母有理化后,再进行乘法的逆运算四、复数的几何意义1. 复数在平面直角坐标系中的表示2. 复数在极坐标系中的表示3. 复平面上的旋转五、共轭复数1. 共轭复数的定义2. 共轭复数的性质3. 共轭复数的几何意义六、模与辐角1. 复数的模的定义2. 复数的模的性质3. 复数的辐角的定义4. 复数的辐角的性质七、欧拉公式1. 欧拉公式的表达式2. 欧拉公式的几何意义3. 欧拉公式的重要性八、复数的方程1. 一元一次复数方程2. 一元二次复数方程3. 复数方程的解法及应用九、复数的应用1. 复数在电学中的应用2. 复数在力学中的应用3. 复数在信号处理中的应用十、复数的常见问题解析1. 关于共轭复数的应用问题2. 关于复数模和辐角的应用问题3. 复数方程的解法与应用十一、复数的图示通过在复数平面上显示几何图形,如复数的绝对值和幅角,显示虚数、复数和实数,这将有助于进一步理解这一主题。
十二、复数的补充知识点1. 复数的讨论2. 复数的等价3. 虚数单位i的应用和推理十三、复数的实际应用举例通过真实问题的应用案例,加深对复数知识点的理解和理论的实际应用。
在高三的数学学习中,复数是一个非常重要的内容。
它不仅是数学知识的一个重要部分,也是物理、工程和其他领域的基础。
掌握复数的知识对于学生继续深入学习数学和其他相关科学领域都有着非常重要的意义。
高三数学 复数复习

1.虚数单位是怎样定义的?
虚数单位,规定: (1)它的平方等于-1,即
i
2
1
(2)实数可以与它进行四则运算,进行四则运算 时,原有的加、乘运算律仍然成立.
根据对虚数单位i的运算规定易知:
i 1, i
4n
4 n1
i, i
4 n 2
1, i
4 n 3
i
2.复数的表示形式是怎样的?
形如 a bi(a, b R ) 的数,叫做复数.
C {z | z a bi, 其中a, b R)
全体复数所形成的集合叫做复数集,一般用字 母C表示 . 实部 虚部 通常用字母 z 表示,即 z a bi(a, b R) 当 b 0 时,z 是实数a. 复数 叫做纯虚数. 实 数 集
答案:C
z +z+ z =3,则z对应点的轨迹 例12.复数z满足z·
是____________. 解析:设z=x+yi(x、y∈R),则x2+y2+2x=3表示圆. 答案:以点(-1,0)为圆心,2为半径的圆
2 2
2
(4)复数的模可以比较大小,一般地,两个复数不能比 较大小,除非两个复数都是实数才可以比较大小。 典型例题:一、代数运算
1 3 i 求证: 例3:设w= 2 2 ① 1+w+w2=o ②w3=1
例6:实数m取什么值时,复数
(m 8m 15) (m 5m 14)i
2 2
对应的点
(1)位于第一、三象限?
(2)位于第四象限? 例7:已知 z 2 z 4i, 求复数z.
2 bi 例9.如果复数 (其中i为虚数单位,b为实数) 1 2i
高三数学课件:复数通常用字母

3 4i 1 2 i
2实数集R是复数集C的真源自集。 0.5i例一 实数m 取什么数值时,复数是
(1)实数?(2z)虚数m?(31)纯虚(m数? 1)i
练习1 用集合包含符号表示复数集C、实数集R, 有理数集Q、整数集Z和自然数集N的关系。
练习2 若
x2 1 x2 是3纯x虚数,2 i
则实数x的值是( )
练习3 已知 1 im2 7 5im 10 4 i 0 则实数m是多少?
练习5 已知 M 1,2, a2 3a 1 a2 5a 6 i
N 1,3 M N 3 则实数 a 是多少?
x2 x 1 0
对于虚数 I,我们规定: (1)它的平方等于-1; (2)实数可以与它进行四则运算,进行四则 运算时,原有的加、乘运算率仍然成立。
我们把形如 a + bi(a、bR)的数,叫做复数;
全体复数所组成的集合叫做复数集,一般用 字母C表示。
复数通常用字母z 表示,即z = a+bi (a,bR), 把复数表示成a+bi 形式,叫做复数的代数形式 。对复数a+bi (a,bR),当且仅当b=0时,它是 实数a;当且仅当a=b=0时,它是实数0;当且 仅当b0时,叫做虚数;当且仅当a=0且b 0时, 叫做纯虚数;a与b分别叫做复数a+bi 的实部和 虚部。
练习6 m 为何数时,复数
(1)是实z数?(2m2)m2是2虚数3m?25(3)2是纯虚m数2? 3m 10 i
高三数学复数的概念与运算知识精讲

高三数学复数的概念与运算【本讲主要内容】复数的概念与运算复数的概念及代数形式的运算【知识掌握】复数的建立,经历了一个漫长的过程。
在许多数学家和数学工作者的辛勤工作下,历经了三百年的时间,数系从实数系向复数系的扩X ,才基本得以完成。
【知识点精析】1. 对已学过的实数集及实数子集的回顾实数()有理数()正有理数零负有理数无理数正无理数负无理数无限不循环小数R Q ⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎧⎨⎩⎪⎫⎬⎭⎪⎧⎨⎪⎪⎪⎩⎪⎪⎪ 2. 由于解方程的需要,在实数集中,有些方程是无法解决的。
例如:x 210+=。
为此,人们引进一个新数i ,叫虚数单位。
并且规定: (1)i 21=-(2)实数可以与它进行四则运算,在进行四则运算时,原有的加乘运算律,仍然成立。
3. 复数集:形如a bi a b R +∈(),的数叫复数。
(1)复数a bi a b R +∈(),,当b =0时,叫实数。
(2)复数a bi a b R +∈(),,当b ≠0时,叫虚数。
(3)复数a bi a b R +∈(),,当a b =≠00,时,叫纯虚数。
其中a 与b 分别叫复数,a bi a b R +∈(),的实部和虚部。
4. 复数相等若两个复数a bi +和c di +的实部和虚部分别相等,就说两个复数相等。
记作:a bi c di a b c d R +=+∈(),,, 那么:a c b d ==,特殊地:a bi a b +=⇔==005. 两个复数只能说明相等或不相等,不能比较大小。
6. 共轭复数:两个复数实部相等,虚部互为相反数叫做共轭复数。
复数z 的共轭复数可以用z 表示,即复数:z a bi =+的共轭复数是z a bi =-。
7. 共轭复数的性质 (1)z z =(2)z z z z ·==||||22(其中|z|叫复数的模) (3)z z a z z bi +=-=22, (4)z z z z 1212+=+ (5)z z z z 1212-=- (6)z z z z 1212⋅=⋅ (7)z z z z z 121220⎛⎝⎫⎭⎪=≠() 8. 复数的加法与减法(1)复数的加法按以下法则表示:设z a bi z c di 12=+=+,是任意两个复数,那么它们的和:()()()()a bi c di a c b d i +++=+++ (2)复数的加法满足交换律,结合律,即 ①z z z z 1221+=+(交换律)②()()()z z z z z z z z z 123123213++=++=++(结合律) (3)复数的减法复数的减法规定为加法的逆运算,即把满足()()c di x yi a bi +++=+的复数x yi +叫做复数a bi +减去复数c di +的差。
高三数学知识点总结复数

高三数学知识点总结复数一、复数的概念与表示在高三数学中,复数是由实部和虚部组成的数。
一般表示为z=a+bi,其中a为实部,b为虚部,i为虚单位。
二、复数的运算规则1. 加法和减法:复数的加法和减法规则与常规整数的运算类似,即实部与实部相加,虚部与虚部相加。
例如:(a+bi) + (c+di) = (a+c) + (b+d)i2. 乘法:复数的乘法运算遵循分配律和虚单位平方等于-1的规则。
例如:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i3. 除法:复数的除法需要进行有理化处理,具体步骤可以按照有理数除法来进行操作。
例如:(a+bi) ÷ (c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i4. 复数取模:复数的模表示复数到原点的距离,也可以理解为复平面上复数的绝对值。
模的计算公式为|z| = √(a²+b²)5. 共轭复数:给定一个复数z=a+bi,其中a为实部,b为虚部,那么其共轭复数为z*=a-bi。
三、复数的解析式1. 欧拉公式:欧拉公式是数学中的一条重要公式,可以将复数表达为三角函数的形式。
e^ix = cos(x) + isin(x)2. 直角坐标系与极坐标系的转换:复数既可以用直角坐标系表示,也可以用极坐标系表示。
直角坐标系:z=a+bi极坐标系:z=r(cosθ + isinθ),其中r为半径,θ为极角。
四、复数的应用领域复数在数学中有广泛的应用,尤其在电磁学、信号处理和工程领域中的应用非常重要。
1. 电磁学:复数在电磁学中可以描述交流电的特性,包括电流和电压的相位差等。
2. 信号处理:复数在信号处理中可以表示信号的频率和相位,通过傅里叶变换等方法进行信号分析。
3. 工程领域:在工程领域中,复数广泛应用于电路分析、控制系统、通信系统等领域。
高三数学第三册复数知识点

高三数学第三册复数知识点复数在高三数学中扮演着重要的角色,它是一个包含实部和虚部的数。
在这篇文章中,我们将探讨高三数学第三册中的一些重要复数知识点。
一、复数的定义和表示方法复数可以用 a+bi 的形式表示,其中 a 是实部,bi 是虚部并乘以单位虚数 i。
实部和虚部都可以是实数。
复数可以表示为一个有序数对,也可以看作是在平面上的一个点。
二、复数的四则运算1. 加法和减法:将实部和虚部分别相加或相减即可。
例如:(a+bi) + (c+di) = (a+c) + (b+d)i。
2. 乘法:将实部和虚部按照分配律相乘,同时注意 i 的平方为 -1。
例如:(a+bi)(c+di) = (ac-bd) + (ad+bc)i。
3. 除法:使用有理化的方法将复数的分母有理化,然后按照分数的除法法则进行运算。
三、复数的共轭复数的共轭是指保持实部不变而把虚部的符号取反的操作。
记为 z*。
例如:如果 z = a+bi,则 z* = a-bi。
四、复数的模和幅角1. 模:复数的模是指复数到原点的距离,用 |z| 表示。
模的计算公式为:|z| = √(a²+b²)。
2. 幅角:复数的幅角是指复数与正实轴的夹角,用θ 表示。
幅角的计算公式为:θ = arctan(b/a),其中a ≠ 0。
五、复数的指数形式(欧拉公式)欧拉公式是指以自然对数 e 为底的指数函数与正弦、余弦函数的关系。
它表示为:e^(iθ) = cosθ + isinθ,其中 e 是自然对数的底数,i 是单位虚数,θ 是实数。
六、复数的求根公式对于任意一个非零复数 z,它的 n 次方根有 n 个,可以通过求解方程 z^n = w 来得到。
其中,w 是已知的复数常数。
总结起来,高三数学第三册复数知识点包括复数的定义和表示方法、复数的四则运算、复数的共轭、复数的模和幅角、复数的指数形式(欧拉公式)以及复数的求根公式。
掌握这些知识点,能够帮助同学们更好地理解和运用复数,并在高三数学的考试中取得更好的成绩。
高三数学 复数的运算,在复数集中解方程,复数运算的几何意义 知识精讲

高三数学 复数的运算,在复数集中解方程,复数运算的几何意义 知识精讲(一)复数的运算(1)复数的代数形式:()z a bi a b R =+∈,;(2)复数的加法与减法:()()()()a bi c di a c b d i +±+=±+±; (3)复数的乘法与除法:()()()()a bi c di ac bd ad bc i ++=-++;a bi c di ac bd c d bc adc d i ++=+++-+2222; (4)z z z z z z z z z m n m n m n mn n n n⋅==⋅=⋅+,,()()1212; (5)i 的周期性ii i i i i n Z n n n n 414243411++-+==-=-=∈,,,(); (6)ω的性质及应用:若n 为虚数,且ω31=,则称ω为1的虚立方根, 1的立方根为112321232,,-+--i i 且有性质:102++=ωω。
ωωωωω3211===-,,(7)常用计算结果:①()()a bi a bi a b +-=+22; ②()122±=±i i ;③11+-=ii i ; ④122±⎛⎝⎫⎭⎪=±i i 。
(二)在复数集中解方程(1)形如()f z z z ,,||=0型的复数方程解法,通常设()z x yi x y R =+∈,,利用复数相等的充要条件,将复数问题实数化。
(2)一元二次方程ax bx c 20++=,若a 、b 、c 中至少有一个虚数,则 ①求根公式仍适用; ②韦达定理仍适用;③判别式判别根的情况无效; ④虚根成对出现性质无效。
(3)解形如ax b n+=0的二项方程()a b C ,∈(三)复数运算的几何意义(1)复数加、减法的几何意义(平行四边形和三角形法则) (2)复数乘法的几何意义(逆时针和顺时针旋转) (3)复数除法的几何意义 (4)复数开方的几何意义注意:有关模与辐角(主值)的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
乡下的老屋,您永远也是我生命中的“家”!生我、养我的地;也是我生命诞生的摇篮。只要我的存在!您一定不会坍塌,无论风雨,无论我会在哪里!游戏中心大全
2020年4月26日落笔于乡下。
乡下老屋已经不复存在了。地基上代之而起的是一片青葱的草坪和几棵高大的乔木。但是老屋已经在我的脑子里打下烙印。此时,我正站在老屋的地基边,就像回到老屋一样的亲切,顿时激起我情 感的浪花。