分支限界算法报告

合集下载

分支限界法求解装载问题实验报告

分支限界法求解装载问题实验报告
void EnQueue(int wt,int& bestw, int i, int n, Queue*E,Queue*&bestE, bool ch) // 该函数负责加入活结点 { // 如果不是叶结点,则将结点权值 wt 加入队列 Q
if (i == n) {
if(wt == bestw) {
friend Type MaxLoading_three(Type *,Type,int,int *); private:
QNode* parent;// 指向父结点的指针 bool LChild; //左儿子标志 Type weight; //结点所相应的载重量 };
四、算法实现
void EnQueue(int wt,int& bestw, int i, int n, Queue*E,Queue*&bestE, bool ch) // 该函数负责加入活结点 { // 如果不是叶结点,则将结点权值 wt 加入队列 Q
} 构造最优解: 为了在算法结束后能方便地构造出与最优值相应的最优解,算法必须存储相应子集树中从活 结点到根结点的路径。为此目的,可在每个结点处设置指向其父结点e> class QNode {
friend void EnQueue(queue<QNode <Type> * >&,Type,int,int,Type,QNode <Type> *,QNode <Type> * &,int*,bool);
if (IsEmpty()) break; if(i<n) Add(-1, NULL, 0); // 同层结点的尾部 Delete(E); // 取下一扩展结点 i++; // 进入下一层 r -= w[i]; } Ew = E->weight; } //构造当前最优解 for(j = n -1; j>0; j--) { bestx[j] = bestE->LChild; bestE = bestE ->parent; } return 0; }

实验报告分支限界法01背包

实验报告分支限界法01背包

实验报告分支限界法01背包实验报告:分支限界法解决01背包问题一、引言背包问题是数学和计算机科学中一个经典的问题。

背包问题通常分为01背包问题和完全背包问题两种情况。

本实验主要探讨的是分支限界法解决01背包问题,该算法常用于解决NP难问题。

分支限界法通过将问题分解为一系列子问题,并借助剪枝技术,逐步缩小问题的空间,从而找到最优解。

本实验将通过具体的案例来展示分支限界法的求解过程和原理,并对算法的时间复杂度和空间复杂度进行分析。

二、算法原理01背包问题的数学模型为:有n个物品,每个物品有一个重量wi和一个价值vi,在限定的背包容量为W的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。

分支限界法的基本思想是:通过不断地分解问题为更小的子问题,并使用估算函数对子问题进行优先级排序,将优先级最高的子问题优先求解。

具体步骤如下:1.根节点:将背包容量W和物品序号0作为初始状态的根节点。

2.扩展节点:对于任意一个节点S,选择装入下一个物品或者不装入两种分支。

计算新节点的上界。

3.优先级队列:将扩展节点按照上界从大到小的顺序插入优先级队列。

4.剪枝条件:当扩展节点的上界小于当前已找到的最优解时,可以剪枝。

5.结束条件:当到叶节点或者队列为空时,结束。

若叶节点的上界高于当前最优解,更新最优解。

三、实验过程1.输入数据:给定一个物品序列,每个物品有重量和价值,以及一个背包的最大容量。

2.算法实现:根据算法原理,使用编程语言实现分支限界法的求解过程。

3.结果分析:比较算法求解得到的最优解和其他算法(如动态规划)得到的最优解之间的差异。

四、实验结果以一个具体的案例来说明分支限界法的求解过程。

假设有4个物品,其重量和价值分别为{2,3,4,5}和{3,4,5,6},背包的最大容量为8、通过分支限界法求解,得到最优解为9,对应的物品选择为{2,3,5}。

通过与动态规划算法的结果比较,可以发现分支限界法的最优解与动态规划算法得到的最优解是一致的。

分支限界法实验(单源最短路径)

分支限界法实验(单源最短路径)

分⽀限界法实验(单源最短路径)算法分析与设计实验报告第七次实验基本思想:附录:完整代码(分⽀限界法)Shorest_path.cpp//单源最短路径问题分⽀限界法求解#include#include#include#include"MinHeap2.h"using namespace std;templateclass Graph //定义图类{friend int main();public:void shortest_path(int); private:int n, //图的顶点数*prev; //前驱顶点数组Type **c, //图的邻接矩阵*dist; //最短距离数组};templateclass MinHeapNode //最⼩堆中的元素类型为MinHeapNode{friend Graph;public:operator int() const{return length;}private:int i; //顶点编号Type length; //当前路长};//单源最短路径问题的优先队列式分⽀限界法templatevoid Graph::shortest_path(int v){MinHeap> H(1000);//定义最⼩堆的容量为1000//定义源为初始扩展结点MinHeapNode E;//初始化源结点E.i=v;E.length=0;dist[v]=0;while(true)//搜索问题的解空间{for(int j=1;j<=n;j++)if((c[E.i][j]!=0)&&(E.length+c[E.i][j]{//顶点i到顶点j可达,且满⾜控制约束//顶点i和j之间有边,且此路径⼩于原先从源点i到j的路径长度dist[j]=E.length+c[E.i][j];//更新dist数组prev[j]=E.i;//加⼊活结点优先队列MinHeapNode N;N.i=j;N.length=dist[j];H.Insert(N);//插⼊到最⼩堆中}try{H.DeleteMin(E); // 取下⼀扩展结点}catch (int){break;}if(H.currentsize==0)//优先队列空{break;}}}int main(){int n=11;int prev[12]={0,0,0,0,0,0,0,0,0,0,0,0};//初始化前驱顶点数组intdist[12]={1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000};//初始化最短距离数组cout<<"单源图的邻接矩阵如下:"<int **c=new int*[n+1];for(int i=1;i<=n;i++) //输⼊图的邻接矩阵{c[i]=new int[n+1];for(int j=1;j<=n;j++){cin>>c[i][j];}}int v=1; //源结点为1Graph G;G.n=n;G.c=c;G.dist=dist;G.prev=prev;clock_t start,end,over; //计算程序运⾏时间的算法start=clock();end=clock();over=end-start;start=clock();G.shortest_path(v);//调⽤图的最短路径查找算法//输出从源结点到⽬的结点的最短路径cout<<"从S到T的最短路长是:"<for(int i=2;i<=n;i++)//输出每个结点的前驱结点{cout<<"prev("<}for(int i=2;i<=n;i++) //输出从源结点到其他结点的最短路径长度{cout<<"从1到"<}for(int i=1;i<=n;i++) //删除动态分配时的内存{delete[] c[i];}delete[] c;c=0;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显⽰运⾏时间cout< system("pause");return 0;}MinHeap.h#includetemplateclass Graph;templateclass MinHeap //最⼩堆类{templatefriend class Graph;public:MinHeap(int maxheapsize=10); //构造函数,堆的⼤⼩是10~MinHeap(){delete[] heap;} //最⼩堆的析构函数int Size() const{return currentsize;} //Size()返回最⼩堆的个数T Max(){if(currentsize) return heap[1];} //第⼀个元素出堆MinHeap& Insert(const T& x); //最⼩堆的插⼊函数MinHeap& DeleteMin(T& x); //最⼩堆的删除函数void Initialize(T x[],int size,int ArraySize); //堆的初始化void Deactivate();void output(T a[],int n);private:int currentsize,maxsize;T *heap;};templatevoid MinHeap::output(T a[],int n) //输出函数,输出a[]数组的元素{for(int i=1;i<=n;i++)cout<cout<}templateMinHeap::MinHeap(int maxheapsize){maxsize=maxheapsize;heap=new T[maxsize+1]; //创建堆currentsize=0;}templateMinHeap& MinHeap::Insert(const T& x){if(currentsize==maxsize) //如果堆中的元素已经等于堆的最⼤⼤⼩return *this; //那么不能在加⼊元素进⼊堆中int i= ++currentsize;while(i!=1 && x{heap[i]=heap[i/2];i/=2;}heap[i]=x;return *this;}templateMinHeap& MinHeap::DeleteMin(T& x) //删除堆顶元素{if(currentsize==0){cout<<"Empty heap!"<return *this;}x=heap[1];T y=heap[currentsize--];int i=1,ci=2;while(ci<=currentsize){if(ciheap[ci+1])ci++;if(y<=heap[ci])break;heap[i]=heap[ci];i=ci;ci*=2;}heap[i]=y;return *this;}templatevoid MinHeap::Initialize(T x[],int size,int ArraySize) //堆的初始化{ delete[] heap;heap=x;currentsize=size;maxsize=ArraySize;for(int i=currentsize/2;i>=1;i--){T y=heap[i];int c=2*i;while(c<=currentsize){if(cheap[c+1])c++;if(y<=heap[c])break;heap[c/2]=heap[c];c*=2;}heap[c/2]=y;}}templatevoid MinHeap::Deactivate() {heap=0;}。

分支限界算法报告

分支限界算法报告

实验五分支限界算法的应用一、实验目的1 •掌握分支限界算法的基本思想、技巧和效率分析方法。

2•熟练掌握用分支限界算法的基本步骤和算法框架,FIFO搜索,LIFO搜索,优先队列式搜索的思想。

3 •学会利用分支限界算法解决实际问题。

二、算法问题描述批处理作业调度问题:n个作业{1,2,…,要在两台机器上处理,每个作业必须先由机器1处理,然后再由机器2处理,机器1处理作业i所需时间为ai,机器2处理作业i 所需时间为bi ( K i菊n,批处理作业调度问题(batch-job scheduling problem)要求确定这n个作业的最优处理顺序,使得从第1个作业在机器1上处理开始,到最后一个作业在机器2上处理结束所需时间最少。

注意:由于要从n个作业的所有排列中找出具有最早完成时间的作业调度,所以,批处理作业调度问题的解空间是一棵排列树,并且要搜索整个解空间树才能确定最优解,因此,其时间性能是O(n!)。

在搜索过程中利用已得到的最短完成时间进行剪枝,才能够提高搜索速度。

三、算法设计批处理作业调度问题要从n个作业的所有排列中找出具有最小完成时间和的作业调度,所以如图,批处理作业调度问题的解空间是一颗排列树业集:1--'……:。

以该节点为根的子树中所含叶节点的完成时间和可表示为:匸工代+工的设|M|=r ,且L 是以节点E 为根的子树中的叶节点,相应的作业调度为{pk,k=1,2,……n},其中pk 是第k 个安排的作业。

如果从节点 E 到叶节点L 的 路上,每一个作业pk 在机器1上完成处理后都能立即在机器 2上开始处理,即 从p 叶1开始,机器1没有空闲时间,则对于该叶节点 L 有:IX 二£ [%+心+1)仏+切」諾踰 也'+! 注:(n-k+1)t1pk,因为是完成时间和,所以,后续的(n-k+1)个作业完成时间和都得算上tlpk 。

如果不能做到上面这一点,则si 只会增加,从而有: 。

分支限界法实验(单源最短路径)

分支限界法实验(单源最短路径)

算法分析与设计实验报告第七次实验姓名学号班级时间12.26上午地点工训楼309实验名称分支限界法实验(单源最短路径)实验目的1.掌握并运用分支限界法的基本思想2.运用分支限界法实现单源最短路径问题实验原理问题描述:在下图所给的有向图G中,每一边都有一个非负边权。

要求图G的从源顶点s 到目标顶点t之间的最短路径。

基本思想:下图是用优先队列式分支限界法解有向图G的单源最短路径问题产生的解空间树。

其中,每一个结点旁边的数字表示该结点所对应的当前路长。

为了加速搜索的进程,应采用有效地方式选择活结点进行扩展。

按照优先队列中规定的优先级选取优先级最高的结点成为当前扩展结点。

catch (int){break;}if(H.currentsize==0) //优先队列空{break;}}}上述有向图的结果:测试结果附录:完整代码(分支限界法)Shorest_path.cpp//单源最短路径问题分支限界法求解#include<iostream>#include<time.h>#include<iomanip>#include"MinHeap2.h"using namespace std;template<class Type>class Graph //定义图类{friend int main();public:void shortest_path(int); private:int n, //图的顶点数*prev; //前驱顶点数组Type **c, //图的邻接矩阵*dist; //最短距离数组};template<class Type>class MinHeapNode //最小堆中的元素类型为MinHeapNode{friend Graph<Type>;public:operator int() const{return length;}private:int i; //顶点编号Type length; //当前路长};//单源最短路径问题的优先队列式分支限界法template<class Type>void Graph<Type>::shortest_path(int v){MinHeap<MinHeapNode<Type>> H(1000);//定义最小堆的容量为1000//定义源为初始扩展结点MinHeapNode<Type> E;//初始化源结点E.i=v;E.length=0;dist[v]=0;while(true)//搜索问题的解空间{for(int j=1;j<=n;j++)if((c[E.i][j]!=0)&&(E.length+c[E.i][j]<dist[j])){//顶点i到顶点j可达,且满足控制约束//顶点i和j之间有边,且此路径小于原先从源点i到j的路径长度dist[j]=E.length+c[E.i][j];//更新dist数组prev[j]=E.i;//加入活结点优先队列MinHeapNode<Type> N;N.i=j;N.length=dist[j];H.Insert(N);//插入到最小堆中}try{H.DeleteMin(E); // 取下一扩展结点}catch (int){break;}if(H.currentsize==0)//优先队列空{break;}}}int main(){int n=11;int prev[12]={0,0,0,0,0,0,0,0,0,0,0,0};//初始化前驱顶点数组intdist[12]={1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000 };//初始化最短距离数组cout<<"单源图的邻接矩阵如下:"<<endl;int **c=new int*[n+1];for(int i=1;i<=n;i++) //输入图的邻接矩阵{c[i]=new int[n+1];for(int j=1;j<=n;j++){cin>>c[i][j];}}int v=1; //源结点为1Graph<int> G;G.n=n;G.c=c;G.dist=dist;G.prev=prev;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();G.shortest_path(v);//调用图的最短路径查找算法//输出从源结点到目的结点的最短路径cout<<"从S到T的最短路长是:"<<dist[11]<<endl;for(int i=2;i<=n;i++)//输出每个结点的前驱结点{cout<<"prev("<<i<<")="<<prev[i]<<" "<<endl;}for(int i=2;i<=n;i++) //输出从源结点到其他结点的最短路径长度{cout<<"从1到"<<i<<"的最短路长是:"<<dist[i]<<endl;}for(int i=1;i<=n;i++) //删除动态分配时的内存{delete[] c[i];}delete[] c;c=0;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;system("pause");return 0;}MinHeap.h#include<iostream>template<class Type>class Graph;template<class T>class MinHeap //最小堆类{template<class Type>friend class Graph;public:MinHeap(int maxheapsize=10); //构造函数,堆的大小是10~MinHeap(){delete[] heap;} //最小堆的析构函数int Size() const{return currentsize;} //Size()返回最小堆的个数T Max(){if(currentsize) return heap[1];} //第一个元素出堆MinHeap<T>& Insert(const T& x); //最小堆的插入函数MinHeap<T>& DeleteMin(T& x); //最小堆的删除函数void Initialize(T x[],int size,int ArraySize); //堆的初始化void Deactivate();void output(T a[],int n);private:int currentsize,maxsize;T *heap;};template<class T>void MinHeap<T>::output(T a[],int n) //输出函数,输出a[]数组的元素{for(int i=1;i<=n;i++)cout<<a[i]<<" ";cout<<endl;}template<class T>MinHeap<T>::MinHeap(int maxheapsize){maxsize=maxheapsize;heap=new T[maxsize+1]; //创建堆currentsize=0;}template<class T>MinHeap<T>& MinHeap<T>::Insert(const T& x){if(currentsize==maxsize) //如果堆中的元素已经等于堆的最大大小return *this; //那么不能在加入元素进入堆中int i= ++currentsize;while(i!=1 && x<heap[i/2]){heap[i]=heap[i/2];i/=2;}heap[i]=x;return *this;}template<class T>MinHeap<T>& MinHeap<T>::DeleteMin(T& x) //删除堆顶元素{if(currentsize==0){cout<<"Empty heap!"<<endl;return *this;}x=heap[1];T y=heap[currentsize--];int i=1,ci=2;while(ci<=currentsize){if(ci<currentsize && heap[ci]>heap[ci+1])ci++;if(y<=heap[ci])break;heap[i]=heap[ci];i=ci;ci*=2;}heap[i]=y;return *this;}template<class T>void MinHeap<T>::Initialize(T x[],int size,int ArraySize) //堆的初始化{delete[] heap;heap=x;currentsize=size;maxsize=ArraySize;for(int i=currentsize/2;i>=1;i--){T y=heap[i];int c=2*i;while(c<=currentsize){if(c<currentsize && heap[c]>heap[c+1])c++;if(y<=heap[c])break;heap[c/2]=heap[c];c*=2;}heap[c/2]=y;}}template<class T>void MinHeap<T>::Deactivate(){heap=0; }。

分支限界法实现实验报告

分支限界法实现实验报告
1.队列式(FIFO)分支限界法
队列式分支限界法将活节点表组织成一个队列,并将队列的先进先出原则选取下一个节点为当前扩展节点。
2.优先队列式分支限界法
优先队列式分支限界法将活节点表组织成一个优先队列,并将优先队列中规定的节点优先级选取优先级最高的下一个节点成为当前扩展节点。如果选择这种选择方式,往往将数据排成最大堆或者最小堆来实现。
for (j=0;j<City_Size;j++){
temp_x[j]=Best_Cost_Path[j];
}
temp_x[pNode->x[pNode->s+1]] = Best_Cost_Path[i];
temp_x[i] = Best_Cost_Path[pNode->s+1];
Node* pNextNode = new Node;
int edge2 = City_Graph[(pNode->x)[City_Size-1]][(pNode->x)[0]];
if(edge1 >= 0 && edge2 >= 0 && (pNode->cc+edge1+edge2) < Best_Cost){
Best_Cost = pNode->cc + edge1+edge2;
二、实验过程记录:
打开MicrosoftC++2008,键入代码进行编程:
源代码为:
#include <stdio.h>
#include "stdafx.h"
#include <istream>

实验报告-分支限界法01背包

实验报告-分支限界法01背包

《算法设计与分析》实验报告六学号: 1004091130 姓名:金玉琦日期: 2011-11-17 得分:一、实验内容:运用分支限界法解决0-1背包问题。

二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。

因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。

0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。

对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。

2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。

分支限界法实验报告

分支限界法实验报告

分支限界法实验报告引言分支限界法是一种解决组合优化问题的常用方法,该方法通过对问题空间进行分割,并使用上、下界进行限制,从而快速得到较优解。

在本次实验中,我们主要使用分支限界法解决旅行商问题(TSP),即给定一组城市和各城市之间的距离,求解经过所有城市且距离之和最小的路径。

实验目的本次实验的目的是通过编写程序,利用分支限界法求解旅行商问题,并分析算法的效率和求解结果的优劣。

实验过程问题模型我们使用邻接矩阵来表示城市之间的距离,并通过回溯法和分支限界法来求解最优解。

其中,回溯法用于生成所有可能的路径,而分支限界法则用于剪枝和获取最优解。

在分支限界法中,我们将问题抽象为一个树形结构,树的每个节点代表选择了某一条路径。

同时,我们定义一个上界来限制搜索的范围,并实时更新下界以筛选一些无效的路径。

通过不断剪枝和对路径进行排序,我们最终可以得到最优解。

算法实现我们使用Python语言实现了分支限界法求解旅行商问题的算法。

具体实施步骤如下:步骤1:生成邻接矩阵根据给定的城市和距离,我们首先生成一个邻接矩阵,用于表示各个城市之间的距离。

步骤2:初始化数据结构我们使用一个优先队列来保存当前搜索的路径,并将起始城市加入队列。

同时,我们定义一个全局变量来保存最优路径和当前最优路径的长度。

步骤3:搜索路径通过递归的方式,不断进行路径的搜索。

在搜索过程中,我们使用上、下界和分支限界来进行剪枝操作,并实时更新最优路径信息。

步骤4:输出结果最终,我们得到的最优路径就是旅行商问题的解。

我们将其输出,并统计算法的运行时间。

实验结果实验数据我们使用了一个包含20个城市的实例进行测试,城市之间距离的数据如下:城市距离-1 -2 101 - 3 15... ...19-20 12结果分析经过多次实验,我们得到了最优路径如下:1 -> 3 -> 10 -> 5 -> 17 ->2 -> 12 -> 11 -> 4 -> 9 -> 16 -> 6 -> 19 -> 18-> 13 -> 20 -> 15 -> 8 -> 7 -> 14 -> 1该路径的总距离为123,是经过所有城市且距离之和最小的路径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五分支限界算法的应用
一、实验目的
1 •掌握分支限界算法的基本思想、技巧和效率分析方法。

2•熟练掌握用分支限界算法的基本步骤和算法框架,FIFO搜索,LIFO搜索,优先队列式搜索的思想。

3 •学会利用分支限界算法解决实际问题。

二、算法问题描述
批处理作业调度问题:n个作业{1,2,…,要在两台机器上处理,每个作业必须先由机器1处理,然后再由机器2处理,机器1处理作业i所需时间为ai,机器2处理作业i 所需时间为bi ( K i菊n,批处理作业调度问题(batch-job scheduling problem)要求确定这n个作业的最优处理顺序,使得从第1个作业在机器1上处理开始,到最后一个作业在机器2上处理结束所需时间最少。

注意:由于要从n个作业的所有排列中找出具有最早完成时间的作业调度,所以,批处理作业调度问题的解空间是一棵排列树,并且要搜索整个解空间树才
能确定最优解,因此,其时间性能是O(n!)。

在搜索过程中利用已得到的最短完成时间进行剪枝,才能够提高搜索速度。

三、算法设计
批处理作业调度问题要从n个作业的所有排列中找出具有最小完成时间和
的作业调度,所以如图,批处理作业调度问题的解空间是一颗排列树
业集:1--'……:。

以该节点为根的子树中所含叶节点的完成时间和可
表示为:
匸工代+工的
设|M|=r ,且L 是以节点E 为根的子树中的叶节点,相应的作业调度为
{pk,k=1,2,……n},其中pk 是第k 个安排的作业。

如果从节点 E 到叶节点L 的 路上,每一个作业pk 在机器1上完成处理后都能立即在机器 2上开始处理,即 从p 叶1开始,机器1没有空闲时间,则对于该叶节点 L 有:
IX 二£ [%+心+1)仏+切」諾
踰 也'+! 注:(n-k+1)t1pk,因
为是完成时间和,所以,后续的(n-k+1)个作业完成时间和都得算上tlpk 。

如果不能做到上面这一点,则si 只会增加,从而有: 。

类似地,如果从节点E 开始到节点L 的路上,从作业p 叶1开始,机器2没 有空闲
时间,贝
n
炳辽画(咏凡+卿 同理可知,s2是 的下界。

由此得到在节点E 处相应子树中叶
在作业调度问相应的排列空间树中, 每一个节点E 都对应于一个已安排的作 』+山“ + 1)抵]二£
2
B
2 2 3
3 F
3
2 2
3 IG
L P M 19 20 21
节点完成时间和的下界是:
/+max{^1J S2}
ieA/
注意到如果选择Pk,使tlpk在k>=叶1时依非减序排列,S1则取得极小值。

同理如果选择Pk使t2pk依非减序排列,则S2取得极小值。

这可以作为优先队列式分支限界法中的限界函数。

四、运行结果
五、程序
#in clude<stdio.h>
#in clude<stri ng.h>
#define N 4〃作业数目设定为4 机器2个
#defi ne MAX 1000
int x[N+1]={0,1,2,3};
int m[4][N+1]={
o,o,o,o,
0,2,3,2,
0,1,13
0,2,2,1
};
int bestx[N+1];〃用于保存结果调度顺序
int f2[N+1];〃第i阶段机器2完成处理的时间
int f1=0;〃机器1完成处理时间
int f=0;〃当前完成时间和
int bestf=MAX;
void swap(i nt &a,i nt &b)
{
int temp=a;
a=b;
b=temp;
}
void Backtrace^ nt t)
{
if(t>N)
{
bestf=f;
for(i nt i=1;i<=N;i++)
{
bestx[i]=x[i];
}
}
else
{
for(i nt i=t;i<=N;i++)
{
f1+=m[1][x[i]];
f2[t]=(f2[t-1]>f1?f2[t-1]:f1)+m[2 ][ x[i]]; f+=f2[t];
swap(x[t],x[i]);
if(f<bestf)
{
Backtrace(t+1);
}
swap(x[t],x[i]);
f1-=m[1][x[i]];
f-=f2[t];
}
}
}
int mai n()
{
memset(bestx,0,(N+1)*sizeof(i nt));
memset(f2,0,(N+1)*sizeof(i nt));
Backtrace(l);
printf("该作业调度的最优完成时间和为:%d\n调度顺序为:\n\n",bestf);
for(i nt i=1;i<=N;i++)
{
prin tf("%d\n",bestx[i]);
}
return 0;
}
六、总结
每个人对分支限定法的算法都存在着一定的理解,这也就是很多同学的算法实现不同的原因•可能是自己理解的不够透彻,我总觉得自己的实验做的非常的不完善。

发现自己还存在着很大差距•希望通过更多的实验,让自己有更大的提高
【下载本文档,可以自由复制内容或自由编辑修改内容,更
多精彩文章,期待你的好评和关注,我将一如既往为您服务】。

相关文档
最新文档