人工智能原理与方法 ppt课件
人工智能PPT完整版

谢 谢! THANK YOU
此课件下载可自行编辑修改,供参考! 部分内容来源于网络,如有侵权请与我联系删除!
映了计算机“思维”的创造灵感、拥有直 觉、获得情感。
人类与人工智能之争
统治?被统治?
最极端的假设则预测了一个人工智能比人类 更加聪明的遥远未来。
人工智能的发展依然处于非常初级的阶段,现状基 本就是 ——
“没有人工,就没有智能”
计算智能阶段智能产品特点
“能存会算” ——快速计算与 存储
第二阶段 感知智能阶段
什么是感知?
感知就是具有能够感觉内 部、外部的状态和变化, 理解这些变化的某种内在
含义的能力。
智能机器人的感知
一个鲜活的生命可以通过ta的各种感觉器官和中枢神经系统来 感受、理解外部和自己内部的变化。而一个智能机器人要感知 这个世界,就必须具有一定的信息获取手段和信息处理方法。 对于许多机器人来说,获取信息的手段就是通过多种不同功能 的传感器来收集各种不同性质的信息。而对于信息的理解则是
THREE
第三部分 发展成果
3
三 发展成果
发
➢ 人机对弈:
展
Deep blue
成
AlphaGo
果
➢ 自动工程:
猎鹰系统等
➢ 模式识别:
2D/3D/ 多 维 识 别 系 统
➢ 知识工程:
专家系统,智能搜索引 擎等
FOUR
第四部分 发 展争议
5
电影中的人工智能
2015
技术奇点:人工智能是否会引发技术爆炸?
发展争议 人工智能会拥有情感,奴役人类吗?
“人类制造机器就是为了让机器在某些方 面强于人类,但是机器在某些方面超越人 类不意味着机器有能力学习其他方面的能 力,或者将不同的信息联系起来而做超越
人工智能教学PPT课件

应用场景
跨语言交流、智能问答、智能家 居控制等。
05
计算机视觉技术与应用
图像识别与分类技术
01
图像特征提取
介绍常见的图像特征提取方法,如SIFT、HOG等,以及深度学习中的
卷积神经网络(CNN)特征提取技术。
02 03
图像分类算法
阐述基于传统机器学习的图像分类算法,如支持向量机(SVM)、随 机森林(Random Forest)等,以及基于深度学习的图像分类算法, 如卷积神经网络(CNN)、循环神经网络(RNN)等。
应用
二分类问题,如垃圾邮件识别、疾病 预测等。
监督学习算法
原理
寻找一个超平面,使得正负样本间隔最大化。
应用
分类和回归问题,如图像识别、文本分类等。
非监督学习算法
原理
将数据划分为K个簇,使得簇内距离最小,簇间距离最大。
应用
客户细分、图像压缩等。
非监督学习算法
原理
通过计算数据点之间的距离,将数据逐层进行聚合。
。
产业生态
包括科研机构、高校、企业等 组成的产业生态,共同推动人 工智能技术的发展和应用。
02
机器学习原理及算法
监督学习算法
原理
通过最小化预测值与真实值之间 的均方误差,求解最优参数。
应用
预测连续型数值,如房价、销售 额等。
监督学习算法
原理
通过Sigmoid函数将线性回归结果映 射到[0,1]区间,表示概率。
原理
直接对策略进行建模和优化,通过梯 度上升方法更新策略参数。
应用
自然语言处理、推荐系统等。
强化学习算法
原理
结合深度学习和强化学习,使用神经网 络来逼近Q值函数或策略函数。
2024版《人工智能》PPT课件

《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。
发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。
重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。
人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。
技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。
核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。
实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。
应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。
挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。
应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。
应用预测连续型数值,如房价、销售额等。
原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。
应用分类问题,如图像识别、文本分类等。
原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。
应用分类、回归问题,如信用评分、医学诊断等。
原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。
应用数据挖掘、图像压缩等。
原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。
应用社交网络分析、生物信息学等。
人工智能培训课件(ppt4)精编版(2024)

生活方式变革
AI技术渗透到日常生活的各个方面,如智能家居、自动驾驶等,改 变了人们的生活方式和生活质量。
26
THANKS
感谢观看
2024/1/26
27
22
06
人工智能伦理、法律和社会影响
2024/1/26
23
AI伦理问题探讨
2024/1/26
数据隐私
AI系统通常需要大量数据进行训练,其中可能包含个人隐私信息,如何确保数据安全和隐 私保护是一个重要问题。
偏见和歧视
AI系统的决策可能受到数据偏见和算法设计的影响,从而导致不公平的结果,如何避免和 纠正这些偏见和歧视是AI伦理的重要议题。
2024/1/26
情感分析
识别和分析文本中的情感 倾向和情感表达。
应用场景
情感分类、观点挖掘、问 答系统、语义角色标注等 。
13
机器翻译与语音识别
机器翻译
将一种自然语言文本自动翻译成 另一种自然语言文本。
2024/1/26
语音识别
将人类语音转换为计算机可读的文 本或命令。
应用场景
跨语言交流、语音助手、语音转文 字、智能客服等。
14
04
计算机视觉技术
2024/1/26
15
图像识别与分类方法
2024/1/26
传统图像识别方法
01
基于手工提取的特征(如SIFT、HOG等)进行分类识别。
深度学习图像识别方法
02
利用卷积神经网络(CNN)自动提取图像特征,实现端到端的
识别与分类。
迁移学习方法
03
将在大规模数据集上预训练的模型迁移到特定任务上,提高识
人工智能课件(PPT 85页)

第一章 概述
• 1.1 什么是人工智能? 人类的自然智能伴随着人类活动无
时不在、无处不在。人类的许多活动, 如解题、下棋、猜谜、写作、编制计划 和编程,甚至驾车骑车等,都需要智能。 如果机器能够完成这些任务的一部分, 那么就可以认为机器已经具有某种程度 的“人工智能”。
什么是人工智能?
• 从思维基础上讲,它是人们长期以来探 索研制能够进行计算、推理和其它思维 活动的智能机器的必然结果;从理论基 础上讲,它是信息论、控制论、系统工 程论、计算机科学、心理学、神经学、 认知科学、数学和哲学等多学科相互渗 透的结果;从物质和技术基础上讲,它 是电子计算机和电子技术得到广泛应用 的结果。
AI的产生及主要学派
• 如果说符号主义是从宏观上模拟人 的思维过程的话,那么联结主义则 试图从微观上解决人类的认知功能, 以探索认知过程的微观结构。联结 主义从人脑模式出发,建议在网络 层次上模拟人的认知过程。所以, 联结主义本质上是用人脑的并行分 布处理模式来表现认知过程。
AI的产生及主要学派
符号主义又称为逻辑主义(Logicis)、心理学 派 ( Psychlogism) 或 计 算 机 学 派 (Computerism)。该学派认为人工智能源于数 理逻辑。数理逻辑在19世纪获得迅速发展,到20 世纪30年代开始用于描述智能行为。计算机产生 以后,又在计算机上实现了逻辑演绎系统,其代 表的成果为启发式程序LT(逻辑理论家),人们 使用它证明了38个数学定理,从而表明了人类可 利用计算机模拟人类的智能活动。
什么是人工智能?
• 1983年 Elaine Rich “人工智能是研究怎样让电脑模拟人脑从事推
理、规划、设计、思考、学习等思维活动,解 决至今认为需要由专家才能处理的复杂问题。” • 1987年Michael R.Genesereth 和 Nils J.Nilsson
人工智能简介-课件(PPT演示)

AI的定义
何谓人工智能(2/2) Turing测试
小于50%?
被测机器
测试主持人
被测人
12
人工智能概述
• AI的定义及其研究目标 • AI的产生与发展 • 孕育期(1956年以前) • 形成期(1956----1970年) • 知识应用期(1970---- 20世纪80年代末) • 从学派分离走向综合(20世纪80年代末到本世纪初) • 智能科学技术学科的兴起(本世纪初以来) • AI研究的基本内容 • AI研究的不同学派
5
AI的定义
智能(自然智能)
• 自然智能 • 指人类和一些动物所具有的智力和行为能力 • 人类的自然智能(简称智能) • 指人类在认识客观世界中,由思维过程和脑力活动所 表现出的综合能力。 • 人类大脑是如何实现智能的 • 两大难题之一:宇宙起源、人脑奥秘 • 对人脑奥秘知之甚少 • 对人脑奥秘知道什么 • 结构:1011-12 量级的神经元,分布并行 • 功能:记忆、思维、观察、分析 等 • 对智能的严格定义 • 有待于人脑奥秘的揭示,进一步认识 6
16
知识应用期(1971—1980)
挫折和教训 • 失败的预言: • 60年代初,西蒙预言:10年内计算机将成为世界冠军、将证明一个未 发现的数学定理、将能谱写出具有优秀作曲家水平的乐曲、大多数心理 学理论将在计算机上形成。 • 挫折和教训 • 在博弈方面,塞缪尔的下棋程序在与世界冠军对弈时,5局败了4局。 • 在定理证明方面,发现鲁宾逊归结法的能力有限。当用归结原理证明 两个连续函数之和还是连续函数时,推了10万步也没证出结果。 • 在问题求解方面,对于不良结构,会产生组合爆炸问题。 • 在机器翻译方面,发现并不那么简单,甚至会闹出笑话。例如,把 “心有余而力不足”的英语句子翻译成俄语,再 翻译回来时竟变成了 “酒是好的,肉变质了” • 在神经生理学方面,研究发现人脑有1011-12以上的神经元,在现有技术 条件下用机器从结构上模拟人脑是根本不可能的。 • 在其它方面,人工智能也遇到了不少问题。在英国,剑桥大学的詹姆 教授指责“人工智能研究不是骗局,也是庸人自扰” 。从此,形势急转 17 直下,在全世界范围内人工智能研究陷入困境、落入低谷。
人工智能原理及其应用 ppt课件

ARTIFICIAL INTELLIGENCE
人工智能原理及其应用
1. 1990年至今:又一个低潮期 乐观派和反对派 挑战
第二章 知识表示
知识是一切智能行为的基础。知 识表示方法是人工智能的中心内容之一。 知识、知识表示的概念 各种知识表示方法及其特点
1、状态空间法 2、谓词表示法 3、产生式表示法 4、语义网络法 5、框架表示法 6、脚本表示法 7、过程表示法 8、面向对象表示法
1) 连接主义 起源于仿生学,特别是人脑模型的研究。 从神经元开始进而研究神经网络模型和 脑模型,目前比较热门。
第一章 人工智能概述
1) 行为主义 源于控制论。早期的研究工作重点是模 拟人在控制过程中的智能行为和作用, 后来偏重于智能控制和智能机器人系统 的研究。代表作是布鲁克斯(Brooks)的 六足机器人。
第二章 知识表示
1) 表示能力 2) 可利用性 3) 可组织性与可维护性 4) 可实现性 5) 自然性与可理解性
第二章 知识表示
1. 知识表示观点 1) 陈述性观点 2) 过程性观点
第二章 知识表示
1) 表示能力 2) 可利用性 3) 可组织性与可维护性 4) 可实现性 5) 自然性与可理解性
第一章 人工智能概述
一、研究目标
1. 计算机与人脑(硅脑与碳脑) 人脑可以通过自学习、自组织、自适应来
不断提高信息处理能力;而存储程序式计算 机的所有能力都是人们通过编制程序赋予它 的,与人脑相比是机械的、死板的和无法自 我提高的。
人工智能最新版ppt课件

目标检测与跟踪应用场景
探讨目标检测与跟踪在视频监控、智能交通、无人驾驶等领域的应用。
三维重建与虚拟现实应用
三维重建技术
文本挖掘与信息抽取技术
01
文本挖掘概念与应用
从大量非结构化文本数据中提取有价值信息的过程,广泛应用于舆情监
测、商业智能等领域。
02
信息抽取任务与方法
包括命名实体识别、关系抽取、事件抽取等任务,常用方法有基于规则、
统计学习、深度学习等。
03
文本挖掘与信息抽取工具
介绍常用的文本挖掘和信息抽取工具,如NLTK、SpaCy、
介绍三维重建的基本原理和实现方法,如立 体视觉、结构光等。
虚拟现实技术
讲解虚拟现实的基本概念、系统组成及实现 方法。
三维重建与虚拟现实应用场景
分析三维重建与虚拟现实在游戏、影视、教 育等领域的应用,以及未来发展趋势。
05
语音识别与合成技术及应用
语音识别基本原理及挑战
语音识别基本原理
将声音转换成文字,通过对语音信号 的分析和处理,提取出语音中的特征 参数,进而识别出对应的文字或指令。
StanfordNLP等。
情感分析与观点挖掘方法
情感分析概念与应用
对文本进行情感倾向性判断的过程,广泛应用于产品评论、 社交媒体等领域。
情感分析技术与方法
包括基于词典的方法、机器学习方法和深度学习方法等。
观点挖掘任务与流程
从文本中识别和提取观点的过程,包括观点持有者、观点 对象、观点内容等元素的识别。
数据预处理、相似度度量、聚类算法选择与调优、结果可视化等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能原理与方法
1 命题逻辑和谓词逻辑
命题:命题是具有真假意义的语句。
谓词:一个谓词由谓词名和个体两部分组成。
谓词公式:连接词、量词。 合适公式:原子是合适公式;若A是合适公式,则A也是
合适公式;若A、B都是合适公式,则 AB ,AB , AB ,也都是合适公式; 若A是合适公式则,(x)A(x)、(x)A(x) 也是合适公式。 谓词公式的永真性、可满足性和不可满足性
分布式学派:以C.Hewitt为代表的研究智能系统中的知识 分布行为。
进化学派:R.A.Brook为代表。
2020/8/15
Wei Changhua
13
人工智能原理与方法
(2)人工智能研究的内容 ● 机器感知:所谓的机器感知就是使机器具有类似于人的 感知能力,其中以机器视觉与机器听觉为主。 ● 机器思维:机器思维是指对通过感知得到的外部信息及 机器内部的各种工作信息进行有目标的处理。 ● 机器学习:研究使机器具有获取新知识、学习新技巧, 并在实践中不断完善、改进的能力。 ● 机器行为:与人的行为相对应,机器行为主要是指计算 机的表达能力,即 “说”、“写”、“画”等。
2020/8/15
Wei Changhua
2
人工智能原理与方法
第二章 人工智能的数学基础
● 命题逻辑和谓词逻辑 ● 概率论 ● 模糊理论
2020/8/15
Wei Changhua
3
人工智能原理与方法
第三章 知识表示
● 知识与知识表示
● 对知识表示的要求
● 知识表示方法
一阶谓词逻辑
产生式规则
语义网络
● 基于规则的演绎系统
2020/8/15
Wei Changhua
6
人工智能 ● 确定因子法 ● 主观Bayes方法 ● 证据理论
● 可能性理论
2020/8/15
Wei Changhua
7
人工智能原理与方法
第七章 专家系统
● 专家系统的基本概念 ● 专家系统分类 ● 专家系统的一般结构 ● 专家系统的建造与评价 ● 专家系统开发工具 ● 专家系统开发环境 ● 新一代专家系统的研究
行为主义:(进化理论)由美国麻省理工学院的R.A.Brook教 授提出的。该理论认为人的本质能力是在动态环境中的行 走能力、对外界事物的感知能力、维持生命和繁衍生息的 能力,正是这些能力对智能的发展提供了基础,因此智能 是某种复杂系统所浮现的性质。
2020/8/15
Wei Changhua
12
人工智能原理与方法
4 人工智能研究的内容
(1) 人工智能研究中的学派
逻辑学派:以麦卡锡和尼尔逊为代表的研究基于逻辑的 知识表示和推理机制。
认知学派:以纽厄尔和西蒙为代表的研究对人类认知功 能的模拟,试图找出产生智能行为的原理。
知识工程学派:以费根鲍姆为代表的研究知识在人类智 能中的作用和地位,提出了知识工程概念。
连 接 学 派 : 以 J.L.McClelland 和 J.D.Rumelhart 为 代 表 的 研 究神经网络。
框架
状态空间
脚本
Petri网
2020/8/15
Wei Changhua
4
人工智能原理与方法
第四章
基本的问题求解方法
● 基本概念 ● 状态空间搜索 ● 与/或树搜索
● 博弈树的启发式搜索
2020/8/15
Wei Changhua
5
人工智能原理与方法
第五章
基本推理方法
● 推理的基本概念 ● 推理方式和分类 ● 推理控制策略 ● 归结反演
2020/8/15
Wei Changhua
15
人工智能原理与方法
思考题
1、什么是人工智能? 2、人工智能研究的对象是什么? 3、人工智能研究的途径有那些? 4、人工智能研究的领域有那些? 5、人工智能研究的近期目的和远期目的是什么? 6、简述图灵试验。
2020/8/15
Wei Changhua
16
● 几个著名的专家系统
2020/8/15
Wei Changhua
8
人工智能原理与方法
第八章
机器学习
● 机器学习的概念 ● 学习系统模型 ● 机器学习分类 ● 机器学习研究历史 ● 机器学习的研究目标
● 几个著名的学习系统
2020/8/15
Wei Changhua
9
人工智能原理与方法
1 什么是人工智能? 人工智能是研究知识的一门科学,即如 何表示知识,如何获取知识和如何利用 知识的科学。
2020/8/15
Wei Changhua
10
人工智能原理与方法
2 人工智能研究的目标 近期目标:在近期,人工智能研究的任务
是利用冯.偌依曼型计算机模拟人类智力 行为,研制智能程序; 远期目标:远期是研制全新的计算机,即 智能计算机。
2020/8/15
Wei Changhua
11
人工智能原理与方法
人工智能原理与方法
Department of Computer Science CCNU Email:
2020/8/15
Wei Changhua
1
人工智能原理与方法
第一章
绪论
● 什么是人工智能? ● 人工智能研究的目标 ● 人工智能研究途径 ● 人工智能研究的内容
人工智能研究中的学派 人工智能研究的内容 ● 人工智能研究领域
2020/8/15
Wei Changhua
14
人工智能原理与方法
5 人工智能研究领域
● 模式识别(Pattern Recognition) ● 自然语言理解(Natural langrage Understanding) ● 专家系统( Expert System) ● 机器学习(Machine Learning) ● 自动定理证明(Automatic Theorem Proving) ● 自动程序设计(Automatic Programming) ● 机器人学(Robots) ● 博弈(Game) ● 智能决策支持系统(Intelligent Decision Support System) ● 人工神经网络(Artificial natural networks)
3 人工智能研究途径
人工智能研究可以有三种途径进行:
符号主义:(思维理论)符号主义认为人类认知的基本元素 是符号,认知的过程就是符号处理的过程。(一阶谓词逻 辑)
连接主义:(阈值理论)连接主义认为人类认知的基本元素 是神经元本身。人类的认知过程就是大量的神经元的整体 活动。(研究方法:人工神经网络)