东北三省数学建模联赛B题
2023年数学建模国赛b题解析

2023年数学建模国赛B题解析1. 背景介绍2023年数学建模国赛B题是一个涉及到社会科学和环境科学领域的综合性问题,旨在考察参赛选手对于实际问题的建模和分析能力。
该题目涉及到了城市交通、环境污染、资源利用等多个方面,要求选手综合运用数学、物理、统计等知识对这一复杂的现实问题进行建模和求解。
2. 主要内容在2023年数学建模国赛B题中,首先需要选手对于城市交通状况进行调研和分析,包括交通流量、道路拥堵情况、公共交通系统等。
还需要考虑到城市的环境污染问题,比如大气污染、噪音污染等,以及资源利用效率等方面的情况。
选手需要结合实际数据和情况,建立相应的数学模型,分析城市交通对环境的影响,提出优化方案和政策建议。
3. 个人观点和理解对于这个题目,我个人认为首先需要对于城市的交通和环境问题有一个深入的了解,包括相关数据的收集和整理,以及对于相关政策和现状的调研。
需要将数学建模的方法和技巧应用到实际问题中,通过建立数学模型,分析问题,并得出结论和建议。
需要将数学建模和实际问题相结合,提出可行的优化方案和政策建议。
4. 总结综合以上所述,2023年数学建模国赛B题涉及到了对于城市交通和环境问题的综合分析和建模求解。
选手需要全面了解问题背景,建立数学模型,分析问题,并得出结论和建议。
这一过程需要综合运用数学、物理、统计等多学科知识,对于选手的综合能力提出了相当高的要求。
通过深入研究这个主题,我对于城市交通和环境问题有了更为深入的理解,也对于数学建模的方法和应用有了更为全面的认识。
希望能在今后的学习和工作中,继续深入研究数学建模领域,为解决实际问题贡献自己的力量。
以上是针对2023年数学建模国赛B题的全面解析和个人观点,希望对于你的学习和写作有所帮助。
至此,全篇文章结束。
在继续探讨2023年数学建模国赛B题的解析和个人观点之前,我们可以进一步深入探讨和分析城市交通和环境问题的相关细节和影响因素。
对于城市交通状况的调研和分析涉及到了交通流量的变化和分布、道路拥堵的原因和影响因素、公共交通系统的覆盖范围和效率等方面。
全国数学建模大赛2023b题

全国数学建模大赛2023b题:深度评估与思考1. 引言全国数学建模大赛一直以来都是我国高校学子展示数学建模能力的重要舞台。
而2023年的b题作为考察学生综合数学能力和创新思维的重要题目之一,备受关注。
在本文中,我将深入评估并思考全国数学建模大赛2023b题,希望可以对这一题目进行全面、深入的了解。
2. 概述全国数学建模大赛2023b题全国数学建模大赛2023b题是一个涉及数学、计算机科学和工程学知识的综合性题目。
它要求参赛者利用所学知识,对一个现实问题进行建模,并通过数学模型来解决具体问题。
这一题目既考察了参赛者的数学建模能力,也考察了其解决实际问题的能力,因此备受瞩目。
3. 对题目的深度评估为了更深入地理解全国数学建模大赛2023b题,我首先对其进行了深度评估。
这一题目要求参赛者通过对某一现实问题的抽象和分析,构建相应的数学模型,并用数学方法加以求解。
在评估过程中,我发现这一题目对参赛者的数学建模能力、创新思维和解决问题的能力提出了很高的要求。
它也考察了参赛者的团队合作能力和对于实际问题的理解能力。
这一题目在全国数学建模大赛中具有非常重要的地位。
4. 广度评估除了对全国数学建模大赛2023b题的深度评估之外,我还对其进行了广度评估。
这一题目所涉及的现实问题可能涉及各个学科领域,例如社会科学、自然科学、工程科学等。
解决这一问题需要参赛者具备跨学科的知识储备和综合运用能力。
这也意味着参赛者需要具备广阔的学科视野和跨学科的综合能力,这对于他们未来的学术和职业发展都具有极大的促进作用。
5. 个人观点对于全国数学建模大赛2023b题,我认为这是一个既具有挑战性又具有发展潜力的题目。
它既可以锻炼参赛者的数学建模能力和解决问题的能力,同时也可以促进参赛者在学科间的交叉学习和思维方式的变化。
而且,这也是对于学生学习成果的一种很好的检验方式,能够让参赛者更好地理解、掌握所学知识,促进他们的学术成长和创新能力的培养。
2023数学建模比赛b题以及详细解析

2023数学建模比赛B题详细解析1. 引言在2023年的数学建模比赛中,B题是一个备受关注的话题。
本文将深入探讨该题目,通过全面的评估和解析,帮助读者更深入地理解这一主题。
2. 什么是数学建模比赛B题让我们来了解一下数学建模比赛的B题是什么。
在数学建模比赛中,B 题通常是一个与实际问题相关的数学建模题目,要求参赛者利用数学方法和技巧解决真实世界中的问题。
2023年数学建模比赛B题也是如此,它需要参赛者利用数学模型和算法来解决一个特定的现实问题。
3. 题目背景和要求2023年数学建模比赛B题的背景和要求是什么呢?题目背景可能涉及到某个领域的实际情况,而题目要求则明确指出了需要解决的问题和需要达到的目标。
参赛者需要从题目背景和要求中获取信息,然后针对性地构建数学模型和进行相关分析,最终提出合理的解决方案。
4. 解题思路和方法针对2023年数学建模比赛B题,解题思路和方法至关重要。
参赛者可以通过分析题目背景和要求,确定合适的数学模型和算法,以解决问题。
在这个过程中,可能涉及到数学统计方法、最优化算法、图论等多个数学领域的知识。
对于特定类型的题目,可能还需要对相关领域的知识有更深入的了解。
5. 深入解析题目在解析题目时,参赛者需要从多个角度对题目进行深入分析。
这包括对题目中涉及的各种因素的理解,对可能存在的难点和局限性的考虑,以及对解决方案的合理性和有效性的评估。
在这个过程中,参赛者需要展现出较强的逻辑思维能力和数学建模能力。
6. 个人观点和理解对于2023年数学建模比赛B题,我个人觉得……(在这里共享一些个人观点和理解,与主题相关的看法和体会)7. 总结本文对2023年数学建模比赛B题进行了详细解析。
通过全面的评估和深入的探讨,可以帮助参赛者更好地理解和应对这一主题。
对于数学建模比赛B题,了解其背景要求、解题思路和方法,以及深入解析题目,都是至关重要的。
希望本文能对读者有所帮助。
以上都是本文对2023数学建模比赛B题的详细解析。
东北三省数学建模竞赛历年赛题

东北三省数学建模竞赛历年赛题2006 A:油田开发规划的合理编制问题
B:冬季北方室内空气交换问题
C:中国人口政策问题
2007 A:油田开发规划的合理编制问题
B:冬季北方室内空气交换问题
C:中国人口政策问题
2008 A:滑雪场定价问题
B:居民楼顶最佳保温层厚度
C:灾区物资分配问题
2009 A:运动界面追踪
B:丁克与人口增长
C:客观、合理的评价学生学习状况
2010 A:企业的营销管理问题
B:走遍全中国
C:封闭系统的货币分布问题
2011 A:食品质量安全抽样数据分析
B: 垃圾分类处理与清运方案设计
C:水资源短缺风险评价
D:用出租车GPS数据分析深圳道路交通情况
2012 A:深圳人口与医疗需求预测模型
B:手机用户精准识别
C:绿色机房模型评价与控制
D:打孔机生产效能的提高
2013 A:食品质量安全抽检数据分析
B:深圳关内外交通拥堵探究与治理
C:垃圾减量分类活动中社会及个体因素的量化分析
D:自然灾害保险问题的研究
2014 A:计划生育政策调整对人口数量、结构及其影响的研究B:基因组组装
C:垃圾焚烧厂的经济补偿问题
D:以深圳市为例探讨洪灾损失预测研究的科学性与严谨性2015 A:医保欺诈行为的主动发现
B:DNA序列的k-mer index 问题
C:福田红树林自然保护区湿地生态系统研究
D: 航班延误问题。
2023数学建模国赛b题解题思路

2023年数学建模国赛B题解题思路1. 引言2023年数学建模国赛B题是一个涉及数学、计算机科学和现实问题的综合性题目。
在此次文章中,我将从不同的角度来探讨这个题目,包括数学建模的基本理论、实际问题的分析以及解题思路的具体步骤。
2. 数学建模的基本理论数学建模是一种以数学方法来解决实际问题的技术和方法。
在数学建模国赛B题中,我们需要运用概率统计、优化算法、数据分析等数学知识来解决一个复杂的实际问题。
在解题过程中,我们需要考虑数学模型的构建、算法的设计和模拟实验等方面的问题,以便得出高质量的解题结果。
3. 实际问题的分析在数学建模国赛B题中,我们需要解决的是一个涉及到供应链管理和资源分配的实际问题。
这个问题涉及到多个因素和限制条件,包括生产能力、运输成本、市场需求等方面的问题。
在解题过程中,我们需要分析这些因素之间的关系,找出影响问题的关键因素,以便给出合理的解决方案。
4. 解题思路的具体步骤针对数学建模国赛B题,我们可以采取以下步骤来解题:- 我们需要深入了解问题背景,分析问题的关键因素和限制条件,以便构建数学模型。
- 我们可以采用概率统计和数据分析的方法,来对问题进行定量分析,找出问题的规律和特点。
- 我们可以设计合适的优化算法,来求解问题的最优解或近似最优解。
- 我们需要进行模拟实验或灵敏度分析,来验证我们所得到的解题结果的可行性和有效性。
5. 总结与回顾通过对数学建模国赛B题的深入探讨,我们可以得出以下结论:- 数学建模是一种重要的解决实际问题的技术和方法,它涉及到多个学科和领域的知识。
- 在解决实际问题时,我们需要通过对问题的深入分析和建模,来得出合理的解决方案。
- 解题思路的具体步骤对于解决复杂的实际问题是非常有帮助的,它能够帮助我们更加系统地分析和解决问题。
6. 个人观点和理解对于数学建模国赛B题,我认为需要我们具备扎实的数学基础知识、良好的逻辑思维能力和较强的问题分析能力。
通过不断地学习和实践,我们可以逐渐提高自己的数学建模能力,从而更好地解决实际问题。
2023年数学建模国赛b题遗传算法

2023年数学建模国赛B题遗传算法在数学建模比赛中,遗传算法是一个常见的解题方法,尤其是在解决优化问题时,它的应用非常广泛。
而在2023年的数学建模国赛B题中,遗传算法是一个重要的解题工具。
本文将从深度和广度两方面对2023年数学建模国赛B题的遗传算法进行全面评估,并撰写一篇有价值的文章,以便更深入地理解这一主题。
1. 了解遗传算法让我们先了解一下遗传算法。
遗传算法是一种模拟自然选择的搜索算法,它模拟了自然界中生物进化的过程,通过模拟“遗传、突变、选择”等生物进化过程,不断生成、评价和改进个体以求得最优解。
在数学建模比赛中,遗传算法通常用于解决复杂的优化问题,如参数优化、函数最大值最小值求解等。
2. 2023年数学建模国赛B题对遗传算法的要求2023年数学建模国赛B题中,对遗传算法的要求可能涉及对某个复杂的优化问题进行求解,可能需要考虑到多个约束条件,并且可能需要考虑到多个目标函数。
参赛选手需要充分理解遗传算法的原理和特点,合理设计算法流程和参数,以获得较好的优化结果。
3. 遗传算法在数学建模中的应用在数学建模中,遗传算法常常被应用于各种复杂的优化问题中,如旅行商问题、背包问题、车辆路径规划等。
遗传算法通过不断迭代,生成新的个体,评价适应度,进行选择、交叉和变异操作,最终得到较好的解。
在2023年数学建模国赛B题中,可能涉及到某个实际问题的优化,而遗传算法可以帮助选手更快速地求解出较优解。
4. 个人观点和理解从个人观点来看,遗传算法是一种非常强大的优化算法,它能够在解决复杂的优化问题时发挥其优势。
在数学建模比赛中,合理利用遗传算法可以帮助选手更快速地得到较好的解,提高比赛成绩。
但是,选手需要注意合理设计算法参数,保证算法的收敛性和稳定性,以避免陷入局部最优解。
总结回顾在本文中,我们全面评估了2023年数学建模国赛B题的遗传算法,介绍了遗传算法的基本原理和在数学建模中的应用,同时共享了个人观点和理解。
2023 年数学建模国赛b 题 多波束测线问题思路

2023年数学建模国赛B题是关于多波束测线问题。
这是一个非常具有挑战性的题目,需要我们思考和解决。
在本文中,我将从简到繁,从浅入深地探讨这个问题,并提供我个人的观点和理解。
希望通过本文的阅读,你能对这个题目有一个更深入的理解。
一、问题背景多波束测线问题是指在测绘建筑物或场地轮廓时,利用多个发射波束接收返回信号以获取目标轮廓的方法。
而2023年数学建模国赛B题的多波束测线问题则是要求我们通过建立数学模型,从已知点向目标区域内发射波束,测量波束的回波信息,然后根据这些信息计算出目标区域的轮廓。
二、问题分析1. 波束的发射与接收我们需要考虑如何进行波束的发射和接收。
在实际测量中,波束可以由雷达、激光仪等设备发射,然后通过接收设备收集返回的信息。
我们需要建立一套模型来描述波束的发射与接收过程,包括波束的参数、发射源和接收点的位置等。
2. 回波信息的处理接收到的回波信息包含了目标区域内的散射点的位置和强度等信息。
我们需要分析这些信息,找出与目标轮廓有关的数据,并进行数据处理和分析,以便后续的计算和模型建立。
3. 轮廓的计算我们需要根据接收到的回波信息,计算出目标区域的轮廓。
这一部分涉及到数学建模、数据处理和算法设计等内容,需要我们综合运用数学知识和计算机技术来解决。
三、可能的解决方案针对2023年数学建模国赛B题的多波束测线问题,可能的解决方案包括但不限于以下几个方面:1. 建立数学模型,描述波束的发射与接收过程,包括波束的参数、发射源和接收点的位置等。
2. 开发数据处理和分析的方法,提取目标轮廓相关的信息,并对数据进行处理和筛选。
3. 设计计算和模拟算法,根据接收到的回波信息计算出目标区域的轮廓,得出最终的结果。
四、个人观点和理解从我个人的角度来看,2023年数学建模国赛B题的多波束测线问题需要综合运用数学、物理、计算机等各方面的知识和技能来解决。
这是一个非常有挑战性的题目,但同时也是一个很有趣的问题,可以锻炼我们的综合能力和创新思维。
08年东三省建模联赛论文B题

平屋顶保温层的节能设计与材料选择摘要建筑节能的发展和新型保温材料的使用,使得合理的墙体设计、保温材料的选择及保温层的厚度,日益成为目前建筑节能的重要课题。
在本文中,我们围绕使室内有比较适宜的温度和经济节约这两个目的,通过效益分析得出当保温材料确定时保温层厚度的最佳值;通过对施工时材料的层次分析确定最佳的保温材料及其最佳厚度。
对于第一问的求解,我们合理地取极值,从能量守恒的角度将问题简化成传热学的傅立叶方程的求解,并且在求算屋顶热量时,还考虑到了空气对流和黑体辐射所造成的屋顶热量损失,通过极值温度算出了珍珠岩保温层的厚度范围,再通过效益分析得出最佳厚度。
取极值只是一个解决厚度问题的一个途径,极值算出的后再通过综合的效益分析,最后确定一个最佳值。
为了弥补极值求解的极端化,因为极值的温度毕竟在一年中出现的天数极少,所以我们在模型的改进中又针对一般情况下的北方冬季和夏季的温度进行了讨论,因为温度在屋顶的变化是连续的,所以我们用积分的形式求出了屋顶、四周的墙壁、空气流通以及冬天时暖气的热量变化,最后通过能量守恒以及二分法求算出了保温层的最佳保温厚度范围,对于少数几天里的极值温度我们可以采取其它方法达到保温效果,这样此方法对于改进前的模型来说就更节约材料了。
值得说明的是,我们在求解的过程得出了3个可以推广应用到建筑节能的模型。
对于第二问的求解,我们应用第一问得出的结论先求出保温层的热阻,继而在确定热阻的前提下进行层次分析,最终从可供选择的几种材料中选出了最佳的保温材料玻璃棉板,因为要达到与第一问相同的保温效果就应该使第二问的屋顶热阻与第一问的相同,这样我们利用第一问的热阻算出了玻璃棉板的厚度0.16m,我们也得出了可以应用建筑工程保温材料的选择的模型。
我们对第一问给出的答案:在能源较少的地区,并且通风条件不好时,珍珠岩保温层最佳厚度等于0.19m;能源充足,通风条件较好时保温层的最佳厚度为21kk,k1与材料单价及施工工价相关,k2与调温费用相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B题-无线回传拓扑规划
1.背景介绍
在城区建设基站,传输光纤部署最后一公里的成本高,光纤到站率低,全球综合来看低于60%;如果使用微波传输,由于微波只能在LOS(视距)场景下部署,而城区场景中LOS信道比例低于50%。
在农村网建设基站,单站业务量低,收入低,ROI(投资回报率)差,运营商建站对成本较为敏感。
卫星传输租金、光纤传输建设费用对于运营商是很大的负担,而如果使用微波传输,对于相当一部分站点需要提升铁塔高度来满足微波的LOS场景要求,铁塔费用的增加对于运营商来说同样是不小的负担。
Relay无线回传方案利用FDD LTE或TDDLTE制式承载来为站点回传,相对微波有较强的NLOS(非视距)传输能力,可以解决城区、农网等场景下的传统传输方式不可达的问题,同时在部分场景下也可以替代微波,有效降低站高,节省加站费用。
图1 Relay架构
RRN(eRelay Remote Node),是Relay方案中的无线回传设备,它用于为基站提供无线回传服务。
如图1所示。
Relay组网包含宿主基站DeNB和中继站RN两个逻辑节点:
•DeNB是在普通基站(DeNB)上增加了Relay功能,DeNB支持普通手机(UE)接入,也支持RRN的接入;
•RN包括RRN和ReBTS两部分。
RRN通过无线信号接入DeNB并建立空口承载;
ReBTS可供覆盖范围内的UE接入;ReBTS的传输由RRN提供
为了方便理解,这里分别将DeNB和RRN称作宿主站和子站,一个宿主基站通常可以有1~3个宿主小区,分别覆盖不同的方向(可理解为扇区的定义),如图2所示。
图2中方块代表子站,每个宿主小区可以接入一定数量的子站,子站与子站之间可以级联(即多跳),但跳数有限制。
图2 Relay拓扑关系示意图
2.任务表述
2.1任务简述
本任务中,在给定一个地区中候选站点的位置分布的情况下,参赛队伍需要根据站点间的相互位置、站点间拓扑关系限制等条件,在满足一定回传质量(本次任务仅根据宿主站与子站的距离是否满足某门限来判断是否满足最低回传质量要求。
而实际Relay部署时,影响回传质量的因素包括距离、地形阻挡、普通手机接入影响、ReBTS干扰、相邻基站干扰等多种复杂因素)的前提下,设计成本最优的部站方案,包括:
•候选站点是安装子站还是宿主站?
•候选站点间的连接关系如何?
结合现网中对于无线回传拓扑规划问题的具体需求,算法还应该具有以下特点:算法收敛速度快、尽可能覆盖更多的站点。
2.2 输入输出
1)输入:
每个地区内,所有站点列表,包括:
•站点经纬度;
•站型:RuralStar或蝴蝶站;
各种站型的综合成本,包括:
•宿主站的综合成本;
•子站的综合成本;
•卫星设备成本;
2)约束
输出的拓扑关系,应满足如下限制条件:
•首跳距离≤20km,之后每跳距离≤10km
•站点包含RuralStar和蝴蝶站两种不同站型;其中,RuralStar共包含1个扇区,蝴蝶站共包含2个扇区;若该站点为宿主站,则每个扇区第一级最大接入子站数4,最大总接入子站数6;为了简化问题,暂不考虑蝴蝶站的扇区覆盖方向;•宿主站之间采用微波连接,最大通信距离为50KM
•宿主站和子站以及子站之间采用无线回传连接
•每个子站最多只能有2条无线回传连接;
•任意子站只能归属一个宿主站,到达所属宿主站有且只有一条通路,且该通路包含的跳数小于等于3
•任意宿主站都有且只有一颗卫星负责回传,成片连接的宿主站可共享同一颗卫星,但一颗卫星最多只能负担8个成片宿主站的回传数据
•成片宿主站中,宿主站总数不设上限
例如,如下图所示的连接关系中
•宿主小区2不满足“每个扇区第一级最大接入数4,最大总接入数6”•子站1、子站2不满足“任意子站只能归属一个宿主站,到达所属宿主站有且只有一条通路”
•子站4不满足“任意子站只能归属一个宿主站,到达所属宿主站有且只有一条通路,且该通路包含的跳数小于等于3”中的“跳数小于等于3”
•子站5不满足“任意子站只能归属一个宿主站,到达所属宿主站有且只有一条通路,且该通路包含的跳数小于等于3”中的“任意子站只能归属一个宿主站”
上图连接关系可修改如下(前提是其它约束条件也满足),即可满足约束条件:
3)输出:
按输入数据中站点顺序,输出以下数据:
输出文件包含以下两个
Graph.csv
包含:
1)二维矩阵表示所有站点间的连接关系,0表示没有连接关系,1表示采用无线
回传连接,2表示采用微波连接;
Posi.csv
包含以下数组,按列存储:
1)一维数组表示站点类型,0表示子站,1表示宿主站;例如:
如上图所示的连接关系,以上数组将表述为:
算法效率:5分钟内
站点规模:1000站点左右
2.3 挑战目标
在拓扑架构满足约束条件的前提下,
挑战目标1(最高优先级):更低的总体成本
总体成本:宿主站数量*宿主站成本+子站数量*子站成本+卫星数量*卫星成本平均成本=总体成本/地区内站点总数
这里,卫星的数量等于Ceil(宿主站数量/8),Ceil()表示向上取整。
下表为各种传输方式的成本,单位:W USD
挑战目标2:更低的回传路径损耗
虽然无线回传中存在NLOS影响,但为了简化问题,采用自由空间传播模型估计站点之间的路径损耗,公式如下:
PL=32.5+20*lg(D)+20*lg(F)
其中,PL是路径损耗,是两个站点之间的距离,D单位为km,F是发射频率,单
位为MHz,这里默认采用900MHz。
系统平均损耗=所有无线回传连接的损耗之和/无线回传连接数
需要注意,该路径损耗只考虑子站回传部分,宿主站之间采用微波传输,只需满足距离限制,不计算该损耗。
附:球面距离公式
计算球面两点间距离的公式,设A点纬度β1,经度α1;B点纬度β2,经度α2,则距离S为:
S=R•arc cos[cosβ1cosβ2cos(α1-α2)+sinβ1sinβ2]
其中R为地球半径,本题中取6378km。