沪科版七年级下册数学期末考试试题及答案
沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷一、单选题1.已知a b >,则下列不等式一定成立的是( ) A .23a b +>+ B .22a b ->-C .22a b ->-D .22ab<2.如图所示:若m ∥n ,∠1=105°,则∠2=( )A .55°B .60°C .65°D .75° 3.下列从左到右的运算,哪一个是正确的分解因式( )A .2(2)(3)56x x x x ++=++B .268(6)8x x x x ++=++C .2222()x xy y x y ++=+D .2224(2)x y x y +=+4.如果一个数的平方为64,则这个数的立方根是( )A .2B .-2C .4D .±2 5.下列各式中,哪项可以使用平方差公式分解因式( )A .22a b --B .2(2)9a -++C .22()p q --D .23a b -6.当2x =时,下列各项中哪个无意义( )A .214x -B .1xx + C .2224x x ++ D .24x x -+7.下列现象中不属于平移的是( )A .飞机起飞时在跑道上滑行B .拧开水龙头的过程C .运输带运输货物的过程D .电梯上下运动8.下列各项是分式方程213933x x x x =--+-的解的是( )A .6x =-B .3x =C .无解D .4x =-9.如图,已知两条直线被第三条直线所截,则下列说法正确的是( )A .∠1与∠2是对顶角B .∠2与∠5是内错角C .∠3与∠6是同位角D .∠3与∠6是同旁内角10.在0.1、π、117 )A .4B .5C .3D .2二、填空题11.因式分解481x -=_________________.12.如果a 的平方根是±16____________. 13.不等式135x x +>-的解集是____________.14.当x _________时,分式236xx -无意义15.比较22__________1216.0.0000000202-用科学记数法表示为___________.17.已知∠1与∠2是对顶角,且∠1=40,则∠2的补角为___________.18.满足不等式组2153142x x x +≤⎧⎨+<+⎩的正整数解有____________.19.如图,已知直线a 、b 被直线c 所截,且a ∥b ,∠1=60,则∠2=__________ .20.有一组数据如下:10、12、11、12、10、14、10、11、11、10.则10的频数为____________频率为___________.三、解答题21.先化简,再求值。
沪科版七年级下册数学期末考试试题及答案精选全文完整版

可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。
沪科版数学七年级下册期末考试试题及答案

沪科版数学七年级下册期末考试试卷一、选择题(每小题4分,满分40分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列计算正确的是()A.=±2 B.(﹣3)0=1C.(﹣2a2b)2=4a4b2D.2a3÷(﹣2a)=﹣a33.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为()A.2.6×10﹣6B.2.6×10﹣5C.26×10﹣8D.0.26x10﹣74.已知ab=2,a﹣2b=3,则4ab2﹣2a2b的值是()A.6 B.﹣6 C.12 D.﹣125.已知关于x的不等式组的解集在数轴上表示如图,则b a的值为()A.﹣16 B.C.﹣8 D.6.关于x的方程﹣=2有增根,则m的值是()A.﹣5 B.5 C.﹣7 D.27.如图,a∥b,点B在直线a上,且AB⊥BC,若∠1=56°,则∠2的度数是()A.54°B.44°C.40°D.34°8.定义=ad﹣bc,例如:=1×4﹣(﹣3)×2=10,若≥7,则非负整数x的值有()A.5个B.4个C.3个D.0个9.如图,已知EF⊥AB,CD⊥AB,下列说法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,则∠1=∠BEF;④若∠ADG=∠B,则∠DGC+∠ACB=180°,其中说法正确的是()A.①②B.③④C.①②③D.①③④10.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.=B.=C.=•D.=•二、填空题(每小题5分,满分20分)11.分解因式:2x2﹣18=.12.若关于x的不等式组无解,则m的取值范围是.13.如图,相邻两线段互相垂直,甲、乙两人同时从点A处出发到点C处,甲沿着“A→B→C”的路线走,乙沿着“A→D→E→F→C→H→C的路线走,若他们的行走速度相同,则甲、乙两人谁先到C处?.14.观察下列等式:a1=n,a2=1﹣,a3=1﹣,a4=1﹣,…根据其中的规律,猜想:a2018=.(用含n的代数式表示)三、(每小题8分满分16分)15.计算:(1)+﹣(π﹣3.14)0+(﹣)﹣2(2)[(x+2y)2﹣x(x+4y)+(﹣3xy2)2]÷2y216.解不等式:3﹣≥,并把解集在数轴上表示出来.四、(每小题8分,满分16分)17.解方程:﹣=1.18.先化简,再求值:(﹣)÷,从﹣2,0,2,3中选取一个你认为合适的数作为a的值.五、(每小题10分,满分20分19.如图,直线AB、CD相交于点O,OE平分∠BOD(1)若∠AOC=60°,求∠BOE的度数;(2)若OF平分∠AOD,试说明OE⊥OF.20.观察下面给出的等式,回答下列问题:①=1﹣②=﹣③=(1)猜想:第n个等式是(2)计算:+++……+;(3)若+++…+=,求x的值.六、(本题满分12分)21.已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?七、(本题满分12分)22.如图,直线l3,l4与l1,l2分别相交于点A、B、C、D,且∠1+∠2=180°.(1)直线l1与l2平行吗?为什么?(2)点E在线段AD上,∠ABE=30°,∠BEC=62°,求∠DCE的度数.八、(本题满分14分)23.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A、B两条粽子加工生产线.原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的.(1)若A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A、B生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A、B生产线每天均加工a小时,由于受其他原因影响,在实际加工过程中,A生产线每小时比原计划少加工100个,B生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A生产线每天比原计划多加工3小时,B生产线每天比原计划多加工a 小时.这样每天加工的粽子不少于6300个,求a的最小值.参考答案与试题解析一、选择题(每小题4分,满分40分)1.解:9的平方根有:=±3.故选:C.2.解:(A)原式=﹣2,故A错误;(B)原式=1,故B错误;(D)原式=﹣a2,故D错误;故选:C.3.解:0.000 0026=2.6×10﹣6.故选:A.4.解:∵ab=2,a﹣2b=3,∴2b﹣a=﹣3∴4ab2﹣2a2b=2ab(2b﹣a)=2×2×(﹣3)=﹣12.故选:D.5.解:解不等式﹣x≥a,得:x≤﹣a,解不等式x﹣1≥﹣b,得:x≥1﹣b,则不等式组的解集为1﹣b≤x≤﹣a由数轴知不等式组的解集为﹣3≤x≤2,则,解得:,∴b a=4﹣2=,故选:B.6.解:由题意得:3x﹣2﹣m=2(x+1),方程的增根为x=﹣1,把x=﹣1代入得,﹣3﹣2﹣m=0解得m=﹣5,故选:A.7.解:∵a∥b,∴∠3=∠1=56°,∴∠2=180°﹣90°﹣56°=34°.故选:D.8.解:∵≥7,∴(x﹣1)(x+1)﹣x(x+2)≥7,解得:x≤﹣4,当x≤﹣4时,没有符合条件的非负整数.故选:D.9.解:∵EF⊥AB,CD⊥AB,∴∠EFB=∠CDB,∴DC∥EF,故①正确;无法得出DG∥BC,所以无法得出∠B+∠BDG=180°,故②错误;∴∠FEB=∠2,∵∠1=∠2,∴∠1=∠BEF,故③正确;∵∠ADG=∠B,∴DF∥BC,∴∠DGC+∠ACB=180°,故④正确;故选:D.10.解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•.故选:B.二、填空题(每小题5分,满分20分)11.解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)12.解:解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.13.解:由平移的性质可知:AD+EF+GH=CB,DE+FG+HI=AB ∴AB+BC=AD+EF+GH+DE+FG+HI.∴他们的行走的路程相等.∵他们的行走速度相同,∴他们所用时间相同.故答案为:甲、乙两人同时达到14.解:∵a1=n,a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣,a4=1﹣=1+n﹣1=n,…∴每3个数为一周期循环,∵2018÷3=672……2,∴a2018=a2=,故答案为:.三、(每小题8分满分16分)15.解:(1)原式=4﹣2﹣1+4=5;(2)原式=(x2+4xy+4y2﹣x2﹣4xy+9x2y4)÷2y2=(4y2+9x2y4)÷2y2=2+x2y2.16.解:(1)3﹣≥,24﹣5(x+3)≥2(3x﹣1),24﹣5x﹣15≥6x﹣2,﹣5x﹣6x≥﹣2﹣24+15,﹣11x≥﹣11,解得x≤1,在数轴上表示为:.四、(每小题8分,满分16分)17.解:去分母得:x2+x﹣2=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.18.解:(﹣)÷===a+2,当a=0时,原式=0+2=2.五、(每小题10分,满分20分19.解:(1)∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,又∵OE平分∠BOD,∴∠BOE=∠BOD=30°;(2)∵OF平分∠AOD,∴∠DOF=∠AOD,又∵OE平分∠BOD,∴∠DOE=∠BOD,∴∠EOF=∠DOF+∠DOE=(∠AOD+∠BOD)=×180°=90°.∴OE⊥OF.20.解:(1)第n个等式是=﹣,故答案为:=﹣;(2)+++……+=﹣+﹣+﹣+…+﹣=1﹣=;(3)+++…+=,﹣+﹣+…+﹣=,﹣=,=,方程两边都乘以(x+1)(x+20)得:x+20=2(x+1),解得:x=18,经检验x=18是原方程的解,所以x=18.六、(本题满分12分)21.解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.七、(本题满分12分)22.解:(1)直线l1与l2平行,∵∠1+∠BAE=180°,∠1+∠2=180°,∴∠2=∠BAE,∴l1∥l2,(2)过点E作EF∥AB交BC于点F,可得:∠BEF=∠ABE=30°,∴∠FEC=62°﹣30°=32°,∵l1∥l2,∴EF∥CD,∴∠DCE=∠FEC=32°.八、(本题满分14分)23.解:(1)设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,根据题意得+=18,∴x=100,经检验x=100为原分式方程的解∴4x=4×100=400,5x=5×100=500,答:原计划A、B生产线每小时加工粽子各是400、500个;(2)由题意得:(400﹣100)(a+3)+(500﹣50)(a +a)≥6300,解得:a≥6,∴a的最小值为6.第11 页。
沪科版七年级数学下册期末测试题附答案

沪科版七年级数学下册期末测试题附答案(时间:120分钟 分值:150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.3的平方根是( ) A .9 B .±9 C. 3 D .± 3 2.3-27的绝对值是( ) A .3 B .-3 C.13 D .-133.某种计算机完成一次基本运算的时间约为0.000000001s ,把0.000000001s 用科学记数法表示为( )A .0.1×10-8sB .0.1×10-9sC .1×10-8sD .1×10-9s4.下列各数:8,0,3π,327,227,1.1010010001…(相邻两个1之间依次多一个0),其中无理数的个数是( )A .5个B .4个C .3个D .2个5.与1+5最接近的整数是( ) A .4 B .3 C .2 D .16.下列是某同学在一次作业中的计算摘录:①4x 3-(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2.其中正确的个数有( )A .1个B .2个C .3个D .4个7.在数轴上表示不等式组⎩⎪⎨⎪⎧2+x >0,2x -6≤0的解集,正确的是( )A. B. C. D.8.不等式x -36<23x -5的解集是( )A .x >9B .x <9C .x >23D .x <239.将下列多项式分解因式,结果中不含因式x -1的是( ) A .x 2-1 B .x (x -2)+(2-x )C .x 2-2x +1D .x 2+2x +110.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是( )A .18B .19C .20D .21二、填空题(本大题共4小题,每小题5分,满分20分)11.1纳米=0.000000001米,则3纳米=________米(用科学记数法表示).12.分解因式:a 3-2a 2b +ab 2=____________. 13.分式3m 2-4与54-2m的最简公分母是__________. 14.下列说法:①5的小数部分是5-2;②若a <0,则关于x 的不等式ax <-1的解集为x >1;③同位角相等;④若∠1与∠2的两边分别垂直,且∠1比∠2的2倍少30°,则∠1=30°或110°;⑤平移只改变图形的位置,不改变图形的形状和大小.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)|1-2|+(3-1)0-⎝ ⎛⎭⎪⎫12-2;(2)(x -2y )2-x (x +3y )-4y 2.16.解下列不等式或分式方程: (1)4-2x -13<x +42;(2)x +1x -1+4x 2-1=1.四、(本大题共2小题,每小题8分,满分16分)17.解不等式组⎩⎪⎨⎪⎧x -1>-2①,5x -13-x ≤1②,并把它的解集在数轴上表示出来.18.化简⎝⎛⎭⎪⎫1+4a 2-4÷aa -2,并从-2,0,2,4中选取一个你最喜欢的数代入求值.五、(本大题共2小题,每小题10分,满分20分)19.如图,直线AB ,CD ,EF 相交于点O .(1)分别写出∠COE 的补角和∠BOD 的对顶角;(2)如果∠BOD =60°,∠BOF =90°,求∠AOF 和∠FOC 的度数.20.如图,在三角形ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数.六、(本题满分12分)21.阅读材料,并完成下列问题:不难求得方程x +1x =2+12的解为x 1=2,x 2=12;方程x +1x =3+13的解为x 1=3,x 2=13;方程x +1x =4+14的解为x 1=4,x 2=14;……(1)观察上述方程的解,猜想关于x 的方程x +1x =5+15的解为________________;(2)根据上面的规律,猜想关于x 的方程x +1x =a +1a的解为________________;(3)利用你猜想的结论,解关于y 的方程:y +y +2y +1=103.七、(本题满分12分)22.某水果店的老板用1200元购进一批杨梅,很快售完,老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使第二批杨梅的销售利润不少于320元且全部售完,剩余的杨梅每件至多打几折?八、(本题满分14分)23.问题背景:一次数学实践活动课,图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其平均分成四块小长方形,然后按图b所示围成一个正方形.(1)发现问题:图b中大正方形的边长为________,小正方形(阴影部分)的边长为________;(2)提出问题:观察图b,利用图b中存在的面积关系,直接写出三个代数式(m+n)2,(m-n)2,4mn 之间的等量关系;(3)解决问题:利用(2)题中的等量关系,若m+n=7,mn=6,计算m-n的值;(4)拓展应用:①实际上有许多代数恒等式可以用图形的面积来表示,如图c,它表示的等量关系为____________________________;②试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2(在图中标出相应的长度).参考答案:1.D 2.A 3.D 4.C 5.B 6.A 7.A 8.A 9.D 10.B11.3×10-912.a(a-b)213.2m2-814.①④⑤解析:因为2<5<3,所以5的小数部分是5-2,①正确;若a<0,则关于x的不等式ax<-1的解集为x>-1a,②错误;当两直线平行时,同位角相等,③错误;若∠1与∠2的两边分别垂直,有两种情况,如图a和图b.由题意得∠1=2∠2-30°.由图a可得∠1=∠2,则2∠2-30°=∠2,所以∠2=30°,所以∠1=30°.由图b可得90°+90°-∠2=∠1,则90°+90°-∠2=2∠2-30°,所以∠2=70°,所以∠1=110°.所以∠1=30°或110°,④正确;根据平移的性质可知⑤是正确的.故答案为①④⑤.15.解:(1)原式=2-1+1-4=2-4.(4分)(2)原式=x2-4xy+4y2-x2-3xy-4y2=-7xy.(8分)16.解:(1)去分母,得24-2(2x-1)<3(x+4),去括号,得24-4x+2<3x+12,移项、合并同类项,得-7x<-14,x系数化成1,得x>2.(4分)(2)方程两边同时乘以最简公分母x2-1,得(x+1)2+4=x2-1,展开,得x2+2x+1+4=x2-1,解得x=-3.(7分)经检验,x=-3是原分式方程的解.(8分) 17.解:解不等式①,得x>-1,(2分)解不等式②,得x≤2.(4分)所以原不等式组的解集为-1<x≤2.(6分)在数轴上表示不等式组的解集如下图所示.(8分)18.解:原式=⎝ ⎛⎭⎪⎫a 2-4a 2-4+4a 2-4÷a a -2=a 2a 2-4·a -2a =a 2(a +2)(a -2)·a -2a =aa +2.(4分)因为当a =-2,0,2时,原代数式无意义,所以只能取a =4.当a =4时,原式=44+2=23.(8分)19.解:(1)∠COE 的补角为∠COF 和∠EOD .(2分)∠BOD 的对顶角为∠AOC .(4分)(2)因为AB ,EF ,CD 交于点O ,∠BOF =90°,所以∠AOF =180°-∠BOF =90°.(6分)因为∠BOD =60°,所以∠AOC =60°,所以∠FOC =∠AOF +∠AOC =90°+60°=150°.(10分)20.解:(1)CD 与EF 平行.(2分)理由如下:因为CD ⊥AB ,所以∠CDA =90°.因为EF ⊥AB ,所以∠EFA =90°,所以∠EFA =∠CDA ,所以EF ∥CD (同位角相等,两直线平行).(5分)(2)由(1)知EF ∥CD ,所以∠2=∠BCD .又因为∠1=∠2,所以∠1=∠BCD ,所以DG ∥BC ,(8分)所以∠ACB =∠3.因为∠3=115°,所以∠ACB =115°.(10分)21.解:(1)x 1=5,x 2=15(2分)(2)x 1=a ,x 2=1a(4分)(3)y +y +2y +1=103,y +y +1+1y +1=3+13,y +1+1y +1=3+13,(8分)所以y +1=3或y +1=13,所以y =2或y =-23.(12分) 22.解:(1)设第一批杨梅每件进价为x 元,根据题意得1200x ×2=2500x +5,解得x =120.经检验,x =120是原分式方程的解.(5分)答:第一批杨梅每件进价120元.(6分)(2)设剩余的杨梅每件打a 折.由(1)可知第二批杨梅每件的进价为120+5=125(元),则由题意可得2500125×80%×(150-125)+2500125×(1-80%)×⎝ ⎛⎭⎪⎫150×a 10-125≥320,解得a ≥7.(11分)答:剩余的杨梅每件至多打7折.(12分) 23.解:(1)m +n m -n (2分)(2)(m +n )2-(m -n )2=4mn .(4分)(3)因为m +n =7,mn =6,所以(m +n )2=49,4mn =24,所以(m -n )2=(m +n )2-4mn =49-24=25.又因为m -n 的值为正数,所以m -n =5.(8分)(4)①(2m +n )(m +n )=2m 2+n 2+3mn (10分) ②如图所示(答案不唯一).(14分)。
沪科版七年级数学下册期末测试卷-带参考答案

沪科版七年级数学下册期末测试卷-带参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.下列各数是无理数的是()A.2 024 B.0 C.227 D. 32.某细胞的直径约为0.000 006 m,将数据0.000 006用科学记数法表示为() A.6×10-6B.0.6×10-5 C.6×10-7 D. 6×10-53.下列运算正确的是()A.(a4)3=a7B.a6÷a3=a2C.(3a-b)2=9a2-b2D.-a4·a6=-a104.下列各选项中正确的是()A.若a>b,则a-1<b-1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若a|c|>b|c|,则a>b5.下列因式分解正确的是()A. a2-2a+1=a(a-2)+1B. a2+b2=(a+b)(a-b)C. a2+4ab-4b2=(a-2b)2D. -ax2+4ax-4a=-a(x-2)26.已知a+b=5,ab=3,则ba+ab的值为()A.6 B.193 C.223D.87.如图,不能说明AB∥CD的有()①∠DAC=∠BCA;②∠BAD=∠CDE;③∠DAB+∠ABC=180°;④∠DAB=∠DCB.A. 1个B. 2个C. 3个D. 4个(第7题)8.如图,直线l1∥l2,AB⊥CD,∠1=22°,那么∠2的度数是()(第8题)A .68°B .58°C .22°D .28°9.若关于x 的不等式组⎩⎪⎨⎪⎧x2-1<2-x 3,a -3x ≤4x -2有且仅有3个整数解,且关于y 的方程a -y 3=2a -y5+1的解为负整数,则符合条件的整数a 的个数为( ) A .1B .2C .3D .410.我国宋朝数学家杨辉提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.(第10题)例如: (a +b )0=1; (a +b )1=a +b ; (a +b )2=a 2+2ab +b 2; (a +b )3=a 3+3a 2b +3ab 2+b 3; (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4; ……请你猜想(a +b )9的展开式中所有系数的和是( ) A .2 048B .512C .128D .64二、填空题(本大题共4小题,每小题5分,共20分) 11.181的算术平方根为________.12.已知a 2-2a -3=0,则代数式3a (a -2)的值为________.13.将两个直角三角尺按如图的方式放置,点E 在AC 边上,且ED ∥BC ,∠C第 3 页 共 10 页=30°,∠F =∠DEF =45°,则∠AEF =______.(第13题)14.观察下列方程和它们的解:①x +2x =3的解为x 1=1,x 2=2;②x +6x =5的解为x 1=2,x 2=3;③x +12x =7的解为x 1=3,x 2=4.(1)按此规律写出关于x 的第n 个方程为________________________; (2)(1)中方程的解为__________________. 三、(本大题共2小题,每小题8分,共16分) 15.计算:-12+|-2|+3-8+(-3)2.16.解不等式组:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),x +13<x -x -12.四、(本大题共2小题,每小题8分,共16分) 17. 先化简,再求值:⎝ ⎛⎭⎪⎫1-1a +1÷2a a 2-1,其中a =-3.18.已知5a +2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a -b +c 的平方根.五、(本大题共2小题,每小题10分,共20分) 19.在如图所示的网格中,画图并填空:(1)画出三角形ABC 向右平移6个小格得到的三角形A 1B 1C 1; (2)画出三角形A 1B 1C 1向下平移2个小格得到的三角形A 2B 2C 2;(3)如果点M 是三角形ABC 内一点,点M 随三角形ABC 经过(1)、(2)两次平移后得到的对应点是M 2,那么线段MM 2与线段AA 2的位置关系是________.(第19题)20.已知点A,B在数轴上所对应的数分别为mx-7,x-87-x,若A,B两点在原点的两侧且到原点的距离相等.(1)当m=2时,求x的值;(2)若不存在满足条件的x的值,求m的值.六、(本题满分12分)21.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.(第21题)第5 页共10 页七、(本题满分12分)22.实践与探索:如图①,边长为a的大正方形里有一个边长为b的小正方形,把图①中的阴影部分通过剪切拼成一个长方形(如图②所示).(第22题)(1)上述操作能验证的等式是:__________.(填“A”“B”或“C”)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)请应用这个等式完成下列各题:①已知4a2-b2=24,2a+b=6,则2a-b=________.②计算:9×(10+1)(102+1)(104+1)(108+1)(1016+1).八、(本题满分14分)23.已知直线PQ∥MN,把一个三角尺(∠A=30°,∠C=90°)按如图①的方式放置,点D,E,F是三角尺的边与平行线的交点.(1)①∠PDC,∠MEC,∠BCE之间有怎样的数量关系?请说明理由;②若∠AEN=∠A,则∠BDF=________;(2)将图①中的三角尺进行适当转动,得到图②,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求∠BDF∠GEN的值.(第23题)第7 页共10 页答案一、1.D 2.A 3.D 4.D 5.D 6.B 7.C 8.A9.C 思路点睛:解不等式组得⎩⎪⎨⎪⎧x <2,x ≥a +27.根据不等式组有且仅有3个整数解得到a 的取值范围.再解方程a -y 3=2a -y 5+1得y =-a +152.根据解为负整数,得到另一个a 的取值范围.再取两个a 的取值范围的公共部分即可. 10.B二、11.13 12.9 13.165° 14.(1)x +n (n +1)x=2n +1 (2)x 1=n ,x 2=n +1三、15.解:原式=-1+2+(-2)+3=-1+2-2+3=2. 16.解:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),①x +13<x -x -12,② 解不等式①,得x ≤5.解不等式②,得x >-1. 所以不等式组的解集为-1<x ≤5.四、17.解:原式=⎝ ⎛⎭⎪⎫a +1a +1-1a +1÷2a(a +1)(a -1)=a a +1·(a +1)(a -1)2a =a -12.当a =-3时,原式=-3-12=-2.18.解:因为5a +2的立方根是3, 3a +b -1的算术平方根是4,所以5a +2=27,3a +b -1=16.所以a =5,所以3×5+b -1=16,所以b =2.因为c 是13的整数部分,3<13<4,所以c =3.所以3a -b +c =3×5-2+3=16.所以3a -b +c 的平方根是±4. 五、19.解:(1)如图,三角形A 1B 1C 1即为所作.(2)如图,三角形A 2B 2C 2即为所作.(第19题) (3)平行20.解:(1)根据题意,得mx-7+x-87-x=0.把m=2代入,得2x-7+x-87-x=0,解得x=10.经检验,x=10是分式方程的解.所以x=10.(2)将mx-7+x-87-x=0化为整式方程为m-(x-8)=0.根据题意,得x-7=0,所以x=7.把x=7代入m-(x-8)=0,得m-(7-8)=0,解得m=-1.六、21.解:(1)AB∥EF,理由:因为∠EDC=∠GFD,所以DE∥GF,所以∠DEF=∠GFE.因为∠DEF+∠AGF=180°,所以∠GFE+∠AGF=180°,所以AB∥EF.(2)如图,因为GH⊥EF,所以∠GHF=90°.因为∠GFE=∠DEF=30°所以∠FGH=180°-∠GHF-∠GFE=180°-90°-30°=60°.(第21题)七、22.解:(1)A(2) ①4②9×(10+1)(102+1)(104+1)(108+1)(1016+1)=(10-1)(10+1)(102+1)(104+1)(108+1)(1016+1)第9 页共10 页=(102-1)(102+1)(104+1)(108+1)(1016+1)=(104-1)(104+1)(108+1)(1016+1)=(108-1)(108+1)(1016+1)=(1016-1)(1016+1)=1032-1.八、23.解:(1)①∠BCE=∠PDC+∠MEC.理由:过点C向右作CH∥PQ,所以∠PDC=∠DCH.因为PQ∥MN,所以CH∥MN所以∠MEC=∠ECH所以∠BCE=∠DCH+∠ECH=∠PDC+∠MEC.②60°(2)设∠CEG=∠CEM=x,则∠GEN=180°-2x.由(1)可得∠PDC+∠MEC=∠BCE=90°所以∠CDP=90°-∠CEM=90°-x所以∠BDF=90°-x.所以∠BDF∠GEN=90°-x180°-2x=12.。
沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.(4分)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.42.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.(4分)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b4.(4分)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a45.(4分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个7.(4分)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±118.(4分)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍9.(4分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab10.(4分)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0二、填空题(每小题5分,共20分)11.(5分)分解因式:4a2﹣25b2=.12.(5分)分式的值为0,那么x的值为.13.(5分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为°.14.(5分)若关于x的分式方程+=1有增根,则m=.三、解答题(每小题8分,共16分)15.(8分)解不等式组:.16.(8分)解分式方程:.四、(每小题8分,共16分)17.(8分)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.18.(8分)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.五、(每小题10分,共20分)19.(10分)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.20.(10分)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?21.(12分)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?22.(12分)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.23.(14分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2017春•全椒县期末)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、0.1010010001、是有理数,、、π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2017春•全椒县期末)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】先求出的范围,即可得出选项.【解答】解:∵2<<3,∴3<+1<4,即+1在3和4之间,故选B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.3.(4分)(2017•资中县二模)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减3,不等号的方向不变,故A不符合题意;B、两边都乘以﹣1,不等号的方向改变,故B符合题意;C、两边都乘以﹣2,不等号的方向改变,故C不符合题意;D、两边都除以3,不等号的方向不变,故D不符合题意;故选:B.【点评】本题考查了不等式的性质,不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(4分)(2017春•全椒县期末)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a4【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:(﹣3a2)2=32a4=9a4.故选C.【点评】本题考查了积的乘方的运算法则.应注意运算过程中的符号.5.(4分)(2017•安庆一模)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练利用公式法分解因式是解题关键.6.(4分)(2016•双柏县二模)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式解集,即可得知其正整数解情况.【解答】解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,根据不等式基本性质求出不等式解集是关键.7.(4分)(2017春•全椒县期末)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±11【分析】利用平方根及立方根定义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=9,=﹣2,∴a=3或﹣3,b=﹣8,则a+b=﹣5或﹣11,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.(4分)(2017春•全椒县期末)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍【分析】分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用3x和3y去代换原分式中的x和y,得==3×,故选B.【点评】本题考查了分式的基本性质,解题的关键是注意把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.9.(4分)(2017春•全椒县期末)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.(4分)(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选B【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.二、填空题(每小题5分,共20分)11.(5分)(2017•大石桥市校级模拟)分解因式:4a2﹣25b2=(2a+5b)(2a ﹣5b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+5b)(2a﹣5b),故答案为:(2a+5b)(2a﹣5b)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5分)(2017•新化县二模)分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.13.(5分)(2017春•全椒县期末)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为135°.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=45°,∴∠3=90°﹣∠1=90°﹣45°=45°,∴∠4=180°﹣45°=135°,∵直尺的两边互相平行,∴∠2=∠4=135°.故答案为:135.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.14.(5分)(2017春•全椒县期末)若关于x的分式方程+=1有增根,则m=2.【分析】根据方程有增根求出x=1,把原方程去分母得出整式方程,把x=1代入整式方程,即可求出m.【解答】解:∵关于x的分式方程+=1有增根,∴x﹣1=0,解得:x=1,方程+=1去分母得:3x﹣1﹣m=x﹣1①,把x=1代入方程①得:3﹣1﹣m=1﹣1,解得:m=2,故答案为:2.【点评】本题考查了分式方程的增根的应用,能求出方程的增根是解此题的关键.三、解答题(每小题8分,共16分)15.(8分)(2015•思茅区校级模拟)解不等式组:.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x>﹣1,由②得,x≤2,所以,原不等式组的解集是﹣1<x≤2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(8分)(2007•孝感)解分式方程:.【分析】因为1﹣3x=﹣(3x﹣1),所以可确定最简公分母为2(3x﹣1),然后把分式方程转化成整式方程,进行解答.【解答】解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)【点评】解分式方程的关键是确定最简公分母,去分母,将分式方程转化为整式方程,本题易错点是忽视验根,丢掉验根这一环节.四、(每小题8分,共16分)17.(8分)(2017春•全椒县期末)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a2+2a+1﹣a2+9=2a+10,当a=﹣3时,原式=﹣6+10=4.【点评】此题考查了整式的混合运算﹣化简求值,平方根公式及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.(8分)(2017春•全椒县期末)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.【分析】(1)根据图形平移的性质画出A1B1C1即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;=×3×3=.(2)S△A1B1C1故答案为:.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.五、(每小题10分,共20分)19.(10分)(2017春•全椒县期末)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.【点评】本题考查了一元一次不等式的整数解,解方程,关键是根据题意求得x 的最小整数.20.(10分)(2017•长清区一模)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?【分析】根据题目中的关键语句“他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟”,找到等量关系列出分式方程求解即可.【解答】解:设杨老师骑自行车平均每小时行驶x千米,则驾车每小时行驶4x 千米,由题意得﹣=,解得x=15.经检验x=15是原方程的解且符合题意.答:杨老师骑自行车平均每小时行驶15千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.(12分)(2017春•全椒县期末)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【分析】(1)小明家买的大米没有打折,所以一定没有超过160kg,再添40千克就能打折了,那么一定超过了120千克;(2)设小明家原来准备买大米x千克,根据原价购买4kg与打折价购买5kg的款相同,相对应的等量关系为:原价千克数:打折千克数=4:5,列出算式,求解即可.【解答】解:(1)由题意可得:120<x≤160,即小明家原计划购买大米的数量范围是120<x≤160;(2)设小明家原来准备买大米x千克,原价为元,折扣价为元.据题意列方程为:4×=5×,解得:x=160,经检验x=160是方程的解;答:小明家原来准备买160千克大米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题的等量关系为:原价千克数:打折千克数=4:5.22.(12分)(2017春•全椒县期末)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.【分析】直接利用表格中数据结合至少含有2900单位的维生素C,且费用不超过136元,分别得出不等式求出答案.【解答】解:设所需甲种原料的质量xkg,由题意得:,解得:5<x≤8,答:x的范围是5<x≤8.【点评】此题主要考查了一元一次不等式组的应用,正确得出不等关系是解题关键.23.(14分)(2017春•全椒县期末)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.【分析】(1)欲证明AB∥CD,只需推知∠A=∠D即可;(2)利用平行线的判定定理推知CE∥FB,然后由平行线的性质即可得到结论.【解答】证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.【点评】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。
(完整版)沪科版七年级(下)期末数学试卷含答案.doc

七年级期末数学试卷题号一二三总分得分姓名一选择题 (每小题 3 分)1. 已知,如右图 AB∥CD,可以得到A()A. ∠1=∠ 2B. ∠2=∠ 3 2 D14C. ∠1=∠ 4D.∠3=∠ 4B3C2.223, 16, 这五个数中,无理数的个数是()在 3.14, ,7A. 1 个B. 2 个C. 3 个D. 4 个3. 已知 a b 则下列各式正确的是()A. a bB. a 3 b 3C. a 2 b2D. 3a 3b班 4. 下列计算中,正确的个数是()级① x3 x4 x7 ② y 2 y 3 y ③ a2 3 a5 ④ (ab) 2 a2 b2A. 1 个B.2 个C.3 个D. 4 个5. 2 3与 23 的关系是()A. 互为倒数B. 绝对值相等C. 互为相反数D. 和为零考6. 下列各式中,正确的是()号 2 2 2 2A. a b a bB. a b 1C. a b 1D. a b a ba b a b a b a b7. 下列多项式能用完全平方公式分解因式的有()A.x2 2x y2 B. 4x2 9 C. x2 y2 D. a2 2ab b28.如图,下列不能判定 a ∥ b 条件是()1 2aA. ∠1=∠3B.∠ 2+∠3=180°C. ∠ 2=∠ 3D.∠2=∠ 4 4 b39.为了考察某班学生的身高情况,从中抽出 20 名学生进行身高测量,下列说法中正确的是()1A. 这个班级的学生是总体B. 抽取的 20 名学生是样本C. 抽取的每一名学生是个体D.样本容量是 2010. 下列图形中,是由①仅通过平移得到的是 ( )①A. B. C. D.二 填空题(每题 3 分,共 27 分)11.16 的平方根是.12. 一种病毒的直径是 0.00 12m , 用科学计数法表示为 m.13. 比较大小: 12 0 .14. 关于 x 的某个不等式组的解集在数轴上表示为: (如下图)则原不等式组的解集是.-2-1 01234x 1 0.15. 不等式组2 的整数解是x 316. 若∠ 1 和∠ 2 是对顶角,∠ 1=25°, 则∠ 2 是 ° .17. 分解因式: 4m 3 m =.18. 如右下图,直线 a 、b 被直线 c 所截,且 a ∥ b ,若∠ 2=38°,则∠ 1的度数是°.c1xa19. 当 x时,分式有意义 .24x 2b三 解答题( 43 分)20. 计算2x 1 (6 分)x 12x 2221.先化解,再求值( 8 分)( 1 x 3 ) 1 ,其中 x 1x 1 x2 1 x 122.已知,AB//CD, B 360 , D 240 , 求BED.(8分)23. 推理填空:(8分)如图, EF∥AD,∠ 1=∠ 2, ∠BAC=70° . 将求∠ AGD的过程填写完整 .因为 EF∥ AD,C 所以∠ 2=____(____________________________)又因为∠ 1=∠ 2D 1所以∠ 1=∠ 3(______________) G 所以 AB∥ _____(_____________________________) F所以∠ BAC+______=180° 2 3 (___________________________) B E A 因为∠ BAC=70°所以∠ AGD=_______。
沪科版七年级(下)期末数学试卷含答案

4321DC BA 初中七年级数学试卷一 填空题(每题3分,共30分) 1.如果a 的平2.一种病毒的直径是0.000 000 12m ,用科学计数法表示为 m.3. 比较大小:1-.4. 关于x 的某个不等式组的解集在数轴上表示为:(如下图)则原不等式组的解集是 .5.不等式组1023x x +≥⎧⎨+<⎩的整数解是 .6. 若∠1和∠2是对顶角,∠1=25°,则∠2的余角是 °.7. 分解因式:34m m -= .8. 如下图,直线a 、b 被直线c 所截,且a ∥b ,若∠2=38°,则∠1的度数是 °. 9. 当x 时,分式24xx -有意义. 10. 某住宅小区5月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区5月份的总用水量约是 吨.二 选择题(每小题3分)11. 已知,如右图AB ∥CD ,可以得到 ( )A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4 12. 在223.14,,7π这五个数中,无理数的个数是 ( ) A. 1个 B. 2个 C. 3个 D. 4个13. 已知a b <则下列各式正确的是 ( ) A. a b <- B. 33a b ->- C. 22a b <D. 33a b ->-14. 下列计算中,正确的个数是 ( )①347x x x += ②33623y y y ⋅= ③ 538()()a b a b ⎡⎤+=+⎣⎦④2363()a b a b = A. 1个 B.2个 C.3个 D. 4个a15. 32-与32的关系是()A. 互为倒数B.绝对值相等C. 互为相反数D. 和为零()1a ba b--=-+C.1a ba b--=--D.22a ba ba b-=--()2469x x-+ C. 22x xy y++ D.22293xxy y-+a∥b条件是()∠2+∠3=180° C.∠2=∠3 D. ∠2=∠4从中抽出20名学生进行身高测量,法中正确的是B. 抽取的20名学生是样本D. 样本容量是2020.下列图形中,是由①仅通过平移得到的是()40分)6分)8分)11x÷-,其中1x=35人,若每个房间人没处住;若每个房间住8人,则空一间房,并且还有一间房也住不满,8分)个零件,在加工完成60个以后,由于改进操作方法,每天加工的零件是30天完成了任务,那么改进操作方法后每天加工多少个零件?(8分)参考答案一 填空(每小题3分,共30分)1. 42. 71.210-⨯3. <4. 23x -<≤5. 1,0x x =-=6. 657. (21)(21)m m m +-8. 1429. 2x ≠± 10. 992 二 选择三 解答题(40分)22.解:…………(3分)………………(5分)…………………… (6分)当 1x =时,原式=4211-=-+ ………………………(8分)24. 解:设有x 间宿舍,则女生数为(55)x +人,根据题意得 (1分)55358(1)55x x x +<⎧⎨->+⎩………………………………………(5分) 解得 1463x << ………………………………………(6分) 因为房间数为整数,所以5x =,(55)30x += ………(7分) 答:有5间宿舍,30名女生. ……………………(8分)25.解:设改进方法后每天加工的零件数为x ,则改进方法前每天加工的零件数为12x ,根据题意得 ……………………………(1分)12603006030xx-+= ……………………………(5分) 解这个分式方程得12x = ……………………………(6分) 经检验 ,12x =是原方程的根 ……………………………(7分) 答:改进方法后每天加工零件12个. …………………………(8分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。