金刚石工具在光学玻璃加工中的应用
金刚石结构式

金刚石结构式1. 介绍金刚石是一种非常重要的材料,具有极高的硬度和优异的热导性能。
这些特性使得金刚石在许多领域中得到广泛应用,包括工业、电子、医学和化学等。
本文将详细介绍金刚石的结构式以及其相关特性。
2. 结构式金刚石的化学式为C,它是由碳原子组成的晶体。
在金刚石中,每个碳原子形成了四个共价键,并与其他四个碳原子相连,形成了一种稳定而坚固的立方晶体结构。
如上图所示,金刚石的结构可以被描述为一个由碳原子组成的立方晶格。
每个碳原子都与其周围四个碳原子共享电子对,形成了一个类似于正方形的平面。
这种平面又与其他平面相互堆叠,并通过强大而稳定的共价键连接在一起。
3. 特性3.1 硬度金刚石是地球上最硬的物质之一。
这是由于它的结构中碳原子之间的共价键非常强大,使得金刚石具有出色的抗压能力。
因此,金刚石被广泛应用于硬质材料的制备,如切割工具、研磨材料和高速车床刀具等。
3.2 热导性金刚石具有优异的热导性能,这是由于它的结构中碳原子之间紧密排列、共价键强度高的特点所决定。
这使得金刚石在高温环境下能够快速传导热量,并且不易受到热膨胀或变形的影响。
因此,金刚石被广泛应用于散热器、激光器和电子元件等需要高效散热的设备中。
3.3 光学性质金刚石具有优异的光学性质,包括高透明度和折射率。
这使得金刚石成为制造光学元件(如透镜)和光学窗口等领域中重要材料。
4. 应用领域4.1 工业由于金刚石具有极高的硬度和耐磨性,它被广泛应用于工业领域。
金刚石切割工具(如锯片、钻头)能够在高速、高温和高压的条件下进行切割和加工各种材料,如石材、玻璃、陶瓷和金属等。
4.2 电子金刚石在电子领域中也有重要应用。
由于其优异的热导性能和高电阻率,金刚石可以用作散热器、半导体器件基板和射频功率放大器等器件的制造材料。
4.3 医学金刚石在医学领域中也发挥着重要作用。
由于其生物相容性和化学稳定性,金刚石被用作人工关节表面涂层和牙科手术器械等医疗设备的制造材料。
电镀金刚石工具应用及工艺要点

电镀金刚石工具应用及工艺要点摘要:分析了金刚石复合电镀的原理,介绍了电镀金刚石工具在机械加工、电气电子、玻璃、工艺美术及日用品等工业领域的应用。
给出了选用金刚石的标准及除杂方法,待镀件几何图形的面积计算,电镀容器的规格和用途。
讲解了电解液的加热方式和阳极使用方法,及电镀质量检测要求:研究了一种电镀金刚石工具新工艺:250~260LNiSO4•7H20,30~35LNiCI2•6H20,35~40LH3BO3,30mL/L增光刑,50mL/L增硬刑,35mL/L增润剂,pH4.6~5,40~44℃,JK=0、5~lA/din提出了电镀清洁生产的基本条件。
关键词:复合电镀;电镀金刚石;生产应用;1电镀金刚石工具原理电镀金刚石是金属复合电沉积过程(又称镶嵌电镀)。
由于采用Ni-C0二元合金或Ni-Co-Mn三元合金电解液,可获得合金复合镀层,具有比单金属Ni镀层更好的性能(硬度、致密性、耐磨性、耐高温性等):要实现合金的共沉积,必须要求2种金属的电极电位差小于0.02V。
Ni(一0.25V)、Co(一0.27V)的电极电位差为0.02V,因此可以得到Ni.Co合金镀层。
尽管Ni与Mn(一1.05V)的电极电位差偏大(0.80V),但在硫酸盐电解液中,Mn的极化不大,而Ni的极化却很显著,因此仍可获得Ni-Co-Mn三元合金镀层。
金刚石在弱酸性溶液中吸附H(这可由加入金刚石后溶液pH升高而证明),并在电场作用下向阴极缓慢移动,最终吸附在阴极表面。
这样当N、Co、Mn“不断在阴极表面吸附时,就把吸附在阴极表面的金刚石不断包裹起来,形成金刚石复合镀层。
为使金刚石与基体及包裹镀层互相溶合成一体,基体及镀层必须具有与金刚石表面相似的结构。
2电镀金刚石工具的应用范围2.1机械加工工业电镀金刚石滚轮已成功地应用于修整成型磨削用的普通砂轮或者直接对工件进行成型磨削,并广泛地用于加工曲轴、轴承、液压阀件等。
电镀金刚石手工什锦锉或机用锉刀,以及各种形状的金刚石磨头,广泛应用于加工修磨、以硬质合金或淬液硬钢材制造的模具、或者各种形状的工件表面和内孔。
超精密加工中的金刚石刀具及刀具磨损分析

理论与实践经济与社会发展研究超精密加工中的金刚石刀具及刀具磨损分析齐齐哈尔工程学院 武晓迪摘要:各种超精密加工应用中将金刚石用作切削工具已经成为现实,然而其目的与意义并没有得到实质性分析。
据此,本文对超精密加工中应用金刚石作为切削刀具的现实意义进行分析。
关键词:超精密加工;切削工具;刀具磨损一、技术背景分析使用高速超精密车床加工玻璃和硅等脆性材料时,当所施加的切削深度低于临界值时,则认为其处于延性模式,并且可以容易地加工而不会形成裂纹。
因此,对于这些材料的延性至脆性转变具有重要意义,在这些材料中,临界切削深度的大小取决于零件的特性而变化。
通常,单晶硅经常用在微机电系统(MEMS)中,在该系统中,最终将材料加工成优质产品,并进行超精密研磨和抛光操作。
尽管硅材料的行为在室温下很脆,但建议使用金刚石车削工具以延性模式加工硅。
这减少了由陶瓷材料的脆性断裂引起的损坏,并提高了最终零件的生产率。
使用金刚石工具对铜,铝和镍等有色金属材料进行高速加工,以评估工具的磨损,切削力和表面光洁度。
实验针对不同的切割速度进行,例如较低的150m/min的速度和较高的4500m/min的速度。
在较低的切削速度下观察到的刀具磨损率大于较高的切削速度。
这可能是由于以较高的速度减少了刀具与工件啮合的时间。
它还降低了工具和工件界面之间的化学亲和力。
具有高负前角的金刚石工具可用于以超精密精度精加工该材料。
二、金刚石作为切削工具的意义制备塑料模具的需求不断增加,而塑料模具是制造CD光学头的非球面透镜和照相机的智能透镜所必需的。
刀具的切削刃必须锋利且没有不规则形状,以加工高精度非球面。
基于工具的清晰度,单晶金刚石(SCD)和多晶金刚石(PCD)之间存在主要差异。
SCD工具的切削刃是均匀的且没有不规则性,而PCD工具的切削刃则显示出微观的不规则性,从而导致金刚石颗粒的去除。
与PCD工具相比,SCD工具的主要缺点是其磨损寿命短。
它还用于将铝基板加工成精细的镜面涂层,该涂层用于计算机存储系统的硬盘驱动器中。
玻璃激光切割工艺

玻璃激光切割工艺玻璃是一种重要的产业材料,应用在国民经济的诸多行业,如汽车业、建筑业、医疗、显示器、电子产品等,小到几微米的小型光学过滤器、笔记本电脑平板显示器的玻璃衬底,大到汽车业或建筑业等大规模制造领域所用的大尺寸的玻璃板。
玻璃显著的特点是硬脆性,给加工带来很大的困难。
传统的玻璃切割手段采用硬质合金或金刚石刀具,被广泛地用于许多应用当中,其切割流程分为两个步骤。
首先玻璃被用金刚石刀尖或硬质合金砂轮,在玻璃的表面产生一条裂纹;之后,第二步就是采用机械手段将玻璃沿着裂纹线分割开。
然而,采用该方法进行划刻和切割存在着一些缺陷。
材料的去除会导致碎屑、碎块和微裂痕的产生,使切割边缘的强度降低,从而需要再进行一道清理工序。
由此工艺带来的深裂纹通常不会垂直于玻璃表面,原因在于机械力所生成的分割线一般是非垂直的。
而且,机械力作用于薄玻璃带来的产量损失也是一个负面因素。
以上这些缺陷能通过采用无应力玻璃以及进一步优化用于分割的工装得到改善。
然而,对于垂直切割线和防止边缘碎屑/裂纹之间的系统性矛盾来说,要想完全避免仍不可能。
激光技术的发展为这些质量问题带来了解决方案。
激光划线和分割与传统的机械切割工具不同,激光束的能量以一种非接触的方式对玻璃进行切割。
该能量对工件的指定部分进行加热,使其达到预先定义的温度。
该快速加热的过程之后紧接着进行快速冷却,使玻璃内部产生垂直向的应力带,在该方向出现一条无碎屑或裂纹的裂缝。
因为裂缝只因受热而产生,而非机械原因而产生,所以不会有碎屑和微裂纹出现。
因此,激光切割边缘的强度同传统划刻和分割方式相比是要更强的。
精加工的需要也得到降低或根本不需要。
另外,对出现玻璃碎块的状况也可完全避免。
对于激光划刻来说,在激光束的加热及随后的冷却过程作用下,玻璃表面被划出一条深度大约为10mm(玻璃厚度的约10%)。
玻璃随后能沿着划刻的方向被分割开来。
因为该技术不产生任何玻璃碎块,切割边缘常见的毛边和低强度也得到了避免,后续的抛光和打磨的工序也不再需要了。
金刚石的三大用途是什么

金刚石的三大用途是什么金刚石是一种由碳元素构成的矿物,具有非常高的硬度和热导率。
由于其独特的物理特性,金刚石被广泛应用于各个领域。
下面将介绍金刚石的三大主要用途。
一、工业用途:1. 切割和磨削工具:由于金刚石的硬度非常高,因此金刚石常常被用作切割和磨削工具的刀片或磨具。
例如,金刚石切割片广泛用于切割石材、金属和混凝土等硬材料。
金刚石磨具被用于磨削和抛光工艺,能够提供高质量的表面光洁度。
2. 钻石工具:金刚石是唯一能够切削钻石的材料,因此金刚石常被用于制作钻石工具,如金刚石钻头、钻石刀片和钻石锉等。
这些工具在采矿、建筑和制造业中广泛应用,用于切割和加工各种材料。
3. 磨料粉末:金刚石经过粉碎和筛分后可以制成金刚石磨料粉末,被用作高效磨料材料。
金刚石磨料粉末被广泛应用于磨削、抛光和研磨工艺中,用于加工金属、陶瓷、宝石和玻璃等材料。
二、宝石用途:1. 珠宝饰品:金刚石被誉为“永恒的珠宝”,因为它的硬度、光泽和稀有性质使其成为珠宝饰品中的顶级宝石。
金刚石可以被切割成各种形状,用于制造戒指、项链、耳环等珠宝饰品,常常作为婚庆和重要场合的礼物。
2. 工业用金刚石:由于金刚石的硬度和热导率,其在工业上也被用作工具材料,如金刚石刀、钻头和磨具等。
这些金刚石工具具有超强的切削和磨削能力,能够有效加工硬材料,在工业生产中有广泛的应用。
三、高科技用途:1. 电子设备:金刚石在电子设备中有广泛的应用。
由于金刚石的热导率非常高,它被用作高功率电子器件的散热材料,如高性能电脑芯片和激光二极管等。
2. 光学器件:金刚石具有卓越的光学性能,因此被广泛应用于光学器件中。
例如,金刚石被用作激光器的光学腔体、光学窗口和束流器等。
金刚石的高透明度和硬度使其成为高品质光学器件的理想材料。
3. 陶瓷加工:金刚石也被用于陶瓷加工中。
由于其硬度高、耐磨性好,金刚石被用作陶瓷刀片,用于切割和加工陶瓷制品。
总结起来,金刚石的三大主要用途包括工业用途、宝石用途和高科技用途。
金刚石研磨膏 用途

金刚石研磨膏用途
金刚石研磨膏主要应用在以下几个方面:
1.研磨硬脆材料:金刚石研磨膏由金刚石微粉磨料和膏状结合剂制成,主要用于研磨硬脆材料,如玻璃、陶瓷、石材等,以获得高表面光洁度。
2.抛光:使用金刚石研磨膏进行抛光的主要对象是对工件表面进行多余疵点的去除和对工件表面的镜面抛光。
能使研磨抛光磨料与工件在研磨抛光过程中阻止或减少它们相互之间的碰击,避免划伤。
3.表面处理:金刚石研磨膏可用于表面处理,如金属、玻璃、陶瓷等材料的表面加工,提高其平滑度和光泽度。
4.精密加工:在精密加工领域,金刚石研磨膏可用于加工高精度零件,如钟表、光学仪器等,以获得所需的尺寸和形状。
5.实验研究:金刚石研磨膏在实验研究中也有广泛应用,例如在材料科学、物理和化学等领域的研究中,可用于制备高纯度材料和特定表面结构。
总之,金刚石研磨膏是一种广泛应用于研磨和抛光领域的材料,具有高硬度、高耐磨性和高精度的特点,能够达到理想的表面光洁度和加工效果。
金刚石的用途初中化学物质

金刚石的用途初中化学物质金刚石是一种由纯碳元素构成的硬度极高的矿物,它具有许多重要的用途。
以下是金刚石的一些主要用途:1. 钻石饰品:金刚石是一种非常珍贵的宝石材料,被用于制作各种珠宝首饰,如戒指、项链、耳环等。
其极高的硬度和闪耀的外观使钻石成为最受欢迎的饰品之一。
2. 工业用途:金刚石的硬度和耐磨性使其成为许多工业应用的理想选择。
它被广泛用作切割工具,特别是用于切削和磨削非金属材料,如陶瓷、玻璃和混凝土。
金刚石也用于制作益智玩具,如魔方,以及许多其他工业用途。
3. 电子领域:由于金刚石的导热性和电绝缘性,它被用于制造高功率电子设备的散热器。
金刚石散热器能够有效地将热量传输到周围环境中,提高设备的效率和寿命。
4. 石油和矿物勘探:金刚石钻头用于石油和矿物勘探,因为它们能够在地下非常高压和高温的环境下进行钻探。
金刚石钻头能够切削各种硬质岩石,使得石油和矿产资源的开采更为容易。
5. 医疗领域:金刚石被用于医疗器械和手术刀片,因为它的硬度能够提供更长的使用寿命和更好的切割能力。
金刚石刀片用于进行手术切割和植发手术等精细操作。
6. 光学领域:金刚石具有优异的光学特性,被用于制造高质量的光学透镜和窗口。
金刚石的硬度和光学透明性使其成为许多科学仪器的关键部件。
7. 超硬刀具:金刚石刀具由于其极高的硬度和热稳定性,被广泛应用于材料加工行业。
金刚石刀具能够切削各种硬质材料,如合金钢、陶瓷和复合材料,具有较长的使用寿命和高加工效率。
8. 电子磁盘:金刚石被用于制造硬盘驱动器的读写头部分。
金刚石的硬度和耐磨性使得读写头能够在高速旋转的硬盘上精确地读取和写入数据。
9. 信号传输:金刚石纳米线是一种被用于更高速率的信号传输的新型材料。
这种纳米线具有高导电性和稳定性,可用于制造高频率电子器件和传感器。
综上所述,金刚石具有非常广泛的应用领域,包括珠宝制作、工业用途、电子领域、石油和矿物勘探、医疗器械、光学领域、刀具制造以及信号传输等。
光学镜片加工工艺--抛光

目录光学冷加工工序----------------------------------------2玻璃镜片抛光工艺--------------------------------------3镜片抛光----------------------------------------------4光学冷加工工艺资料的详细描述--------------------------5模具机械抛光基本程序(对比)--------------------------7金刚砂-----------------------------------------------8光学清洗工艺-----------------------------------------10镀膜过程中喷点、潮斑(花斑)的成因及消除方法------------12光学镜片的超声波清洗技术-----------------------------14研磨或抛光对光学镜片腐蚀的影响-----------------------17抛光常见疵病产生原因及克服方法-----------------------23光学冷却液在光学加工中的作用-------------------------25光学冷加工工序第1道:铣磨,是去除镜片表面凹凸不平的气泡和杂质,(约0.05-0.08)起到成型作用.第2道就是精磨工序,是将铣磨出来的镜片将其的破坏层给消除掉,固定R值.第3道就是抛光工序,是将精磨镜片再一次抛光,这道工序主要是把外观做的更好。
第4道就是清洗,是将抛光过后的镜片将其表面的抛光粉清洗干净.防止压克.第5道就是磨边,是将原有镜片外径将其磨削到指定外径。
第6道就是镀膜,是将有需要镀膜镜片表面镀上一层或多层的有色膜或其他膜第7道就是涂墨,是将有需要镜片防止反光在其外袁涂上一层黑墨.第8道就是胶合,是将有2个R值相反大小和外径材质一样的镜片用胶将其联合.特殊工序:多片加工(成盘加工)和小球面加工(20跟轴)线切割根据不同的生产工艺,工序也会稍有出入,如涂墨和胶合的先后次序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金刚石工具在光学玻璃加工中的应用_五金
工具
随着信息产业的迅速发展光学元件广泛地应用在各种电子设备中, 对其加工的精度和质量要求越来越高,传统的加工工艺和工具很难满足其加工要求, 尤其在金刚石工具方面, 无论从其结构和内在的质量方面的要求越来越特殊化, 针对性要求越来越强。
因此在该领域对传统金刚石工具结构的改造和内在质量的提高就显得越来越重要。
该领域的金刚石工具主要包括粗加工中铣磨平面和球面的铣磨砂轮, 磨边用的磨边砂轮,精加工中的精磨片及面磨, 超精片及抛光片;另外还有下料用的锯片等。
1、光学玻璃加工用金刚石工具的主要种类
铣磨砂轮
光学玻璃的铣磨是粗加工的主要方式, 它分平面和球面铣磨砂轮。
平面铣磨砂轮的直径一般大于100mm, 而球面铣磨的砂轮直径一般小于100mm , 砂轮粒度一般为60#——180# , 浓度一般为50%——100%, 结合剂为青铜。
金刚石磨边砂轮
金刚石磨边砂轮主要是对光学零件的外圆进行磨加工, 其几何形状和尺寸见图2和表2, 其结合剂有两种, 一种是电镀镍基结合剂, 一种为烧结青铜结合剂。
其粒度一般在230/270 -M28/20 , 浓度为电镀的100%-200%, 青铜的为50%-100%。
精磨片、超精磨片
精磨片和超精磨片是对粗加工后的光学零件进行精加工, 使其在使用时充分展现它的光学性能。
精磨和超精磨有平面加工也有球面加工。
精磨片一般选用青铜、铁基、镍基或钴基结合剂, 而超精磨一般选用树脂有机结合剂。
精磨片粒度一般在325/400 —— 10/5 , 浓度为100%——35%, 而超精磨片粒度一般在14/8 —— 7/5范围内, 浓度为50 %—— 25 %。
抛光片
抛光片主要是用于提高光学零件的表面光洁度,保证一定的光圈, 同时降低表面变质层的加工。
主要形状如同精磨片和超精磨片, 结合剂为树脂,磨料为氧化铈和少量的金刚石微粉。
2、光学玻璃加工中金刚石制品的合理选择
光学玻璃加工中金刚石制品的合理选择主要是指根据被加工光学玻璃元器件的形状、牌号、加工质量要求和加工工艺, 对金刚石工具的形状尺寸、结合剂类型、金刚石粒度、金刚石浓度、结合剂软硬度等进行选择。
一般的选择原则为:
(1)根据加工方式及机床的精度来选择金刚石工具的形状尺寸和精度。
(2)根据加工原件的余量及表面的粗糙度来选择金刚石工具的粒度。
(3)根据加工工件的大小和加工工序、金刚石工具覆盖比的大小来选择金刚石的浓度, 尤其对精磨和超精磨加工。
(4)根据加工工件的工序和工件的牌号来选择结合剂类型, 尤其对精磨和超精磨。
象精磨一般选青铜、镍基、钴基和铁基;超精磨选树脂结合剂。
软玻璃的精磨加工选择青铜和镍基。
而硬玻璃及粘性较大的玻璃选择铁基和钴基。
(5)根据加工光学零件的牌号、硬度和脆性大小来选择金刚石工具的软硬度以及结合剂强度。
一般情况下, 软玻璃和脆性小的玻璃选择结合剂的硬度低些;结合剂强度小些。
而硬、脆玻璃选择硬度高些;结合剂强度大些。
3、光学玻璃用金刚石工具的最新制造技术
目前该领域金刚石工具的制造技术越来越高,主要表现在以下几个方面:原材料方面, 结合剂的粉料越来越细, 一般颗粒直径都小于40μm, 有的可达到10μm以下,并且都是采用预合成的粉料。
金刚石的粒度组成范围越来越窄, 晶形越来越好, 尤其在微粉级几乎趋于等积体。
各种的结合剂中都添加了微量的元素和化合物, 旨在提高其磨削的效率。
金刚石在结合剂中的分布一般采用了造粒工艺或充分的均匀混合。
成型烧结采用有保护气氛的热压烧结方式。
模具采用高精度耐高温的金属模具, 烧出来的毛坯几乎没有气孔, 并且金刚石在烧结过程中强度几乎没有降低, 制造出的毛坯都要经过严格的精加工, 以保证它的型面和公差, 同时保证其磨削锋利度。
4、部分金刚石工具在光学玻璃加工过程中易出现的问题及对策
金刚石工具在使用过程中往往会出现各种各样的问题, 其影响了加工的成品率和效率, 对生产成本和产品性能带来极大的影响。
这主要表现在金刚石工具的制造技术和内在的性能方面。
铣磨过程
在铣磨过程中常出现以下主要问题:
(1)粗糙度差
(2)打玻璃及崩口
(3)型面不稳定
(4)效率低, 有深划伤
这些问题主要与铣磨砂轮的粒度、同心度、浓度、结合剂的自锐性及砂轮的寿命和耐用度有关, 解决这些问题从砂轮的制造技术上分析, 主要调整结合剂的强度和金刚石浓度和粒度, 同时必须保证砂轮的同心度。
主要是提高金刚石的把持强度和降低结合剂的研磨硬度。
精磨和超精磨及抛光过程
精磨、超精磨及抛光过程是光学玻璃加工最关键的几道工序, 同时也是最易出现质量问题的几道工序。
该工序中的金刚石工具也是最难制做的, 该过程中易出现的问题主要表现如下:
(1)工件易产生麻点
(2)光圈不稳定和光圈不规则
(3)表面粗糙度差
(4)工件破边或崩口
(5)规则划伤或不规则划伤
(6)磨盘易钝化
(7)切削效率低
以上这些问题大部分与金刚石工具的质量有关,应该从以下几个方面进行改进:
(1)选择合适的金刚石浓度, 一般情况下是金刚石浓度偏高。
(2)提高结合剂的自锐性, 主要是降低其研磨硬度和均匀性, 减少低熔物偏析。
(3)降低金刚石片的覆盖比, 减少金刚石丸片的磨削面面积, 或增加容屑空。